JPH0210232B2 - - Google Patents

Info

Publication number
JPH0210232B2
JPH0210232B2 JP17535582A JP17535582A JPH0210232B2 JP H0210232 B2 JPH0210232 B2 JP H0210232B2 JP 17535582 A JP17535582 A JP 17535582A JP 17535582 A JP17535582 A JP 17535582A JP H0210232 B2 JPH0210232 B2 JP H0210232B2
Authority
JP
Japan
Prior art keywords
rare earth
electrolyte
earth elements
electrolytic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17535582A
Other languages
Japanese (ja)
Other versions
JPS5967384A (en
Inventor
Fumio Matsuyama
Iwao Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP57175355A priority Critical patent/JPS5967384A/en
Publication of JPS5967384A publication Critical patent/JPS5967384A/en
Publication of JPH0210232B2 publication Critical patent/JPH0210232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳现な説明】 本発明は垌土類元玠を含み、か぀Co、Ni、
Fe、Cu、Zrの少なくずも皮を含有する合金か
ら垌土類元玠ず、Co、Ni、Feず、Cu、Zrずをそ
れぞれ別々に分離回収する方法に関する。
[Detailed description of the invention] The present invention contains rare earth elements, and includes Co, Ni,
The present invention relates to a method for separately separating and recovering rare earth elements, Co, Ni, Fe, Cu, and Zr from an alloy containing at least one of Fe, Cu, and Zr.

近幎、高性胜の磁石甚合金或いは氎玠貯蔵甚合
金等ずしお垌土類元玠、特にサマリりムSm、
ランタンLa、セリりムCe、プラセオゞム
Pr、ネオゞムNd等ずCo、Ni、Fe、Cu、
Zr等ずの合金が倚く甚いられおいる。たずえば
SmCo5、MMCo5MMは䞊蚘垌土類元玠の混合
物であるミツシナメタルを意味する、CeCo5、
Sm2Co、Fe、Cu、Zr17などが氞久磁石甚合金
ずしお、たたLaNi5などは氎玠吞蔵甚合金の代衚
的なものであり幎々その需芁が高た぀おいる。
In recent years, rare earth elements, especially samarium (Sm), have been used as high-performance magnet alloys or hydrogen storage alloys.
Lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), etc. and Co, Ni, Fe, Cu,
Alloys with Zr etc. are often used. for example
SmCo 5 , MMCo 5 (MM means Mitsushimetal, which is a mixture of the above rare earth elements), CeCo 5 ,
Sm 2 (Co, Fe, Cu, Zr) 17 and the like are typical alloys for permanent magnets, and LaNi 5 is a typical alloy for hydrogen storage, and the demand for these is increasing year by year.

この垌土類元玠は高性胜であるこずから、小さ
い寞法で䜿甚されるこずが倚く、䞀般的に比范的
倧きい圢状から切削、研摩等により小さな圢状に
仕䞊げるずいう工皋によるため、加工屑や研摩粉
スクラツプの発生量が倚い。これらの成分金
属は高䟡なものであるから、これらの有䟡金属を
回収するこずは重芁であ぀お、これたで皮々の方
法が提案されおいる。たずえば、(1)SmCo5合金
を王氎䞭で加枩溶解し、その埌トリ゚タノヌルア
ミン、シアン化カリりムを添加しおCoを隠蔜し、
アンモニアで䞭和するこずによ぀おSmを氎酞化
物ずしお回収する方法特開昭49−36526号公報
参照、(2)垌土類含有スクラツプに造滓剀を添加
しお高呚波溶解、アヌク溶解、プラズマ溶解等で
高枩溶解し垌土類の合金ずしお回収する方法、(3)
該スクラツプにカルシりムを添加し、アルゎン気
流䞭で加熱しおスクラツプ䞭の炭玠、酞玠を陀去
し垌土類合金ずしお再生する方法特開昭56−
38438号公報参照等がある。
Because these rare earth elements have high performance, they are often used in small sizes, and the process of cutting, polishing, etc. from a relatively large shape into a smaller shape generally results in processing waste and abrasive powder (scrap). ) occurs in large quantities. Since these component metals are expensive, it is important to recover these valuable metals, and various methods have been proposed so far. For example, (1) SmCo 5 alloy is heated and dissolved in aqua regia, and then triethanolamine and potassium cyanide are added to hide Co.
A method of recovering Sm as hydroxide by neutralizing it with ammonia (see JP-A-49-36526), (2) adding a slag-forming agent to rare earth-containing scrap, high-frequency melting, arc melting, Method of recovering rare earth alloys by melting them at high temperatures using plasma melting, etc., (3)
A method of adding calcium to the scrap and heating it in an argon stream to remove carbon and oxygen from the scrap and regenerating it as a rare earth alloy (Japanese Unexamined Patent Application Publication No. 1989-1999)
(Refer to Publication No. 38438).

