JPS6088344A - Eccentricity measuring apparatus for lens - Google Patents
Eccentricity measuring apparatus for lensInfo
- Publication number
- JPS6088344A JPS6088344A JP19570383A JP19570383A JPS6088344A JP S6088344 A JPS6088344 A JP S6088344A JP 19570383 A JP19570383 A JP 19570383A JP 19570383 A JP19570383 A JP 19570383A JP S6088344 A JPS6088344 A JP S6088344A
- Authority
- JP
- Japan
- Prior art keywords
- optical axis
- half mirror
- lens
- mirror
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0221—Testing optical properties by determining the optical axis or position of lenses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
Description
【発明の詳細な説明】 この発明はレンズの偏心測定機の改良に関する。[Detailed description of the invention] This invention relates to an improvement in a lens eccentricity measuring device.
光軸に対するレンズ表面の円弧中心軸のずれ、あるいは
11 局に対するずれ等を測定するための従来の偏心測
定機の一つとして、第1図に示されるようなものがある
。One of the conventional eccentricity measuring instruments for measuring the deviation of the center axis of the circular arc of the lens surface with respect to the optical axis, or the deviation with respect to the optical axis, is shown in FIG.
このレンズの偏心測定機は、基本光軸10上に、被検レ
ンズ12、対物レンズ14、第1のハーフミラー16及
び該第1のハーフミラ−16に対して進退自在の反射鏡
18をこの順で配置すると共に、前記第1のハーフミラ
−16上で前記基本光軸10と直交づる観測側光軸2o
上に、第2のハーフ′ミラー22及び目rl¥124を
配置し、該観測側光軸20の側方から前記第2のハーフ
ミラ−22に、ターグツ1〜26を照射して前記第1の
ハーフミラ−16方向に前記観測側光軸2oに治って反
射さゼ、更に該第1のハーフミラ−16により、前記基
本光軸10に治って前記反射鏡18方向に反射させ、こ
の戻口J鏡18によって反射された後、前記第1のハー
フミラ−16及び対物レンズ14を透過して、前記被検
レンズ12表面で反射され、更に該対物レンズ14、第
1のハーフミラ−16を透過して前記反射鏡18で反射
された後、前記第1のハーフミラ−16で反射され、第
2のハーフミラ−22を透過する光路を通って、前記目
盛24上にターゲツト像を結像させ、このターゲツト像
の光軸に対するずれ量により被検レンズ12の(−心を
測定づるものがある。This lens eccentricity measuring device has a test lens 12, an objective lens 14, a first half mirror 16, and a reflecting mirror 18 that can freely move forward and backward with respect to the first half mirror 16 on a basic optical axis 10 in this order. and an observation side optical axis 2o perpendicular to the basic optical axis 10 on the first half mirror 16.
A second half mirror 22 and an eye rl 124 are arranged above, and targets 1 to 26 are irradiated onto the second half mirror 22 from the side of the observation side optical axis 20 to It is reflected by the half mirror 16 toward the observation side optical axis 2o, and further reflected by the first half mirror 16 toward the basic optical axis 10 toward the reflecting mirror 18, and this return J mirror is reflected. 18, the light passes through the first half mirror 16 and the objective lens 14, is reflected on the surface of the test lens 12, and further passes through the objective lens 14 and the first half mirror 16. After being reflected by the reflecting mirror 18, the target image is formed on the scale 24 through an optical path that is reflected by the first half mirror 16 and transmitted through the second half mirror 22. There is a method that measures the (-center) of the lens 12 to be tested based on the amount of deviation with respect to the optical axis.
ここで、前記反射鏡18はコーナーキューブ18A及び
平面反111188とから構成されている。Here, the reflecting mirror 18 is composed of a corner cube 18A and a flat surface 111188.
又、前記被検レンズ12と対物ランプ゛17′Iの基本
光軸1o上の位置関係は、該対物レンズ14を通った前
記ターグツ1へ像が被検レンズ12表面の曲率中心12
Aの位置にt’i!i 像するようにされている。Further, the positional relationship between the test lens 12 and the objective lamp 17'I on the basic optical axis 1o is such that the image passing through the objective lens 14 and directed to the target 1 is located at the center of curvature 12 of the surface of the test lens 12.
t'i in position A! i It is made to look like an image.
