JPS5967384A - Method for recovering valuable metal from alloy containing rare earth elements - Google Patents

Method for recovering valuable metal from alloy containing rare earth elements

Info

Publication number
JPS5967384A
JPS5967384A JP57175355A JP17535582A JPS5967384A JP S5967384 A JPS5967384 A JP S5967384A JP 57175355 A JP57175355 A JP 57175355A JP 17535582 A JP17535582 A JP 17535582A JP S5967384 A JPS5967384 A JP S5967384A
Authority
JP
Japan
Prior art keywords
rare earth
earth elements
electrolyte
cathode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57175355A
Other languages
Japanese (ja)
Other versions
JPH0210232B2 (en
Inventor
Fumio Matsuyama
文雄 松山
Iwao Maeda
岩夫 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP57175355A priority Critical patent/JPS5967384A/en
Publication of JPS5967384A publication Critical patent/JPS5967384A/en
Publication of JPH0210232B2 publication Critical patent/JPH0210232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To separate and recover rare earth elements and valuable metals with easy operation, by electrolyzing an electrolyte using an alloy contg. rare earth elements as anode, depositing or separating valuable metals as a residue and recovering the rare earth elements as oxalate from an end liquid of the electroysis. CONSTITUTION:An alloy contg. rare earth elements and contg. >=1 kinds among Ni, Co, Cu, Fe and Zr is used as an anode and a stainless steel plate or the like as cathode, and the alloy is electrolyzed by using an electrolyte contg. of <=15g/l concn. of rare earth elements, <=50g/l Co+Ni+Fe, and adjusted pH to 1.5-4.0. Then Co, Ni, Fe are deposited on the cathode and are thus recovered, and Cu and Zr are separated and recovered as an insoluble residue. Oxalic acid of the amt. equiv. to the amt. of the rare earth elements contained in the end liquid of the electrolysis is added to the liquid and the oxalate precipitate of the rare earth elements formed by the same is separated and calcined in the atm. air, whereby the rare earth elements are recovered as oxide. The aq. soln. after the precipitation and sepn. is recycled as the initial electrolyte.

Description

【発明の詳細な説明】 本発明は希土類元素を含み、かつC,o、NiXFe、
Cu、 Zr  の少くとも1種を含有する合金から希
土類元素と、C01N岐Feと、CuXZrとをそれぞ
れ別々に分離回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention contains rare earth elements, and includes C, o, NiXFe,
The present invention relates to a method for separately separating and recovering rare earth elements, CO1N-Fe, and CuXZr from an alloy containing at least one of Cu and Zr.

近年、高性能の磁石用合金或いは水素貯蔵用合金等とし
て希土類元素、特にサマリウム(Sm)、ランタン(L
a)、セリウム(Ce)、プラセオジム(P r ) 
、ネオジム(Nd)等とC01NiXFe、Cu。
In recent years, rare earth elements, especially samarium (Sm) and lanthanum (L), have been used as high-performance magnet alloys or hydrogen storage alloys.
a), cerium (Ce), praseodymium (P r )
, neodymium (Nd) etc. and C01NiXFe, Cu.

Zr  等との合金が多く用いられている。たとえばS
mCo、 、M、MCo、 (MMは上記希土類元素の
混合物であるミツシュメタルを意味する) 、CeCo
、、Sm、(COlFe、 CuXZr ’)、7など
が永久磁石用合金として、まだL aN l !などは
水素吸蔵用合金の代表的なものであり年々その需要が高
まっている。
Alloys with Zr etc. are often used. For example, S
mCo, , M, MCo, (MM means Mitsushi metal, which is a mixture of the above rare earth elements), CeCo
,, Sm, (COlFe, CuXZr'), 7, etc. are still used as alloys for permanent magnets. These are typical hydrogen storage alloys, and the demand for them is increasing year by year.

この希土類元素は高性能であることから、小さい寸法で
使用されることが多く、一般的に比較的大きい形状から
切削、研摩等により小さ々形状に仕上げるという工程に
よるため、加工屑や研摩粉(スクラップ)の発生量が多
い。これらの成分金属は高価なものであるから、これら
の有価金属を回収することは重要であって、これ棟で種
々の方法が提案されている。たとえば、(]、) Sm
Co、合金を王水中で加温溶解し、その後トリエタノー
ルアミン、シアン化カリウムを添加1〜てCOを隠蔽し
、アンモニアで中10することによってSmを水酸化物
として回収する方法(%開明49−36526号公報参
照) 、(2)希土類含有スクラップに造滓剤を添加し
て高周波溶解、アーク溶解、プラズマ溶解等で高温溶解
1.希土類の合金として回収する方法、(3)該スクラ
ップにカルシウムを添加し、アルゴン気流中で加熱して
スクラップ中の炭素、酸素を除去し希土類合金として再
生する方法(特開昭56−38438号公報参照)等が
ある。
Because these rare earth elements have high performance, they are often used in small sizes, and the process of cutting, polishing, etc. from a relatively large shape into a smaller shape results in machining waste and polishing powder. A large amount of scrap) is generated. Since these component metals are expensive, it is important to recover these valuable metals, and various methods have been proposed for this purpose. For example, (],) Sm
A method of recovering Sm as a hydroxide by heating and dissolving Co and the alloy in aqua regia, then adding triethanolamine and potassium cyanide to hide the CO, and removing it with ammonia to recover Sm as a hydroxide (% Kaimei 49-36526 (2) Add a slag-forming agent to rare earth-containing scrap and melt it at high temperature by high-frequency melting, arc melting, plasma melting, etc.1. (3) A method of adding calcium to the scrap and heating it in an argon stream to remove carbon and oxygen from the scrap and regenerating it as a rare earth alloy (Japanese Unexamined Patent Publication No. 56-38438) ) etc.