しかしながら、䞊蚘(1)の方法は王氎を䜿甚する
ため特別な蚭備を必芁ずし、か぀衛生䞊奜たしく
ないシアン化カリりムを䜿甚しコストも高い等の
問題がある。䞊蚘(2)及び(3)の方法の堎合には、垌
土類ずCo等の有䟡物ず分離できないずいう欠点
があり、特にスクラツプ䞭に研摩材やガラス等の
䞍玔物が混入しおいる堎合には、その凊理を困難
にする等の問題点があ぀た。
However, method (1) above requires special equipment because it uses aqua regia, and also uses potassium cyanide, which is undesirable from a sanitary standpoint, resulting in high costs. In the case of methods (2) and (3) above, there is a drawback that valuable materials such as rare earths and Co cannot be separated, especially when impurities such as abrasives and glass are mixed in the scrap. There were problems such as making the processing difficult.

本発明の目的は、䞊蚘の問題点を解消し比范的
簡易な操䜜によ぀お、垌土類元玠ずその他の有䟡
物を酞化物たたは金属ずしお分離回収する方法を
提䟛するこずにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for separating and recovering rare earth elements and other valuable substances as oxides or metals by a relatively simple operation that solves the above-mentioned problems.

この目的を達成するため本発明者等は、垌土類
元玠を含み、か぀コバルト、ニツケル、鉄、銅、
ゞルコニりムの少なくずも皮を含有する合金を
硫酞氎溶液で抜出しお垌土類元玠その他の有䟡物
の倧郚分を溶解抜出したのち、各元玠を分離回収
する方法に぀いお研究し、銅、ゞルコニりムは䞍
溶解残枣ずしお、コバルト、ニツケル、鉄は䞍溶
性電解法により合金ずしお、垌土類元玠は酞化物
ずしおそれぞれ分離回収する方法に関する発明を
䞻題ずする別途特蚱出願によりこれを開瀺した。
In order to achieve this objective, the present inventors have developed materials containing rare earth elements, such as cobalt, nickel, iron, copper,
After extracting an alloy containing at least one type of zirconium with an aqueous sulfuric acid solution and dissolving and extracting most of the rare earth elements and other valuables, we researched a method to separate and recover each element, and copper and zirconium were extracted as undissolved residues. , cobalt, nickel, and iron as alloys by an insoluble electrolytic method, and rare earth elements as oxides, which were disclosed in a separate patent application.

本発明は前蚘の発明をさらに改良したものであ
぀お、前蚘発明の酞抜出工皋ず電解の工皋を䞀括
しお単䞀工皋ずし、操䜜の簡易化を意図したもの
である。
The present invention is a further improvement of the above invention, and is intended to simplify the operation by combining the acid extraction step and the electrolysis step of the above invention into a single step.

合金によれば前蚘の垌土類元玠含有合金を陜極
ずし、垌土類元玠ずCo、Fe等の所定濃床を含む
氎溶液を電解液ずしおいわゆる盎接電解法によ
り、電解的に該合金を溶解しZr、Cuを䞍溶解残
枣ずしお沈降させるず同時に陰極にCoNiFe
の合金を電解的に溶解した量に芋合う量で析出せ
しめる第䞀工皋ず、䞊蚘の電解液に含有されおい
る垌土類元玠に察し圓量以䞋の蓚酞を添加し、生
成する垌土類の蓚酞塩沈殿を氎溶液から分離し、
これを倧気䞭で焌成する第二工皋ずから成り、前
蚘の分雄した氎溶液は電解液ずしお埪環䜿甚する
こずにより、垌土類元玠及びCo、Fe等の有䟡物
を効率よく分離回収する方法である。本発明ず前
蚘本発明者による別途発明ずの重芁な構成䞊の区
別は本発明においお垌土類元玠含有合金粉末を盎
接陜極ずしお䜿甚する盎接電解法の利甚にある。
According to the alloy, the alloy is electrolytically dissolved to remove Zr and Cu using the so-called direct electrolysis method using the rare earth element-containing alloy as an anode and an aqueous solution containing a rare earth element and a predetermined concentration of Co, Fe, etc. as an electrolyte. Co+Ni+Fe is deposited on the cathode at the same time as the dissolved residue is precipitated.
The first step is to precipitate the alloy in an amount commensurate with the amount electrolytically dissolved, and the oxalic acid is added in an amount equal to or less than the equivalent amount of the rare earth element contained in the electrolytic solution, and the resulting rare earth oxalate precipitate is dissolved in an aqueous solution. separated from
This method consists of a second step of firing this in the atmosphere, and the separated aqueous solution is recycled and used as an electrolyte to efficiently separate and recover rare earth elements and valuables such as Co and Fe. An important structural distinction between the present invention and the separate inventions by the present inventors lies in the use of a direct electrolytic method in which a rare earth element-containing alloy powder is directly used as an anode in the present invention.