図の符号28は接眼レンズ、29(よターグツ1〜像2
6の照明ランプをそれぞれ示づ。Reference numeral 28 in the figure is an eyepiece lens, 29 (Yotagutsu 1 to image 2)
6 illumination lamps are shown respectively.
この偏心測定C1においては、前記コーナーキューブ1
8Aを平面反射鏡18B及び対物ランプ14に対して基
本光軸1oに沿って進退させることにより、目盛24に
第1及び第2のターゲット像が結像できるように調整さ
れるものである。In this eccentricity measurement C1, the corner cube 1
Adjustment is made so that the first and second target images can be formed on the scale 24 by moving the lens 8A back and forth along the basic optical axis 1o with respect to the plane reflecting mirror 18B and the objective lamp 14.
しかしながら、このような従来の偏心測定機は、コーナ
ーキューブ18Aを含むため、製造コストが高いど共に
、型苗増大、取イ」調整に手数を要するという問題点が
ある。However, since such a conventional eccentricity measuring machine includes the corner cube 18A, there are problems in that the manufacturing cost is high, and the number of molds increases and adjustment of the cutout requires time and effort.
この発明は重量、取付調整の手数及び製造コストを低減
できるようにしたレンズの偏心測定機を提供することを
目的とする。An object of the present invention is to provide a lens eccentricity measuring device that can reduce the weight, the number of installation adjustments, and the manufacturing cost.
又この11明は、上記のようなレンズの錫心測定懇にお
いて、前記反射鏡を基本光軸と直交する反則面を備えた
平面反射鏡とすると共に、前記対物レンズと被検レンズ
間の光路を両者間に介在された第3のハーフミラ−を/
FLで、前記基本光軸の側方に外して設け、且つ、前記
基本光軸上における前記対物ランプ゛の前記第3のハー
フミラ−側の焦点位置に、前記平面反射鏡の反射面の前
記基本光軸に対づる直交度を確認するモニタ手段を設け
ることにより上記目的を達成するものである。In addition, in the above-mentioned lens tin center measurement, the reflecting mirror is a flat reflecting mirror with a refracted surface orthogonal to the fundamental optical axis, and the optical path between the objective lens and the test lens is The third half mirror interposed between the two /
FL, the base of the reflecting surface of the flat reflecting mirror is provided at a side of the basic optical axis, and is located at a focal position on the third half mirror side of the objective lamp on the basic optical axis. The above object is achieved by providing a monitor means for checking the degree of orthogonality with respect to the optical axis.
この発明においては、前記反射鏡が単一の平面反射鏡と
されると共に、この平面反tA鏡の基本光軸に対する直
交1東はモニタ手段によって調整確認される。In this invention, the reflecting mirror is a single plane reflecting mirror, and the alignment of the plane anti-tA mirror with respect to the fundamental optical axis is adjusted and confirmed by the monitor means.
以下本発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
この実施例において、前記第1図に示された従来のレン
ズの偏心測定間におけると同−又は相当部分には第1図
と同一の符号を附することにより説明を省略するものと
する。In this embodiment, the same or equivalent parts as those shown in FIG. 1 during the eccentricity measurement of the conventional lens will be given the same reference numerals as in FIG. 1, and the explanation thereof will be omitted.