しかしながら、上記(1)の方法は王水を使用するため
特別な設備を必要とし、かつ衛生上好ましくないシアン
化カリウムを使用しコストも高い等の問題がある8上記
(2)及び(3)の方法の場合には、希土類とCO等の
有価物と分離できないという欠点があシ、特にスクラッ
プ中に研摩材やガラス等の不純物が混入している場合に
は、その処理を困難にする等の問題点があった。
However, method (1) above requires special equipment because it uses aqua regia, uses potassium cyanide, which is undesirable from a sanitary standpoint, and is expensive.8 Methods (2) and (3) above In this case, there is the disadvantage that rare earths cannot be separated from valuable materials such as CO, and there are problems such as making processing difficult, especially when impurities such as abrasives and glass are mixed in the scrap. There was a point.

本発明の目的は、上記の問題点を解消し比較的簡易な操
作によって、希土類元素とその他の有価物を酸化物また
は金属として分離回収する方法を提供することKある。
An object of the present invention is to solve the above-mentioned problems and provide a method for separating and recovering rare earth elements and other valuable substances as oxides or metals by relatively simple operations.

この目的を達成するだめ本発明者等は、希土類元素を含
み、かつコバルト、ニッケル、鉄、銅、ジルコニウムの
少くとも1種を含有する合金を硫酸水溶液で抽出して希
土類元素その他の有価物の大部分を溶解抽出したのち、
各元素を分離回収する方法について研究し、銅、ジルコ
ニウムは不溶解残渣として、コバルト、ニッケル、鉄は
不溶性電解法によシ合金として、希土類元素は酸化物と
してそれぞれ分離回収する方法に関する発明を主題とす
る別途特許出願によりこれを開示しだ。
In order to achieve this objective, the present inventors extracted an alloy containing rare earth elements and at least one of cobalt, nickel, iron, copper, and zirconium with an aqueous sulfuric acid solution to extract rare earth elements and other valuables. After dissolving and extracting most of the
We researched methods for separating and recovering each element, and the subject matter was an invention related to a method for separating and recovering copper and zirconium as insoluble residues, cobalt, nickel, and iron as alloys by insoluble electrolysis, and rare earth elements as oxides. This was disclosed in a separate patent application.

本発明は前記の発明をさらに改良したものであって、前
記発明の酸抽出工程と電解の工程を一括して単一工程と
し、操作の簡易化を意図したものである。
The present invention is a further improvement of the above invention, and is intended to simplify the operation by combining the acid extraction step and the electrolysis step of the above invention into a single step.

本発明によれば前記の希土類元素含有合金を陽極とし、
希土類元素とCo、 Fe  等の所定濃度を含む水溶
液を電解液としていわゆる直接電解法によシ、電解的に
該合金を溶解シ、Zr、Cuを不溶解残渣として沈降さ
せると同時に陰極にCo −4−Ni −)−Feの合
金を電解的に溶解した量に見合う量で析出せしめる第一
工程と、上記の電解終液に含有されている希十゛と・1
元素に対し当量以下の蓚酸を添加し、生成する希土類の
蓚酸塩沈殿を水溶液から分離し、これを大気中で焼成す
る第二工程とから成り、前記の分離した水溶液は電解液
として循環使用することにより、希土類元素及びCo、
F’e  等の有価物を効率よく分離回収する方法であ
る。本発明と前記本発明者による別途発明との重要な構
成上の区別は本発明において希土類元素含有合金粉末を
・直接陽極として使用する直接電解法の利用にある。
According to the present invention, the rare earth element-containing alloy is used as an anode,
Using an aqueous solution containing a rare earth element and a predetermined concentration of Co, Fe, etc. as an electrolyte, the alloy is electrolytically dissolved, Zr and Cu are precipitated as undissolved residues, and at the same time Co - is applied to the cathode. The first step is to precipitate the 4-Ni-)-Fe alloy in an amount corresponding to the amount electrolytically dissolved, and the diluted and
The second step consists of adding oxalic acid in an amount equal to or less than the equivalent amount to the element, separating the generated rare earth oxalate precipitate from the aqueous solution, and calcining it in the atmosphere, and the separated aqueous solution is recycled and used as an electrolyte. By this, rare earth elements and Co,
This is a method for efficiently separating and recovering valuable materials such as F'e. An important structural distinction between the present invention and the separate inventions by the present inventors lies in the use of a direct electrolysis method in which a rare earth element-containing alloy powder is directly used as an anode in the present invention.