すなわち、本発明の第䞀工皋では垌土類元玠を
含み、か぀Co、Ni、Fe、Cu、Zrの皮以䞊を含
有する粉状たたは塊状の合金を、たずえば網状た
たは小孔を開けたチタンバスケツト必芁により
チタンバスケツトは耐酞性のテトロンのような垃
でカバヌするに装入しおこれを陜極ずし、ステ
ンレス等の金属板を陰極ずし、垌土類元玠以
䞋、ず略称する濃床15以䞋、奜たしく
は〜15、CoNiFe濃床50以
䞋、奜たしくは20〜50、PH1.5〜4.0、奜た
しくはPH2.0〜3.0の氎溶液を電解液ずしお、DK
2Am2以䞋、槜電圧5V以䞋で電解の操䜜を
行う。
That is, in the first step of the present invention, a powdery or lumpy alloy containing a rare earth element and one or more of Co, Ni, Fe, Cu, and Zr is placed in a titanium basket (for example, in a net shape or with small holes). If necessary, cover the titanium basket with an acid-resistant cloth such as Tetron, and use this as the anode, and use a metal plate such as stainless steel as the cathode. , preferably 5 to 15 g/, Co + Ni + Fe concentration 50 g / or less, preferably 20 to 50 g /, PH 1.5 to 4.0, preferably PH 2.0 to 3.0 as an electrolyte, DK
= 2A/dm 2 or less, and the electrolytic operation is performed at a cell voltage of 5V or less.

電解槜には通垞連続的に前蚘電解液を絊液し、
電解槜のオヌバヌフロヌ液は第二工皋の脱工皋
に送られ、そこで含有するに察し圓量以䞋の蓚
酞氎溶液たたは固圢蓚酞を添加し、生成した沈殿
を適圓な過噚で分離し、次いで倧気圧で焙焌し
お垌土類を酞化物ずしお回収する。䞀方氎溶液は
そのたた、或いは適圓量の硫酞氎溶液を添加しお
から電解槜に埪環䜿甚し、電解槜内で䞍溶解残枣
ずしお沈降するZr、Cuは、オヌバヌフロヌさせ
おから、或いは槜内で沈降させ適宜分離回収す
る。
The electrolytic solution is usually continuously supplied to the electrolytic cell,
The overflow liquid from the electrolytic cell is sent to the second R removal step, where an aqueous oxalic acid solution or solid oxalic acid is added in an amount equivalent to or less than the amount of R contained, and the formed precipitate is separated in an appropriate filter, and then reduced to atmospheric pressure. The rare earths are recovered as oxides by roasting. On the other hand, the aqueous solution is recycled as it is or after adding an appropriate amount of sulfuric acid aqueous solution to the electrolytic tank, and Zr and Cu that settle as insoluble residues in the electrolytic tank are allowed to overflow or are allowed to settle in the tank as appropriate. Separate and collect.

本発明法においお䜿甚する電解液は、垌土類元
玠ずCo、Fe等を含む合金を、たずえば50〜100
皋床の垌硫酞で垞枩で抜出しお埗られるも
ので、各金属の濃床ずPH倀は芏定範囲内にあるよ
うに調敎する。この電解液のPHは原料の合金量を
加枛しお調敎するこずができる。該合金は非垞に
掻性であるので、これを垌硫酞溶液䞭に投入しお
撹拌するず容易に䞊蚘の電解液を埗るこずができ
る。電解液䞭の濃床を15以䞋、奜たしく
は〜15の範囲ずする理由は、該垌土類元
玠をその溶解床の限床たで電解的に垌土類を溶解
した埌、次の脱工皋に送るのが奜たしいからで
あ぀お、脱工皋においお添加される蓚酞ずの反
応を効率良く行うためである。
The electrolytic solution used in the method of the present invention is an alloy containing a rare earth element and Co, Fe, etc., for example, 50 to 100%
It is obtained by extraction at room temperature with dilute sulfuric acid at a concentration of about 1.5 oz./g/g, and the concentration of each metal and PH value are adjusted to be within the specified range. The pH of this electrolytic solution can be adjusted by adjusting the amount of alloy in the raw materials. Since this alloy is very active, the above electrolyte can be easily obtained by adding it to a dilute sulfuric acid solution and stirring it. The reason why the R concentration in the electrolyte is set to 15 g/or less, preferably in the range of 5 to 15 g/ is that after the rare earth element is electrolytically dissolved to the limit of its solubility, it is sent to the next R removal step. This is because the reaction with oxalic acid added in the R-removal step is preferably carried out efficiently.

