JPS59116595A - Method of removing radioactive material in electrolyte in electrolytic decontamination - Google Patents

Method of removing radioactive material in electrolyte in electrolytic decontamination

Info

Publication number
JPS59116595A
JPS59116595A JP23190182A JP23190182A JPS59116595A JP S59116595 A JPS59116595 A JP S59116595A JP 23190182 A JP23190182 A JP 23190182A JP 23190182 A JP23190182 A JP 23190182A JP S59116595 A JPS59116595 A JP S59116595A
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic
acid
metal ions
decontamination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23190182A
Other languages
Japanese (ja)
Inventor
小林 俊男
耕一 和田
隆 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pfaudler Co Ltd
Original Assignee
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pfaudler Co Ltd filed Critical Shinko Pfaudler Co Ltd
Priority to JP23190182A priority Critical patent/JPS59116595A/en
Publication of JPS59116595A publication Critical patent/JPS59116595A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 零発、明け、原子力発6L所′4において使用され、複
合金属酸化物笈からなる放射性物質の沈符により汚染さ
れた機器、部品等を被除染物として、その全屈母材の表
面に対する電解研摩により、除染する際に、電解液中に
放出され、経時的に蓄積される放射性物質を除去する方
法に関する。
[Detailed Description of the Invention] The equipment, parts, etc. that were used at the nuclear power plant 6L station '4 and were contaminated with radioactive substances made of composite metal oxide lamps were to be decontaminated. The present invention relates to a method of removing radioactive substances that are released into an electrolytic solution and accumulated over time during decontamination by electrolytic polishing of the surface of a substrate.

flf記の電解除染の過程において電解液中に蓄積され
る放射性物質のうら、被除染物表面からrl+、I 1
m放出された複合金属酸化物は、電Ifg!の循131
濾過や沈降分層等の固液分離手段により比較的容易にi
i解液液系外取出すことが出来る1、シかし、被除染物
から溶出し、金属イオンとして電解液中に溶存する放射
性物質は、前記のような固液分離手段だけでは濃縮され
た形態として電解液外に取出可能とすることは容易でな
い。
From the surface of the object to be decontaminated, rl+, I 1
mThe released composite metal oxide is electric Ifg! circulation 131
It is relatively easy to separate i by solid-liquid separation means such as filtration and sedimentation.
i) Radioactive substances that can be taken out of the decomposition liquid system 1.Radioactive substances eluted from the decontamination object and dissolved in the electrolyte as metal ions cannot be removed in a concentrated form by solid-liquid separation methods such as those described above. It is not easy to make it possible to remove the electrolyte from the outside.

そのよう々状態で電解除染作業を続行することは、金属
イオンのよ−うに液中に溶存する放射性物質は蓄積され
るので%電解液中の放射能が増加し、除染装置運転者に
放射性彼暑の危険性が生じる。
Continuing the electrolytic decontamination work under such conditions will increase the radioactivity in the electrolyte as radioactive substances such as metal ions accumulate and cause decontamination equipment operators to There is a risk of radioactive heat.

この危険性を回避する1つの方法として、使用中のtQ
 m 液の一部を系外に抜き出してイオン交換樹脂等音
用いて溶解性の放射性物質を除去した後、この液を回収
することが考えられるが電解液が多量の金属イオンを含
む高濃度の酸液であるため、この方法を実施するには多
量の水で希釈して処理する心数があり、金属イオン等を
除去した後の希薄濃度液のf4縮回収に大きな設備、多
くの熱量を嬰することとなり、さらに金属イオンを吸着
しかイオン交換樹脂等の多1;1の放射性二次廃棄物が
発生するとと七なるので、この方法は実際的でない。l
jI記イオン交換法の他、系外に取出したτ電解液を回
収することなく pJ6r(Mとして中和処理し処分す
るのも1つの方法であるが、多量の放射性スラリーが生
ずるため、その廃棄が厄介となる。これらの方法はいず
れも多量の放射性二次廃棄物を生ずることから、放射能
汚染領域を却って著しく拡張するおそれがある。
One way to avoid this risk is to
It is conceivable to extract some of the liquid from the system and remove the soluble radioactive substances using an ion exchange resin, and then recover this liquid, but if the electrolyte is highly concentrated and contains a large amount of metal ions, Since it is an acid solution, this method requires dilution with a large amount of water before treatment, and large equipment and a large amount of heat are required to condense and recover the diluted concentration solution after removing metal ions, etc. This method is impractical because it results in the production of radioactive secondary waste such as ion-exchange resins that adsorb metal ions. l
jIn addition to the ion exchange method described in I, one method is to neutralize and dispose of the τ electrolyte taken out of the system as pJ6r (M) without recovering it, but since a large amount of radioactive slurry is generated, it is difficult to dispose of it. All of these methods generate a large amount of radioactive secondary waste, and there is a risk that the radioactively contaminated area will expand considerably.