すなわち、本発明の第一工程では希土類元素を含み、か
77)Go、N 1.、 p e−、Cu、 Z r 
 の1種以上を含有する粉状才たは塊状の合金を、たと
えば網状ま/こは小孔を開けたチタンバスケット(必要
によりチタンバスケット(J耐酸性のテトロンのような
布でカバーする)に装入してこれを陽極とし、ステンレ
ス等の金属板を陰極とし、希土類元素(以下、Rと略称
する)濃度x5y/を以下あ好ましくは5〜15f/1
XCo −1−Ni −1−Fe  濃度50?/L以
下。
That is, the first step of the present invention contains a rare earth element, or 77) Go, N1. , p e-, Cu, Z r
A powdered or lumpy alloy containing one or more of The charged material is used as an anode, a metal plate such as stainless steel is used as a cathode, and the rare earth element (hereinafter abbreviated as R) concentration x5y/ is preferably 5 to 15f/1.
XCo -1-Ni -1-Fe concentration 50? /L or less.

好−ましくけ20〜50y/l、 pl+ 1.5〜4
01好寸しくは…2,0〜3.0の水溶液を電解液とし
て、DK = 2 A/dn♂以下、槽重、圧5V以下
で電解の操作を行う。
Preferable structure 20-50y/l, pl+ 1.5-4
01 Preferably, using an aqueous solution of 2.0 to 3.0 as the electrolyte, electrolysis is performed at a DK = 2 A/dn♂ or less, a tank weight, and a pressure of 5 V or less.

電解槽には通常連続的に前記電解液を給液し、電解槽の
オーバーフロー液は第二工程の脱R工程に送られ、そこ
で含有するRに対し尚量以下の蓚酸水溶液号たけ固形蓚
酸を添加し、生成した沈殿を適当な濾過器で分離し、次
いで大気中で焙焼して希土類全酸化物として回収する。
The electrolytic solution is usually continuously supplied to the electrolytic cell, and the overflow liquid from the electrolytic cell is sent to the second step, the R removal step, where solid oxalic acid is added to an aqueous solution of oxalic acid in an amount equal to or less than the amount of R contained in the electrolytic cell. The resulting precipitate is separated using a suitable filter, and then roasted in the atmosphere to recover the rare earth total oxide.

−力水溶液はそのまま、或いは適当量の硫酸水溶液を添
加してから電解槽に循環使用し、πj1解槽内で不溶解
残渣として沈降するZrXCu  は、オーバーフロー
させてから、或いは槽内で沈降させ適宜分離回収する。
- The aqueous solution is recycled as it is or after adding an appropriate amount of sulfuric acid aqueous solution to the electrolytic cell, and the ZrXCu that settles as an undissolved residue in the πJ1 decomposition tank is allowed to overflow or is allowed to settle in the tank and then recycled as appropriate. Separate and collect.

本発明法において使用する電解液は、希土類元素とCo
、Fe 等を含む合金を、たとえば50〜1001i′
/を程度の希硫酸で常湛で抽出して得られるもので、各
金属の濃度とp+(値は規定範囲内にあるように、、i
′、1整する3、この電解液の−1は原料の合金用を加
減17てへ1′、1整することができる。該合金は非常
に活性であるので、これを希硫酸溶液中に投入して攪拌
すると谷8に上記の電解液を得ることができる。電解液
中のR8度を15り/を以下、好ましくは5〜□15f
/lの範囲とする理由は、該希土類元素をその溶解度の
限度1で電解的に希土類を溶解した後、次の脱R工程に
送るのが奸才しいからであって、脱R土程において添加
される蓚酸との反応を効率良く行うだめである。
The electrolyte used in the method of the present invention contains rare earth elements and Co.
, Fe, etc., for example, 50 to 1001i'
The concentration of each metal and p+ (values are within the specified range, i
The -1 of this electrolytic solution can be adjusted to 1' and 1 to adjust the amount of the raw material alloy. Since this alloy is very active, when it is poured into a dilute sulfuric acid solution and stirred, the above-mentioned electrolyte can be obtained in the valley 8. The R8 degree in the electrolyte is 15 degrees or less, preferably 5~□15f
The reason for setting the range of /l is that it is clever to electrolytically dissolve the rare earth element at its solubility limit of 1 and then send it to the next de-R step. This is necessary to efficiently react with the added oxalic acid.