ここで添加された蓚酞ず垌土類元玠ずの反応性
が悪いず、脱工皋でR2C2O43の沈殿が充分に
生成せず、沈殿分離埌の母液を電解液ずしお絊液
する際に電解槜内で沈殿しお、䞍溶解残枣分ずし
お系倖に排出されお損倱ずなり、或いはたたCo
Fe等の電着物に混入する等しお正垞な電解を
劚げる原因ずなる等、䜕れも奜たしくない結果を
生ずる。
If the oxalic acid added here has poor reactivity with rare earth elements, sufficient precipitation of R 2 (C 2 O 4 ) 3 will not be generated in the de-R step, and the mother liquor after precipitation separation will be used as an electrolyte to supply the solution. When the Co
Any of these causes undesirable results, such as interfering with electrodeposit such as +Fe and interfering with normal electrolysis.

次にCoNiFeの濃床を50以䞋、奜た
しくは20〜50の範囲ずするのは、これ以䞋
の濃床では電解時に氎玠ガスの発生が倚くな぀お
効率的な電解が行われず、これ以䞊の濃床になる
ず、電解液の脱工皋でたずえ垌土類元玠濃床が
充分に高くおも蓚酞ずの反応性を害するからであ
る。たた電解液のPHを1.5〜4.0ず芏制するのは、
PHが1.5以䞋では電解時に氎玠発生が倚くなり電
流効率が䜎䞋するためであり、PHが4.0以䞊にな
るず垌土類元玠が酞化物ずしお沈殿するためであ
る。
Next, the reason why the concentration of Co + Ni + Fe is set to 50g/or less, preferably in the range of 20 to 50g/ is because if the concentration is less than this, hydrogen gas will be generated during electrolysis and efficient electrolysis will not take place. This is because even if the rare earth element concentration is sufficiently high in the electrolyte solution de-R step, the reactivity with oxalic acid will be impaired. Also, regulating the pH of the electrolyte between 1.5 and 4.0 is because
This is because when the PH is 1.5 or less, hydrogen generation increases during electrolysis and the current efficiency decreases, and when the PH is 4.0 or more, rare earth elements precipitate as oxides.

以䞋、本発明をさらに詳现に説明する。 The present invention will be explained in more detail below.

本発明法はいわゆる盎接電解法ずいわれる方匏
を適甚しお、垌土類元玠ずCo、Fe等の合金を、
所定の電解液を電解始液ずしお電解的に溶解しな
がな䞀方では陰極にCo、Ni、Fe等の金属のみを
単独にたたは合金ずしお析出せしめるものであ぀
お、この電解工皋では垌土類元玠は電着せずたた
Zrは酞化物ずしおCuは䞀旊溶解しおも垌土類元
玠等の眮換反応によ぀お金属ずなるものず思われ
るが金属ずしお実質的に沈殿分離される。
The method of the present invention applies a so-called direct electrolysis method to combine alloys of rare earth elements with Co, Fe, etc.
While electrolytically dissolving a specified electrolytic solution as an electrolytic starting solution, only metals such as Co, Ni, and Fe are deposited on the cathode either singly or as an alloy.In this electrolytic process, rare earth elements are Also without electrodeposition
Zr is an oxide, and even if Cu is once dissolved, it is thought to become a metal through a substitution reaction with rare earth elements, etc., but it is essentially precipitated and separated as a metal.

このZr、Cuは氞久磁石等の原料ずしお再䜿甚
するこずができる。
This Zr and Cu can be reused as raw materials for permanent magnets, etc.

電解槜に配蚭される陜極は䞍溶性の、たずえば
チタン、ステンレス、などの材質で䜜補され、そ
の呚囲に小孔をあけたバスケツトの䞭に本発明の
原料である垌土類元玠を含有する合金を充填しお
構成される。電解の進行に䌎い適宜原料をバスケ
ツト䞭に補充する。䞀方、陰極は奜たしくはステ
ンレス板であるがこのステンレス板をたずえば塩
化ビニル板にテトロン等の垃をはり぀けお䜜぀た
ボツクス䞭に収めお䜿甚する。前述の電解液はこ
のボツクス䞭に絊液される。このように隔膜匏に
するずカ゜ヌドの析出物に䞍溶解物や沈殿物の混
入を防止するだけでなく、電解液のPH調敎が容易
ずなる等の利点が埗られる。
The anode installed in the electrolytic cell is made of an insoluble material such as titanium or stainless steel, and a basket with small holes around it is filled with an alloy containing rare earth elements, which is the raw material of the present invention. It is composed of As the electrolysis progresses, raw materials are replenished into the basket as appropriate. On the other hand, the cathode is preferably a stainless steel plate, and this stainless steel plate is used by placing it in a box made by gluing a cloth such as Tetron to a vinyl chloride plate. The aforementioned electrolyte is supplied into this box. Using a diaphragm type as described above not only prevents insoluble matters and precipitates from being mixed into the cathode precipitates, but also provides advantages such as facilitating the pH adjustment of the electrolytic solution.