捷た、電解液中の金属イオンを捕集電極上に析出させて
電解液外に収出す方法では、もし、一種ないし数種の無
機酸からなる単純な組成の電解液を用いる場合、通常用
いられる作業効率の高い濃厚液であれば、水素イオン濃
度がきわめて高く、捕集電極上では鉄、クロム、ニッケ
ル等の金属の析出反応よりも、水素ガス発生反応が優先
して生じ、これらの金属の析出は生じないので、これら
の金属イオンの回収のために−酸lQ度>pわめて低く
しなければならず、作業効率の極度の低下を′土ねく。
In the method of depositing the broken metal ions in the electrolyte on a collection electrode and collecting them out of the electrolyte, if an electrolyte with a simple composition consisting of one or several types of inorganic acids is used, If it is a concentrated liquid with high work efficiency, the hydrogen ion concentration is extremely high, and the hydrogen gas generation reaction takes priority over the precipitation reaction of metals such as iron, chromium, and nickel on the collection electrode. Therefore, in order to recover these metal ions, the -acid lQ degree must be made extremely low, resulting in an extreme decrease in work efficiency.

従って、通常νj鋏、クロム、ニッケル等の重金属イオ
ンの回収のためには、これらと錯塩を形成する成分をも
つ電解液としなければならなかった。しかしこの濯で回
!(7された金属は、塩の形であって、その分、二次1
;Q ’4’E物量が多く、また腋組成も複雑で、液7
i(理イ)容易ではない。
Therefore, in order to recover heavy metal ions such as νj, chromium, and nickel, it has been necessary to use an electrolytic solution containing components that form complex salts with these ions. But with this rinse! (The 7 metals are in the form of salts, and the secondary 1
;Q '4'E There is a large amount of material, and the axillary composition is complex, so liquid 7
i (rii) It's not easy.

木部1!l;は1.Lとして一一種ないし数種の無機酸
からなる単純組成で11濃度の電#液を用いて電((・
Y除染作業の結果、放射性物質のS積した電解液を系夕
1に+t1出し電解γ夜中に911#放出された複合金
属酸化物からなる放射性懸濁物を固液分離の後、拡散透
析膜によって電解液をその主成分である無機酸と金属イ
オンとに分離し、酸全回収すると共に酸分離後の金属イ
オンを多量に含む廃液中で、液中に溶存する金属イオン
を捕集層(板上に析出させて廃液中から金属イオンを金
邑固体として糸外に取出すことKより、電解液中におけ
る放射性物質の蓄積を防1ヒすることを特徴とする。
Kibe 1! l; is 1. Electrolyte ((・
As a result of Y decontamination work, the electrolytic solution containing S of radioactive substances was put out into system 1 + t1 and electrolysis γ After solid-liquid separation of the radioactive suspension consisting of complex metal oxides released during the night, diffusion dialysis was carried out. A membrane separates the electrolyte into its main component, an inorganic acid, and metal ions, recovers all the acid, and collects the metal ions dissolved in the waste liquid, which contains a large amount of metal ions after the acid separation, through a collection layer. (It is characterized by preventing the accumulation of radioactive substances in the electrolyte by depositing them on a plate and extracting the metal ions from the waste liquid as solid metals out of the thread.)

以下1,1り発明におけろ実施例を図面を用いて詳細に
説明する。第1図は基本70−を示す。
Examples 1 and 1 of the invention will be described in detail below with reference to the drawings. FIG. 1 shows the basic 70-.