ここで添加された蓚酸と希土類元素との反応性が悪いと
、脱RI程でR2(C,0,)、の沈殿が充分に生成ぜ
す、江戸々分離後の旬液を電解液として給液する際に電
解槽内で沈殿して、不溶解残渣分として系外に排出され
てtft失となり、或いは1だC。
If the oxalic acid added here has poor reactivity with rare earth elements, a sufficient amount of R2 (C,0,) will precipitate during the RI removal process. When it is liquidized, it precipitates in the electrolytic cell and is discharged outside the system as an undissolved residue, resulting in a loss of TFT or 1.

−1−Fe  等の電着物に混入する等して正常な電解
を妨げる原因となる等、何れも好ましくない結果を生ず
る。
Any of these causes undesirable results, such as mixing with electrodeposit such as -1-Fe and interfering with normal electrolysis.

次に Co −1−Ni 十Feの濃度を50 fl 
/ L以下、好ましくは20〜50り/lの範囲とする
のは、これ以下の濃度では電解時に水素ガスの発生が多
くなって効率的な電解が行われず、これ以上の濃度にな
ると、電解終液の脱R工程でたとえ希土類元素濃度が充
分に高くても蓚酸との反応性を害するからである。壕だ
電解液の−1を1.5〜4.0と規制するのは、…が1
.5以下では電解時に水素発生が多くなり電流効率が低
下するためであり、pllが4.0以上になると希土類
元素が酸化物として沈殿するためである。
Next, the concentration of Co -1-Ni and Fe is 50 fl
/ L or less, preferably in the range of 20 to 50 l/L, because if the concentration is less than this, hydrogen gas will be generated during electrolysis and efficient electrolysis will not be carried out. This is because even if the rare earth element concentration is sufficiently high in the R removal process of the final solution, the reactivity with oxalic acid will be impaired. The reason why -1 of the trench electrolyte is regulated to 1.5 to 4.0 is 1.
.. This is because when pll is less than 5, hydrogen generation increases during electrolysis and the current efficiency decreases, and when pll is greater than 4.0, rare earth elements precipitate as oxides.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明法はいわゆる直接電解法といわれる方式を適用し
て、希土類元素とCo、Fe等の合金を、所定の電解液
を電解始液として電解的に溶解しながら一方では陰極に
Co、 NiXFe 等の金属のみを単独にまたは合金
として析出せしめるものであって、この電解工程では希
土類元素は電着せずまたZrは酸化物としてCuは一旦
溶解しても希土類等との置換反応によって金属となるも
のと思われるが金属として実質的に沈殿分離される。
The method of the present invention applies a so-called direct electrolysis method to electrolytically dissolve rare earth elements and alloys of Co, Fe, etc. using a predetermined electrolytic solution as an electrolytic starting solution, while at the same time applying Co, NiXFe, etc. to the cathode. In this electrolytic process, rare earth elements are not electrodeposited, and Zr is an oxide, and even if Cu is once dissolved, it becomes a metal through a substitution reaction with rare earth elements, etc. However, it is essentially precipitated and separated as a metal.

このZr、Cuは永久磁石等の原料として再使用するこ
とができる。
These Zr and Cu can be reused as raw materials for permanent magnets and the like.

TtCP3槽にrj、I Hl、Lされる[′4極t、
1.不溶性の、たとえばチタン、ステンレス板 の周囲に小孔をあk)たノ;スク゛・ノドの中に本発明
の原料である希上り、11を3有する合金を充填(7て
構成される1、111解の進行に伴い適宜原料を)(ス
ケ・メト中に補充する。一方、陰極は好寸[7くはステ
ンレス板であるがこのステンレス板をたとえば塩化ビ。
TtCP3 tank rj, I Hl, L ['4 poles t,
1. A small hole is made around an insoluble plate, such as titanium or stainless steel; the screen throat is filled with an alloy having 1, 1 and 3, which is the raw material of the present invention. 111 As the solution progresses, the raw materials are replenished as appropriate into the scale.Meanwhile, the cathode is made of a stainless steel plate, but this stainless steel plate is made of, for example, vinyl chloride.

ニル板にテトロン等の布をitりつけて作ったボックス
中に収めて使用する。前述の雷、留液はこのボックス中
にシ′イ)液される。このように隔膜式にするとカソー
ドの析出物に不溶解物や沈殿物の混入を防止するだけで
なく、電解液のpH;’、1.M整が容易となる等の利
点が得られる。
It is used by placing it in a box made by gluing cloth such as Tetron to a Niru board. The aforementioned lightning liquid is poured into this box. Using the diaphragm type in this way not only prevents insoluble matters and precipitates from being mixed into the cathode deposits, but also prevents the pH of the electrolyte solution from increasing. Advantages such as easy M adjustment can be obtained.