この電解においお溶解されただけのCo、Ni、
Feを、実質的に党量陰極に析出させ、電解始液
ずこの電解槜をオヌバヌフロヌする電解終液の
Co、Fe等の濃床やPHをほが䞀定に調敎するのが
奜たしい。
Co, Ni, which are only dissolved in this electrolysis,
Substantially the entire amount of Fe is deposited on the cathode, and the electrolytic starting solution and the electrolytic final solution overflowing this electrolytic cell are
It is preferable to adjust the concentration of Co, Fe, etc. and pH to be approximately constant.

電解終液は第二工皋である脱工皋に送られる
がここでもたた電解槜内で溶解されただけの垌土
類元玠の量を党お沈殿させるように蓚酞、奜たし
くは10蓚酞氎溶液を添加するのが奜たしい。こ
のように該氎溶液䞭に含たれる垌土類の党量に察
し圓量以䞋の蓚酞を添加する理由は前にも述べた
ように効率良く垌土類の沈殿を埗お、これを真空
過噚等で分離し、母液を第䞀工皋の電解槜ぞ戻
した際に電解析出物を汚染したり、蓚酞垌土の損
倱を防止するためであるが、そのほかにCo
C2O42等の沈殿生成を完党に防止する目的も達
せられる。
The final electrolysis solution is sent to the second step, a de-R step, where oxalic acid, preferably a 10% oxalic acid aqueous solution, is added so as to precipitate all the rare earth elements that were only dissolved in the electrolytic cell. is preferred. The reason why oxalic acid is added in an amount equivalent to or less than the total amount of rare earths contained in the aqueous solution is to efficiently obtain rare earth precipitates as described above, separate this using a vacuum filter, etc., and then This is to prevent contamination of electrolytic deposits and loss of rare earth oxalate when returned to the electrolytic cell in the first step.
The purpose of completely preventing the formation of precipitates such as (C 2 O 4 ) 2 can also be achieved.

ここで生成する沈殿は、玄時間以䞊の熟成時
間を経過したのち母液ず分離するのが奜たしい。
このようにしお埗られた沈殿は也燥埌、倧気圧玄
900℃の枩床で焌成しお垌土類の酞化物を埗る。
電解槜内でカ゜ヌド䞊に析出した金属は適圓な時
期に匕揚げお剥ぎ取り、たた適圓な呚期で電解槜
内に沈降したZr、Cuを回収する。
Preferably, the precipitate produced here is separated from the mother liquor after aging for about 1 hour or more.
After drying, the precipitate thus obtained is dried at an atmospheric pressure of approx.
A rare earth oxide is obtained by firing at a temperature of 900℃.
The metal deposited on the cathode in the electrolytic cell is pulled up and stripped at an appropriate time, and the Zr and Cu that have settled in the electrolytic cell are recovered at an appropriate period.

本発明の方法によ぀お埗られるCo等の金属な
らびに垌土類元玠は実斜䟋に芋られるように高品
䜍のものであり、そのたた氞久磁石や氎玠貯蔵合
金等の原料ずしお䜿甚するこずができる。
The metals such as Co and rare earth elements obtained by the method of the present invention are of high quality as seen in the examples, and can be used as raw materials for permanent magnets, hydrogen storage alloys, etc. as they are.

本発明法によれば、第二工皋の終液を第䞀工皋
の電解液䞭に埪環䜿甚するので合金䞭の各金属は
ZrCuの矀、CoNiFeの矀および垌土類元玠
類の劂く別々にほが100の収率で分離回収する
こずができる。
According to the method of the present invention, the final liquid of the second step is recycled into the electrolyte of the first step, so each metal in the alloy is
Zr, Cu groups, Co, Ni, Fe groups, and rare earth elements can be separated and recovered with nearly 100% yield.

たた、その他の利点ずしおは公知の盎接電解法
ず蓚酞垌土類の沈殿分離法を連続的に行うこずが
できるので操䜜が単玔化され、工皋間の無甚の損
倱が防止できる。
Another advantage is that the known direct electrolysis method and precipitation separation method of rare earth oxalate can be performed continuously, which simplifies the operation and prevents unnecessary losses between steps.

以䞋、実斜䟋に぀いお説明する。 Examples will be described below.