@1図において、1lld電N除染を行なう電解槽であ
つ′C1木実施例シておいては電解液として25vo1
%の硫酸が満たされている。vV除染物けこの槽中で電
解研密法(/Cよりその表面が溶出し除染される。何回
ブハの除染作業の結果電解液は鋏イオ:/ 48 g/
1.  りt2ム4 オン85g/e 、 ニアケルイ
オンgg/eを含むようになる。この液をポンプ移送し
てフィルター12)で固液分離し、除染作業の結果、被
除染物表面から剥離放出された複合金属酸化物からなる
懸濁物および(3)で示される拡散透析膜の性能低下を
まねく微粒子を除去する。(4)は透析槽であって、拡
散透析膜13)により(4a)及び(4b)の透析室に
処分されている。この透析膜(3)は酸を選択的に透過
する性質を有し、その材質はスチレン・ジビニルベンゼ
ン系共重合体を代表例とする三次元綱目構造高分子に四
級アミノ基等の強解離性塩基を固定イオンとして導入し
た親水性のフィルムで、pvc。
In Figure 1, it is an electrolytic cell for 1lld electrolytic and N decontamination, and in the C1 tree embodiment, 25vol is used as the electrolyte.
% sulfuric acid is filled. The surface is eluted and decontaminated by the electrolytic polishing method (/C) in the vV decontamination tank.As a result of several decontamination operations, the electrolyte is 48 g/
1. It now contains 85 g/e of t2m4 and gg/e of near ion. This liquid is pumped and separated into solid and liquid by a filter 12), and as a result of the decontamination work, a suspension consisting of a composite metal oxide is released from the surface of the object to be decontaminated and a diffusion dialysis membrane shown in (3) Removes particulates that cause performance deterioration. (4) is a dialysis tank, which is disposed of into the dialysis rooms (4a) and (4b) by means of a diffusion dialysis membrane 13). This dialysis membrane (3) has the property of selectively permeating acids, and its material is a polymer with a three-dimensional mesh structure, typically a styrene/divinylbenzene copolymer, which contains strong dissociation of quaternary amino groups, etc. PVC is a hydrophilic film in which a base is introduced as a fixed ion.

PP等の合成繊維布が補強材として用いられている。一
般的には、透析槽(姓、け+す数枚の透析膜で、複数個
に分;’FJされ、複数個の透析室(4aX4b)M液
の流れとけ逆の方向から電解液と同じ流量の水を通すと
、この二つの透析室での酸の濃度差と、@(3)の選択
透過性により、室(4a)から(4b)の方へ酸が優先
的に移行し、それに対応して水は室(4b)から(4a
)の方へ移行する。この結果、室(4b)の方には、電
解液中の酸の約80%が回収されこれは電解槽(1)へ
戻し、硫酸濃度を調整17て再使用に供される。室(4
a)には、電解液中の金属イオンの約95%が残留し、
この時の廃液中の金属イオンは、鉄40 g/i’、 
クロム84g/V、  =ツケrb 8g /eとなる
。この廃液は、金属イオン回収槽(6)に導ひかれるが
、この寸までは、才だ、水素イオン濃度が高いため、力
性ソーダ等の中和剤により水素イオン濃度が十分に低く
、かつ、金属イオンが水酸化物として析出しないような
pH範囲に調整する。金属イオン回収槽(6)は、外部
直流電源(7)の陽極と接続された陽電極(8)と同じ
く陰極と接続された陰電極(9)とを持っている。陽電
極18)は、一般的に炭素棒や鉛板あるいけチタン板に
白金メッキしたもの等の徘溶性の材質であり、陰電極(
9)はステンレス銅や炭素鋼等の安価な材質で良く、被
除染物を用いてもよい。廃液の入った回収槽(6)にお
いて、力性ソーダを添加して液をpH2に調整した後外
部電源(7)より電流を流すと、陽イオンである金属イ
オンは陰電極(9)上に金属固体として析出する。木実
施例においては、陽電極(8)にはチタンに白金メッキ
したものを、陰電極(9)にはSUS 804を用いて
、通電100時間で、廃液中の金属イオン濃度を鉄は4
0 g/eが9g/eK、クロムは84 g/lが28
g/lに、ニッケルは、8g/eが5g/lVC減少す
ることが出来た。
Synthetic fiber cloth such as PP is used as a reinforcing material. In general, a dialysis tank (last name, ke+su) is divided into multiple dialysis membranes; When water is passed through at a high flow rate, the acid preferentially migrates from chamber (4a) to chamber (4b) due to the difference in acid concentration between the two dialysis chambers and the selective permselectivity of @(3). Correspondingly, water flows from chamber (4b) to (4a
). As a result, about 80% of the acid in the electrolytic solution is recovered in the chamber (4b) and returned to the electrolytic cell (1), where the sulfuric acid concentration is adjusted 17 and reused. Room (4
In a), approximately 95% of the metal ions in the electrolyte remain;
The metal ions in the waste liquid at this time were iron 40 g/i',
Chromium 84g/V, = charge rb 8g/e. This waste liquid is led to the metal ion recovery tank (6), but since the hydrogen ion concentration is high up to this point, the hydrogen ion concentration is sufficiently low and The pH is adjusted to such a range that metal ions do not precipitate as hydroxides. The metal ion recovery tank (6) has an anode (8) connected to the anode of an external DC power source (7), and a cathode (9) connected to the cathode as well. The positive electrode 18) is generally made of a floating material such as a carbon rod, a lead plate, or a titanium plate plated with platinum, and the negative electrode (
9) may be made of an inexpensive material such as stainless steel or carbon steel, or may be a material to be decontaminated. In the recovery tank (6) containing the waste liquid, after adding sodium hydroxide to adjust the pH of the liquid to 2, when a current is applied from an external power source (7), the metal ions, which are cations, are transferred to the negative electrode (9). Precipitates as a metallic solid. In the wood example, titanium plated with platinum was used as the positive electrode (8), and SUS 804 was used as the negative electrode (9). After 100 hours of energization, the metal ion concentration in the waste liquid was reduced to 4.
0 g/e is 9g/eK, chromium is 84 g/l is 28
g/l, nickel could be reduced from 8 g/e to 5 g/l VC.