この’f!5.解において溶解されただけのC01Ni
、、Feを、実質的に全)A陰極に析出させ、電1解始
液とこの電解槽をオーバーフローする電解終液のC01
Fe等の濃度やβ(をほぼ一定に調整するのが好ましい
This 'f! 5. C01Ni only dissolved in the solution
,, Fe is deposited on the C01 (substantially all) A cathode, and the electrolysis starting solution and the C01 of the electrolysis final solution overflowing this electrolytic cell are
It is preferable to adjust the concentration of Fe, etc. and β() to be approximately constant.

電解終液は第二工程である脱R工脚に送られるがここで
もまた箱、群槽内で溶解されただけの希土類元素の量を
全て沈殿させるように蓚酸、好オしくけ10%蓚酸水溶
液を添加するのが好ましい。
The final electrolyzed solution is sent to the second step, the R-removal step, where oxalic acid, preferably 10% oxalic acid, is added to precipitate all the rare earth elements that were dissolved in the box or group tank. Preference is given to adding an aqueous solution.

このように該水溶液中に含まれる希土類の全…°に対し
当量以下の蓚酸を添加する理由は前にも述べたように効
率良く希土類の沈殿を得て、これを真空濾過器等で分離
し、母液を第一工程の電解槽へ戻した際に電解析出物を
汚染したり、蓚酸金工の損失を防止するだめであるが、
そのほかにCo(CzOJ)2等の沈殿生成を完全に防
止する目的も達せられる。
The reason why oxalic acid is added in an amount equal to or less than the total amount of rare earths contained in the aqueous solution is to efficiently obtain rare earth precipitates and separate them using a vacuum filter, etc., as mentioned earlier. This is to prevent contamination of the electrolytic deposits and loss of oxalic acid metal when the mother liquor is returned to the electrolytic cell in the first step.
In addition, the purpose of completely preventing the formation of precipitates such as Co(CzOJ)2 can also be achieved.

ここで生成する沈殿は、約1時間以上の熟成時間を経過
したのち母液と分離するのが好廿しい。
Preferably, the precipitate produced here is separated from the mother liquor after aging for about 1 hour or more.

この上うKして得られた沈殿は乾燥後、大気9約900
℃の温度で焼成1.て希土類の酸化物を得る。
After drying, the precipitate obtained by further heating is heated to about 900
Firing at a temperature of 1. to obtain rare earth oxides.

電解槽内でカソード上に析出した金属は適当外時期に引
揚げて剥ぎ取り、また適当な周期で電解槽内に沈降した
Zr、Cuを回収する。
The metal deposited on the cathode in the electrolytic cell is pulled up and stripped off at appropriate times, and Zr and Cu precipitated in the electrolytic cell are recovered at appropriate intervals.

本発明の方法によって得られるCO等の金属ならびに希
土類元素は実施例に見られるように高品位のものであり
、そのまま永久磁石や水素貯蔵合金等の原料として使用
することができる。
The metals such as CO and rare earth elements obtained by the method of the present invention are of high quality as seen in the examples, and can be used as they are as raw materials for permanent magnets, hydrogen storage alloys, etc.

本発明法によれば、第一工程の終液を第一工程の電1質
液中に循環使用−J−るので合金中の各金属はZ r 
+い1の1;1、Co、 Ni、Foの711′卦よび
希土類元素類の如く別々に1丑ぼ100!!イの収率で
分離回収することができる。
According to the method of the present invention, the final solution of the first step is recycled into the electrolyte solution of the first step, so that each metal in the alloy contains Zr.
+ 1 of 1; 1, 711' of Co, Ni, Fo, and rare earth elements, each one separately 100! ! It can be separated and recovered with a yield of B.

甘た、その他の利点としては公知の直接′11イ解法と
イ1ぐ酸金工訂jの沈11り分離法を連f・先約に行う
ことができるのでト)5作が中x■p (l二され、]
二f7間の無用の411失が防止できる。
Another advantage is that the well-known direct '11 A solution method and the A1 acid metal engineering method's precipitation 11 separation method can be performed in succession, so G) 5 works can be done in the middle. (l2,]
Unnecessary loss of 411 between two f7s can be prevented.

以下、実が11例について説明する。Hereinafter, 11 examples will be explained.

実施例】 添付図面に示しだような電解槽を用いて本発明の213
一工程を実施する。使用した′電解槽の大きさtよ、’
1M’l・、;(、F4行および高さがそれぞれ350
+++m。
EXAMPLE 213 of the present invention was prepared using an electrolytic cell as shown in the attached drawings.
Perform one step. The size of the electrolytic cell used is t.
1M'l・, ;(, F4 row and height are 350 each
+++m.

3001および4001である。陽極釦はイj六幅、長
さ(?よびjすさく内寸)がそれぞれ218mm。
3001 and 4001. The anode buttons are 218mm wide and 218mm long (inner dimensions).