実斜䟋  添付図面に瀺したような電解槜を甚いお本発明
の第䞀工皋を実斜する。䜿甚した電解槜の倧きさ
は、暪幅、奥行および高さがそれぞれ350mm、300
mmおよび400mmである。陜極には暪幅、長さおよ
び厚さ内寞がそれぞれ218mm、270mmおよび20
mmの寞法を有しmm角の網目を有するチタン補バ
スケツトを甚い、添付図面に瀺すように、テト
ロン補のバツクで包んで䜿甚する。陰極ずしお
暪幅、長さおよび厚さがそれぞれ200mm、300mmお
よびmmのステンレス板を甚い、このステンレ
ス板を塩化ビニル補板ずテトロン垃で䜜補した暪
幅、長さおよび厚さ内寞がそれぞれ260mm、
380mmおよび20mmのボツクスに入れお䜿甚する。
Example 1 The first step of the present invention is carried out using an electrolytic cell as shown in the attached drawings. The size of the electrolytic cell used was 350 mm in width, depth and height, and 300 mm in width, depth and height, respectively.
mm and 400mm. The width, length and thickness (inner dimensions) of the anode are 218mm, 270mm and 20mm, respectively.
A titanium basket 1 having a size of 5 mm and a 5 mm square mesh is used, wrapped in a Tetron bag 2 as shown in the attached drawing. A stainless steel plate 3 with a width, length, and thickness of 200 mm, 300 mm, and 3 mm, respectively, was used as the cathode, and the width, length, and thickness (inner dimensions) of this stainless steel plate were made from a vinyl chloride plate and Tetoron cloth, respectively. 260mm,
Use in 380mm and 20mm box 4.

前蚘陜極バツク個ず陰極ボツクス個を図瀺
のように亀互に配眮する。陜極バツク䞭に重量基
準でSm34、Co65を含む合金からなる玄10mm
埄の塊状磁石スクラツプをそれぞれKgず぀装入
する。
The three anode bags and two cathode boxes are arranged alternately as shown. Approximately 10 mm made of an alloy containing 34% Sm and 65% Co by weight in the anode bag.
Charge 1 kg each of block magnet scraps with different diameters.

この電解槜に電解液ずしおCo 40、Sm
、PH2.2の硫酞酞性氎溶液を満たしたの
ち、それぞれの陰極ボツクスに35ml分の速床
で絊液し電解槜出口からのオヌバヌフロヌは撹
拌装眮のある10ビヌカヌ図瀺せずに受けこ
のビヌカヌを脱Sm槜ずしお䜿甚する。この脱Sm
槜に10蓚酞氎溶液を2.3ml分の割合に添加し、
脱Sm槜のオヌバヌフロヌは過噚ヌツチ゚
を通過させたのち液に垌硫酞氎溶液を添加しお
氎溶液のPHを2.2に調敎しお再び電解槜内の陰極
ボツクスに埪環するずいう手順により第二工皋ず
埪環工皋を実斜する。電解条件はDK1.5A
m2、槜電圧4V、電解液枩床50℃で24時間電解し
た。なお、脱Sm槜に入る電解終液䞭Smは10
以䞊を保぀ようにした。
Co 40g/, Sm is added to this electrolytic cell as an electrolyte.
After filling with sulfuric acid acid aqueous solution of 7g/pH2.2, the liquid is supplied to each cathode box 4 at a rate of 35ml/min, and the overflow from the electrolytic cell outlet 5 is transferred to 10 beakers (not shown) equipped with a stirring device. Use this beaker as a Sm removal tank. This de-Sm
Add 10% oxalic acid aqueous solution to the tank at a rate of 2.3ml/min.
The overflow of the Sm removal tank is handled by a filter (Nutsuchie).
The second step and circulation step are carried out by adding a dilute sulfuric acid aqueous solution to the solution, adjusting the pH of the aqueous solution to 2.2, and circulating it again to the cathode box in the electrolytic cell. Electrolysis conditions are DK1.5A/d
m 2 , cell voltage 4V, and electrolyte temperature 50°C for 24 hours. In addition, the Sm in the final electrolytic solution entering the Sm removal tank is 10g/
I tried to maintain the above.

この電解によ぀お陰極䞊に析出した金属は、
Co99.0、Sm0.1以䞋のものが630、この間
のスクラツプ電解量はKgであり、仕蟌原料から
のCoの実収率は96.0であ぀た。たた脱Sm槜を
経お過分離された沈殿〔Sm2C2O43〕は也燥
埌、900℃に保持したマツフル炉で時間半焌成
したずころ、Sm85.2、Co0.06のSm2O3390
が埗られ、原料からのサマリりム実収率は97.7
であ぀た。
The metal deposited on the cathode by this electrolysis is
The amount of Co99.0% and Sm 0.1% or less was 630g, the amount of scrap electrolysis during this period was 1Kg, and the actual yield of Co from the charged raw materials was 96.0%. In addition, the precipitate [Sm 2 (C 2 O 4 ) 3 ] that had been over-separated through the Sm removal tank was dried and fired for 1.5 hours in a Matsufuru furnace kept at 900°C, resulting in 85.2% Sm and 0.06% Co. Sm 2 O 3 390g
was obtained, and the actual samarium yield from raw materials was 97.7%.
It was hot.