液中に残ったこれらの金属イオンをイオン交換樹脂等で
除去することにより、電解液中の放射性物質は、はとん
どすべて除去することができるので、この液は回収して
再使用するか、あるいは中和または希釈した後放流する
ことも出来る。
By removing these metal ions remaining in the electrolyte using an ion exchange resin, almost all of the radioactive substances in the electrolyte can be removed.Is it possible to collect and reuse this solution? Alternatively, it can be neutralized or diluted before being discharged.

木発1!11 Kよれば、25vo1% の硫酸という
単純で作業効率の高い電解液において、金属イオンは金
属固体として回収され、なおかつ、硫酸の大部分は回収
されて再使用に供せられる。そのため、電解除染作業の
結果二次的に発生する廃棄物発生量は舞わめて少なくな
る。また、廃液中の酸濃度および金属イオン濃度が低減
されるので、その後の廃液処理も簡単である。
According to Kippatsu 1!11 K, in a simple and highly efficient electrolyte of 25 vol 1% sulfuric acid, metal ions are recovered as metal solids, and most of the sulfuric acid is recovered and reused. Therefore, the amount of secondary waste generated as a result of the electrolytic dedying work is significantly reduced. Further, since the acid concentration and metal ion concentration in the waste liquid are reduced, subsequent waste liquid treatment is also easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例における電解液の処理過程を
示す図である。 (1)・・電解槽、(2)・・フィルター、(3)・・
拡散透析膜、]4)・・拡散透析槽、(4a)(4b)
・・透析室、1ffil−−給水槽、(6)・・金属イ
オン回収槽、(7)・・外部直流電源、(8)・・陽電
極、(9)・・陰?1!極。 特許出願人代理人氏名 弁理士 角 H3嘉 宏 −5・
FIG. 1 is a diagram showing the process of treating an electrolytic solution in one embodiment of the present invention. (1)... Electrolytic cell, (2)... Filter, (3)...
Diffusion dialysis membrane, ]4) Diffusion dialysis tank, (4a) (4b)
...Dialysis room, 1ffil--water tank, (6)...metal ion recovery tank, (7)...external DC power supply, (8)...positive electrode, (9)...negative? 1! very. Patent applicant's representative name Patent attorney Hiroshi Kado H3 Yoshi-5.