270τ1および20raの寸法を有し5薗角の網目を
有するチタン製バスケット1を用い、添付図面に示すよ
うに、ブトロン製のバック2で包んで使用する。陰極と
して横幅、長さおよび厚さがそれぞれ200wm、  
300wmmおよび3籠のステンレス板3を用い、この
ステンレス板を塩化ビニル製板とテトロン布で作製した
横幅、長さおよび厚さく内寸)がそれぞれ260van
、’ 380mmおよび20叫のボックス4に入れて使
用する。
A titanium basket 1 having dimensions of 270τ1 and 20ra and a 5-square mesh is used, and as shown in the accompanying drawings, it is wrapped in a bag 2 made of Butron. As a cathode, the width, length and thickness are each 200wm,
Using a stainless steel plate 3 of 300wmm and 3 cages, the stainless steel plate was made of a vinyl chloride plate and Tetoron cloth.
, '380mm and 20cm box 4 for use.

前記陽極バック3個と陰極ボックス2個を図示のように
交互に配置する。陽極バンク中に重量基準でSm 34
%、0065%を含む合金からなる約lO調径の塊状磁
石スクラップをそれぞれl Kgずつ装入する。
The three anode bags and the two cathode boxes are arranged alternately as shown. Sm 34 by weight in the anode bank
%, 0.065% of block magnet scrap with a diameter of about 10 is charged in each case.

この電解槽に電解液としてCo 40f/L1 Sm”
/4p’2.2の硫酸酸性水溶液を満たしたのち、それ
ぞれの陰極ボックス4に35me1分の速度で給液し電
解槽出口5からのオーバーフローは攪拌装置のある1O
tビーカー(図示せず)に受けこのビーカーを脱Sm槽
として使用する。この脱8m槽に10%蓚酸水溶液を2
.3 me1分の割合に添加し、脱Sm槽のオーバーフ
ローは濾過器(ヌッチェ)を通過させたのち溶液に希硫
酸水溶液を添加して水溶液のpHを22に調整して杓び
iI7.カイ槽内の陰極ボックスに循環するという手順
により第二工程と循環工程を実施する。電解条件はD 
K 1.5 A/ dn♂、槽τ()、圧4 V 、 
’T1.苗液温電液温度50℃時間1■マ、解した。な
お、脱Sm槽に入る電解終液中Smは10f’/を以上
を保つようにした。
Co 40f/L1 Sm” was added to this electrolytic cell as an electrolyte.
After filling the sulfuric acid acid aqueous solution of /4p'2.2, the liquid is supplied to each cathode box 4 at a rate of 35me/min, and the overflow from the electrolytic cell outlet 5 is drained into the 1O where the stirring device is located.
t beaker (not shown) and this beaker is used as a Sm removal tank. Add 20% oxalic acid aqueous solution to this 8 m tank.
.. The overflow of the Sm removal tank was passed through a filter (Nutche), and then a dilute sulfuric acid aqueous solution was added to the solution to adjust the pH of the aqueous solution to 22, and the solution was ladled. The second step and the circulation step are carried out by circulating the cathode box in the cathode tank. The electrolytic conditions are D
K 1.5 A/dn♂, tank τ(), pressure 4 V,
'T1. The seedling solution was heated to 50°C for 1 hour. Incidentally, the Sm in the final electrolytic solution entering the Sm removal tank was maintained at 10 f'/ or more.

この電解によって陰極上に析出した金属は、C099,
0%、Sm O−1”’以下のものが630 f、この
間のスクラップ溶解量はl Klであり、仕込原料から
のCoの実収率d、96. Oy(、であった。また脱
Sm槽を経て濾過分離された沈殿C8wm(t−to+
)s ]は乾燥後、900℃に保持したマツフル炉で1
時間半焼成したところ、Sm 85.2%、Co 0.
06%のbrr+t Us 390 ?が得られ、原料
からのサマリウム実収率は97.7 y(、であった。
The metal deposited on the cathode by this electrolysis is C099,
0%, Sm O-1"' or less was 630 f, the amount of scrap melted during this period was 1 Kl, and the actual yield of Co from the charged raw material was d, 96. Oy (,. Precipitate C8wm (t-to+
)s] was dried and then heated in a Matsufuru furnace maintained at 900°C.
After firing for half an hour, Sm 85.2%, Co 0.
06%brr+t Us 390? was obtained, and the actual yield of samarium from the raw material was 97.7 y.