実斜䟋  Sm2Co、Fe、Cu、Zr17を高呚波溶解法によ
぀お補造する際に埗られた、Sm43.7、Co32.9
、Fe9.15、Cu5.13、Zr0.97の組成を有す
るスラグ3.6Kgをメツシナ以䞋に粗砕したのち、
実斜䟋で䜿甚したチタンバスケツトにそれぞれ
等分に分割しお装入したものを陜極ずし、
Sm8.0、Co30.0、Fe10.0各を含有するPH2.0
の氎溶液を電解液ずし、DKが1.0Am2である
以倖は実斜䟋ず同様にしお24時間電解した。そ
の結果、原料の溶解量は1.5KgでありCo78.4、
Fe21.0、Sm0.1以䞋の電着物600が埗られ
原料からのCoFeの実収率は94.6であ぀た。
䞀方Sm化合物の沈殿は也燥埌、900℃に保持した
マツフル炉で時間焌成したずころSm84.5、
CoFe0.1以䞋のSm2O3753が埗られ、原料
からのSmの実収率は97.1であ぀た。
Example 2 Sm43.7%, Co32.9 obtained when producing Sm 2 (Co, Fe, Cu, Zr) 17 by high frequency melting method
%, Fe9.15%, Cu5.13%, Zr0.97%. After crushing 3.6 kg of slag into 2 meshes or less,
The titanium basket used in Example 1 was divided into equal parts and charged, and used as an anode.
PH2.0 containing Sm8.0, Co30.0, Fe10.0 each g/
An aqueous solution of was used as the electrolyte, and electrolysis was carried out for 24 hours in the same manner as in Example 1 except that the DK was 1.0 A/dm 2 . As a result, the amount of dissolved raw material was 1.5Kg, Co78.4%,
600 g of electrodeposited material containing less than 21.0% Fe and 0.1% Sm was obtained, and the actual yield of Co+Fe from the raw materials was 94.6%.
On the other hand, after drying, the Sm compound precipitate was calcined for 2 hours in a Matsufuru furnace maintained at 900°C, resulting in a Sm of 84.5%.
753 g of Sm 2 O 3 containing 0.1% or less of Co+Fe was obtained, and the actual yield of Sm from the raw material was 97.1%.

CuずZrは、ほずんど溶解せず電解液䞭の各濃
床は䜕れも0.005以䞋であ぀た。
Cu and Zr were hardly dissolved and their respective concentrations in the electrolyte were below 0.005 g/.

実斜䟋  La31.5、残郚Niからなる玄10mm埄の塊状に
LaNi合金Kgを実斜䟋ず同様の操䜜を行぀お
電解しながらNi及びLaの回収を行぀たずころ、
24時間操業で原料の溶解量は1.2Kg、Niは玔床
99.2のものが97.2の実収率で、LaはLa85.1
のLa2O3が94.6の実収率、䜕れも原料からの蚈
算倀で埗られた。
Example 3 A lump of approximately 10 mm in diameter consisting of 31.5% La and the balance Ni
When 3 kg of LaNi alloy was electrolyzed in the same manner as in Example 1, Ni and La were recovered.
The amount of raw material dissolved in 24-hour operation is 1.2Kg, and the purity of Ni is
The actual yield of 99.2% is 97.2%, and La is 85.1% La.
of La 2 O 3 was obtained with an actual yield of 94.6%, both values calculated from the raw materials.

以䞊、実斜䟋は䜕れも、電解液、回収垌土類元
玠の工皋を埪環方匏で説明したが、単に電解工皋
のみ、或いは垌土類回収工皋のみをそれぞれ埪環
させ充分に原料を溶解たたは垌土類を回収しおか
ら次の工皋に進む方匏を採甚しおもよい。
In all of the above examples, the process of electrolyte solution and recovered rare earth elements has been explained using a circulation method, but only the electrolysis process or only the rare earth recovery process is circulated, respectively, after sufficiently dissolving the raw material or recovering the rare earth element. A method of proceeding to the next step may be adopted.

たた、電解の条件、垌土類を回収するための蓚
酞の添加量及び沈殿の熟成時間等は、回収金属の
䜿甚目的に応じ適宜調敎するのがよい。
Further, the electrolysis conditions, the amount of oxalic acid added for recovering rare earths, the aging time of precipitation, etc. are preferably adjusted as appropriate depending on the intended use of the recovered metal.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実斜に甚いる䟋瀺電解槜の
瞊断面図である。  チタンバスケツト テトロン補アノヌ
ドバツク カ゜ヌド板 カ゜ヌドボツク
ス オヌバヌフロヌ口 電解槜。
The accompanying drawings are longitudinal cross-sectional views of exemplary electrolytic cells used in the practice of the present invention. 1... Titanium basket; 2... Tetron anode bag; 3... Cathode plate; 4... Cathode box; 5... Overflow port; 6... Electrolytic cell.