Claims (1)

【特許請求の範囲】[Claims] 放射性物質で汚染された機器、部品等の金属表面を電解
研Jv:により除染する過程において、金属表面から#
(]離除去された金属酸化物を電解液から固液分11シ
た後、拡散透析膜を用いて電解液中に共存する金αイオ
ンと電解液の主成分である酸とに分離して酸を回収する
と共(・こ、酸分離後の廃液中に溶存する金属イオンを
捕集電峨上に析出さ亡て廃液外に取出すことを特徴とす
る電解除染における電解液中の放射性物質除去方法。
In the process of decontaminating the metal surfaces of equipment, parts, etc. contaminated with radioactive materials using Electrolytic Research Institute Jv:, #
(11) After removing the separated metal oxide from the electrolyte, it is separated into gold α ions coexisting in the electrolyte and acid, which is the main component of the electrolyte, using a diffusion dialysis membrane. A radioactive substance in an electrolytic solution in electrolytic decontamination, which is characterized by recovering the acid and also precipitating metal ions dissolved in the waste liquid after acid separation onto a collecting electrode and extracting them from the waste liquid. Removal method.
JP23190182A 1982-12-24 1982-12-24 Method of removing radioactive material in electrolyte in electrolytic decontamination Pending JPS59116595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23190182A JPS59116595A (en) 1982-12-24 1982-12-24 Method of removing radioactive material in electrolyte in electrolytic decontamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23190182A JPS59116595A (en) 1982-12-24 1982-12-24 Method of removing radioactive material in electrolyte in electrolytic decontamination

Publications (1)

Publication Number Publication Date
JPS59116595A true JPS59116595A (en) 1984-07-05

Family

ID=16930814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23190182A Pending JPS59116595A (en) 1982-12-24 1982-12-24 Method of removing radioactive material in electrolyte in electrolytic decontamination

Country Status (1)

Country Link
JP (1) JPS59116595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254899A (en) * 1985-05-07 1986-11-12 三菱重工業株式会社 Method of processing radioactive ion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254899A (en) * 1985-05-07 1986-11-12 三菱重工業株式会社 Method of processing radioactive ion exchange resin

Similar Documents

Publication Publication Date Title
JPH05209998A (en) Extraction method of technetium from radioactive polluted metal
JP4438988B2 (en) Electrochemical method, system and apparatus for removing contamination by radioactive material.
JPH07280998A (en) Method for decontaminating transition metal
JPH0694895A (en) Method for removing radioactive material from used nuclear-reactor decontamination liquid using electrochemical ion exchange method
RU2157569C2 (en) Method for removing technetium from metal contaminated with radioactive materials
KR100934929B1 (en) Regenerative Electrochemical Polishing Decontamination of metallic Radioactive Wastes and Decontamination Liquid Waste Treatment by Electro-sorption and Electro-deposition
KR101919200B1 (en) Electrolytic decontamination method capable of regenerative electrolyte
CN108341526A (en) A kind of nickel-containing waste water online recycling water resource and extraction metal nickel resources new process
JPS59116595A (en) Method of removing radioactive material in electrolyte in electrolytic decontamination
JPS5914000A (en) Method of removing radioactive material in electrolyte in electrolytic decontamination
PL152603B1 (en) A method for regenerating fit for repeated use in nuclear power plants boric acid solutions from radioactive wastes and solutions from nuclear power plants
JP2000321395A (en) Disposing method for radioactive effluent
JPS6089600A (en) Regenerating method of electrolyte to be decontaminated
KR101934012B1 (en) APPARATUS AND METHOD FOR PURIFYING RADIOACTIVE MATERIALS AND CONTROLLING pH OF REACTOR COOLANT
JPS603593A (en) Method of electrolytically decontaminating radioactive metallic waste
JPS61161500A (en) Electrolytic decontamination waste liquor treating method
JP2947849B2 (en) Method for removing ionic components from electrolyte solution
JPS59224598A (en) Electrolytic regenerating method of used ion-exchange resin
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPS5597287A (en) Treatment system for waste water used in metal acid washing
JPS6061089A (en) Purifying method of condensate
JPH06182346A (en) Electrodialysis device
JPS60179700A (en) Method of continuously regenerating decontaminated electrolyte
JPS60204900A (en) Regenerating method of electrolytic polishing liquid
Zakrzewska-Kołtuniewicz Advancements in Membrane Methodology for Liquid Radioactive Waste Processing: Current Opportunities, Challenges, and the Global World Scenario