実施例2 Sm、 (Co、Fe、 Cu、 Zr )、7を高周
波溶解法によって製造する際に得られた、sm 43.
7%、Co 32.9%、Fe 9.15%、 Cu 
5.13%、Zr 0.97%の組成を有するスラグ3
.6 Kqを2メツシユ以下に粗砕したのち、実施例1
で使用したチタンバスケットにそれぞれ等分に分割して
甚大したものを陽極としSm 8.0、Co 30.0
1Fe ] (3,0各?/1を含有するl(l 2.
0の水溶液を電wC液とし、DKが1.〇へ/cWであ
る以外は実施例1と同様にして24時間電解した。その
結果、原料の溶解量は1.5 K9でありC(7s、 
4 y(、、Fe 21.0%、sm o1%以下の電
着物600りが得られ原料からのCo −1−F eの
実収率は94.6%であった。一方Sm化合物の沈殿は
乾燥後、900℃に保持したマツフル炉で2時間焼成し
たところSm 84.5%、Co −1−Fe  o、
 1%以下のSm、03753 fが得られ、原料から
のSmの実収率は97.1%であった。
Example 2 sm 43. obtained when producing Sm, (Co, Fe, Cu, Zr), 7 by high frequency melting method.
7%, Co 32.9%, Fe 9.15%, Cu
Slag 3 with a composition of 5.13%, Zr 0.97%
.. After coarsely crushing 6 Kq into 2 meshes or less, Example 1
Sm 8.0, Co 30.0 were used as the anode by dividing the titanium basket used in the above into equal parts and making it extremely large.
1Fe ] (3,0 each ?/1 containing l(l 2.
An aqueous solution of 0 is used as an electric wC solution, and DK is 1. Electrolysis was carried out for 24 hours in the same manner as in Example 1 except that the temperature was 0/cW. As a result, the amount of dissolved raw material was 1.5 K9 and C(7s,
4y(,, 600 electrodeposit with Fe 21.0%, smo 1% or less were obtained, and the actual yield of Co-1-Fe from the raw material was 94.6%. On the other hand, the precipitation of Sm compound was After drying, it was fired for 2 hours in a Matsufuru furnace held at 900°C, resulting in 84.5% Sm, Co -1-Fe o,
Sm of 1% or less, 03753 f, was obtained, and the actual yield of Sm from the raw material was 97.1%.

CuとZrは、はとんど溶解せず電解液中の各濃度は何
れもo、o O5y7を以下であった。
Cu and Zr were hardly dissolved and their respective concentrations in the electrolyte were below o, oO5y7.

実施例3 La 31.5%、残部Niからなる約10w径の塊状
のLaNi合金3 Kfを実施例1と同様の操作を行っ
て電解しなからNi及びLaの回収を行ったところ、2
4時間操業で原料の溶解値は1.2 KGI、H1け純
度99.25(、のものが97,2%の実収率で、La
は La R5,1%のLit、 O,が946%の実
収率、伺れも原料からの計算値で利られた。
Example 3 A lumpy LaNi alloy 3Kf with a diameter of about 10W consisting of 31.5% La and the balance Ni was electrolyzed in the same manner as in Example 1, and Ni and La were recovered.
After 4 hours of operation, the solubility value of the raw material was 1.2 KGI, the purity of H1 was 99.25 (, with an actual yield of 97.2%, and La
The actual yield of LaR5,1% Lit, O, was 946%, which was calculated from the raw materials.

以上、実施例シ):何れも、電解液、回収希土類元素の
工程を循環方式で説明したが、単に電解工程のみ、或い
は希土類回収工程のみをそれぞれ循環させ充分に原料を
溶解寸たは希土類を回収してから次の工程に進む方式を
採用してもよい。
Above, the process of electrolyte solution and recovered rare earth elements has been explained using a circulation method. However, only the electrolytic process or only the rare earth recovery process is circulated to sufficiently dissolve the raw material or rare earth element. You may adopt a method of proceeding to the next step after collection.

また、電Wl!の条件、希土類を回収するだめの蓚酸の
添加量及び沈殿の熟成時間等は、回収金属の使用目的に
応じ適宜W^1整するのがよい。
Also, electric Wl! The conditions, the amount of oxalic acid added for recovering rare earths, the aging time for precipitation, etc. are preferably adjusted as appropriate depending on the intended use of the recovered metal.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明の実施に用いる例示電解槽の縦断面図
である。 1・・・チタンバスケット;2 テトロン製アノードパ
ック;3・・カソード板;4・・・カソードボックロ ス;5・・・オーバーフロー45 ・’rfj、 群槽
。 1#許出ir人二 住女仝ノT’b j;、?:If!
(’I武会)・1代理人 : −ノj、1+ii A;
 ’+・、ト(′代じ459
The accompanying drawings are longitudinal cross-sectional views of exemplary electrolytic cells used in the practice of the present invention. 1... Titanium basket; 2 Tetron anode pack; 3... Cathode plate; 4... Cathode box loss; 5... Overflow 45 ・'rfj, group tank. 1 #Acceptance ir person 2 resident woman T'b j;,? :If!
('I Bukai)・1 agent: -noj, 1+ii A;
'+, t (' 459

Claims (1)