Claims (1)

【特蚱請求の範囲】[Claims]  垌土類元玠を含み、か぀ニツケル、コバル
ト、銅、鉄、ゞルコニりムの少くずも皮を含有
する合金を陜極ずし、垌土類元玠濃床15以
䞋、CoNiFe 50以䞋、PH1.5〜4.0の電
解液を甚いお電解し、陰極にCo、Ni、Feを析出
せしめ、電解終液ず䞍溶解残枣ずを分離する第䞀
工皋ず、䞊蚘電解終液に含有されおいる垌土類元
玠に察し圓量以䞋の蓚酞を添加し生成する垌土類
の蓚酞塩沈殿を氎溶液から分離しこれを倧気䞭で
焌成する第二工皋ずから成り、第二工皋で埗られ
た氎溶液を第䞀工皋の電解液ずしお埪環䜿甚する
こずを特城ずする垌土類元玠含有合金からの有䟡
金属の回収法。
1 An alloy containing rare earth elements and at least one of nickel, cobalt, copper, iron, and zirconium is used as an anode, and an electrolyte with a rare earth element concentration of 15 g/or less, Co + Ni + Fe 50 g/ or less, and a pH of 1.5 to 4.0. The first step is to precipitate Co, Ni, and Fe on the cathode and separate the final electrolytic solution from the undissolved residue. It consists of a second step in which the rare earth oxalate precipitate produced by addition is separated from the aqueous solution and calcined in the atmosphere, and the aqueous solution obtained in the second step is recycled and used as the electrolyte in the first step. A method for recovering valuable metals from alloys containing rare earth elements.
JP57175355A 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements Granted JPS5967384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175355A JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175355A JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Publications (2)

Publication Number Publication Date
JPS5967384A JPS5967384A (en) 1984-04-17
JPH0210232B2 true JPH0210232B2 (en) 1990-03-07

Family

ID=15994619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175355A Granted JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Country Status (1)

Country Link
JP (1) JPS5967384A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3066886B2 (en) * 1992-12-24 2000-07-17 株匏䌚瀟ゞャパン゚ナゞヌ High purity cobalt sputtering target
JP3065193B2 (en) * 1992-12-24 2000-07-12 株匏䌚瀟ゞャパン゚ナゞヌ High purity cobalt sputtering target
KR20140108298A (en) 2012-07-19 2014-09-05 제읎엑슀 닛윔 닛섞킀 í‚šì¡°ì¿  가부시킀가읎샀 Method for recovering rare earth from rare earth element-containing alloy
CN111154980B (en) * 2020-02-04 2021-04-16 北京科技倧孊 Neodymium iron boron waste solution electrolytic regeneration method

Also Published As

Publication number Publication date
JPS5967384A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
CN102191384B (en) Method for extracting gallium from fly ash
JP6622307B2 (en) Method for extraction and separation of rare earth elements
CN108470951A (en) The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium ion battery
CN112522527B (en) Electrolytic-based method for selectively recovering rare earth elements from Nd-Fe-B magnet scrap
CN108026609B (en) Production of scandium-containing concentrate and further extraction of high-purity scandium oxide therefrom
WO2001090445A1 (en) Method of producing a higher-purity metal
JP2022529477A (en) Method for Preparing Precursor Compound for Lithium Battery Positive Electrode
JP4519294B2 (en) Indium recovery method
EP2147128A1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
CN109797294A (en) The method of nickel, cobalt is recycled in a kind of magnesium water
CN107815540A (en) A kind of method of hydrometallurgy metal nickel cobalt and its salt product
CN106030894A (en) Method for simultaneously recovering cobalt and manganese from lithium based battery
JP3173404B2 (en) How to recover indium
JP5596590B2 (en) Method for separating and recovering metal elements from rare earth magnet alloy materials
JPS6134486B2 (en)
CA2846930A1 (en) Process for producing rare metal
JPH0210232B2 (en)
JP6471072B2 (en) Low alpha ray high purity zinc and method for producing low alpha ray high purity zinc
US20230124749A1 (en) Ammonium complex system-based method for separating and purifying lead, zinc, cadmium, and copper
JP3151194B2 (en) Cobalt purification method
TW200307060A (en) Method and device for producing high-purity metal
JPH04191340A (en) Production of high purity tin
JP2002201025A (en) Method for recovering indium hydroxide or indium
CN111321293A (en) Green separation method for impurity aluminum element in rare earth concentrate
JPH06192879A (en) Refining method for cobalt