【特許請求の範囲】[Claims] 希土類元素を含み、かつニッケル、コバルト、銅、鉄、
ジルコニウムの少くとも1種を含有する合金を陽極とし
、希土類元素濃度15 f/を以下、Co −1−Ni
 −4−F050グ/を以下、−1,5〜40の電解液
を用いて電、解し、陰極にC01Ni、 Feを析出せ
しめ、電解終液と不溶解残渣とを分離する第一工程と、
上記電解終液に含有されている希土類元素に対し当月以
下の蓚酸を添加[7生成する希土類の蓚酸塩沈殿を水溶
液から分離[7これを大気中で焼成する第二工程とから
成υ、第二工程で得られた水溶液を第一工程の電解液と
して循環使用することを特徴とする希土類元素含有合金
からの有価金属の回収法。
Contains rare earth elements, including nickel, cobalt, copper, iron,
An alloy containing at least one type of zirconium is used as an anode, and a rare earth element concentration of 15 f/ is hereinafter referred to as Co-1-Ni.
-4-F050g/ is electrolyzed and dissolved using an electrolytic solution of -1.5 to 40 to precipitate C01Ni and Fe on the cathode, and the first step is to separate the final electrolysis solution from the insoluble residue. ,
Adding less than the current amount of oxalic acid to the rare earth elements contained in the final electrolysis solution [7] Separating the generated rare earth oxalate precipitate from the aqueous solution [7] A method for recovering valuable metals from rare earth element-containing alloys, characterized in that an aqueous solution obtained in two steps is recycled as an electrolyte in the first step.
JP57175355A 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements Granted JPS5967384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57175355A JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175355A JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Publications (2)

Publication Number Publication Date
JPS5967384A true JPS5967384A (en) 1984-04-17
JPH0210232B2 JPH0210232B2 (en) 1990-03-07

Family

ID=15994619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175355A Granted JPS5967384A (en) 1982-10-07 1982-10-07 Method for recovering valuable metal from alloy containing rare earth elements

Country Status (1)

Country Link
JP (1) JPS5967384A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192879A (en) * 1992-12-24 1994-07-12 Japan Energy Corp Refining method for cobalt
JPH06192874A (en) * 1992-12-24 1994-07-12 Japan Energy Corp Refining method for cobalt
WO2014013929A1 (en) 2012-07-19 2014-01-23 Jx日鉱日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
JP2021123788A (en) * 2020-02-04 2021-08-30 北京科技大学 Electrolytic regeneration method of Nd-Fe-B scrap solution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192879A (en) * 1992-12-24 1994-07-12 Japan Energy Corp Refining method for cobalt
JPH06192874A (en) * 1992-12-24 1994-07-12 Japan Energy Corp Refining method for cobalt
WO2014013929A1 (en) 2012-07-19 2014-01-23 Jx日鉱日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
CN104169471A (en) * 2012-07-19 2014-11-26 吉坤日矿日石金属株式会社 Method for recovering rare earth from rare earth element-containing alloy
JP2021123788A (en) * 2020-02-04 2021-08-30 北京科技大学 Electrolytic regeneration method of Nd-Fe-B scrap solution

Also Published As

Publication number Publication date
JPH0210232B2 (en) 1990-03-07

Similar Documents

Publication Publication Date Title
US8221609B2 (en) Process for producing rare metal and production system thereof
EP3149214B1 (en) Hydrometallurgical treatment of anode sludge
TW201736604A (en) High-purity tin and method for producing same
CN108138343B (en) Metal refining method using electrolytic reduction and electrolytic refining process
EP2147128B1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
US4201648A (en) Nickel recovery from sulfur-deficient mattes
CN107815540A (en) A kind of method of hydrometallurgy metal nickel cobalt and its salt product
US5039337A (en) Process for producing electrolytic lead and elemental sulfur from galena
CN109971945A (en) A kind for the treatment of process of coarse tin decoppered slag
JP5596590B2 (en) Method for separating and recovering metal elements from rare earth magnet alloy materials
CA3146817C (en) Method for processing copper and nickel sulfide materials
JPH10204673A (en) Recovering method of indium
EP3575420A1 (en) Bismuth purification method
JPS5967384A (en) Method for recovering valuable metal from alloy containing rare earth elements
US4468302A (en) Processing copper-nickel matte
JPS6134486B2 (en)
US5939042A (en) Tellurium extraction from copper electrorefining slimes
US3787301A (en) Electrolytic method for producing high-purity nickel from nickel oxide ores
JP6471072B2 (en) Low alpha ray high purity zinc and method for producing low alpha ray high purity zinc
US20230124749A1 (en) Ammonium complex system-based method for separating and purifying lead, zinc, cadmium, and copper
JP2003183871A (en) Electrolytic refining method for producing high-purity tin, and apparatus therefor
JPH04191340A (en) Production of high purity tin
JP3151194B2 (en) Cobalt purification method
CN112575192A (en) Method for extracting valuable metals by electrolytic separation of bismuth silver zinc slag