この実施例は、第2図に示されるように、基本光軸10
上に、?l!!検レンズ12、対物レンズ14、第1の
ハーフミラ−16及び該第1のハーフミラ−1Gに対し
て進退自在の反射鏡をこの順で配置りると共に、前記第
1のハーフミラ−16上で前iJ基本光軸10と直交す
る観測側光軸2o上に、第2のハーフミラ−22及び目
盛24を配置し、該観測側光軸20の側方がら前記第2
のハーフミラ−22に、ターゲット26を照射して前記
第1のハーフミラ−16方向に前記観測側光軸20に)
合って反則さけ、更に該第1のハーフミラ−16にJこ
り、前記基本光軸10に沿って前記反射鏡方向に反射さ
せ、この反射鏡によって反射された後、前記第1のハー
フミラ−16及び対物レンズ14を透過して、前記被検
レンズ12表面で反射され、更に該対物レンズ14、第
1のハーノミラー16を透過して前記反射鏡で反射され
た後、前記第1のハーフミラ−16で反射され、第2の
ハーフミラ−22を透過づる光路を通って、前記目fi
24上にターグツ1〜像を結像さゼ、このターゲット働
の光軸に対するずれ量により被検レンズ゛12の偏心を
測定するレンズの偏心測定機において、前記反射鏡を基
本光軸10と直交する反射面を備えた平面反射鏡18
Cとづると共に、前記対物レンズ゛14と被検レンズ1
2の間の光路を両者間に介在された第3のハーフミラ−
36を介して、前記基本光軸10の測方に外して設け、
且つ、前記基本光軸10上における前記対物レンズ14
の前記第3のハーフミラ−36側の焦点14Aの位置に
、前記平面反射鏡18Gの反射面の前記基本光軸10に
対する直交度を確認するモニタ手段34を設(Jたもの
である。In this embodiment, as shown in FIG.
above,? l! ! A detection lens 12, an objective lens 14, a first half mirror 16, and a reflecting mirror that can move forward and backward with respect to the first half mirror 1G are arranged in this order. A second half mirror 22 and a scale 24 are arranged on the observation side optical axis 2o orthogonal to the basic optical axis 10, and the second
irradiate the target 26 onto the half mirror 22 of the first half mirror 16 toward the observation side optical axis 20)
The first half mirror 16 is further reflected along the basic optical axis 10 in the direction of the reflecting mirror, and after being reflected by this reflecting mirror, the first half mirror 16 and It passes through the objective lens 14, is reflected on the surface of the test lens 12, passes through the objective lens 14 and the first Harno mirror 16, is reflected by the reflector, and then is reflected by the first half mirror 16. The eye fi is reflected and passes through the second half mirror 22.
In a lens eccentricity measuring machine that measures the eccentricity of the lens to be tested 12 based on the amount of deviation of the target from the optical axis 24, the reflecting mirror is set perpendicular to the basic optical axis 10. A flat reflecting mirror 18 with a reflecting surface that
C, and the objective lens 14 and the test lens 1.
A third half mirror interposed between the two
36, provided separately from the measurement direction of the basic optical axis 10,
and the objective lens 14 on the basic optical axis 10
At the position of the focal point 14A on the side of the third half mirror 36, a monitor means 34 for checking the orthogonality of the reflecting surface of the plane reflecting mirror 18G with respect to the basic optical axis 10 is provided.
このモニタ手段34は、前記基本光軸10と45°の角
度をなす反射面を有するアライメントハーフミラ−34
Aと、このアライメントハーフミラ−34Aによって反
射される光路上にあり、前記対物レンズ14の焦点14
Aと共役な位置に置かれたtニタ接眼レンズ34Bと、
オートコリメーション系の照明ランプ34Cど、からな
り、このモニタ接眼レンズ34Bからオートコリメーシ
ョンの原理によりアライメントハーフミラ−34Aをモ
ニタ観測することによって、平面反射鏡18Cの反則像
と基本光軸10のずれ即ち、平面反身」鏡18Cの反射
面ど基本光軸′10の直交度を確認するものである。This monitoring means 34 is an alignment half mirror 34 having a reflecting surface forming an angle of 45 degrees with the basic optical axis 10.
A and the focal point 14 of the objective lens 14, which is on the optical path reflected by the alignment half mirror 34A.
a t-niter eyepiece 34B placed in a position conjugate with A;
It consists of an autocollimation system illumination lamp 34C, etc., and by monitoring the alignment half mirror 34A from the monitor eyepiece 34B based on the principle of autocollimation, it is possible to detect the irregular image of the plane reflecting mirror 18C and the deviation of the basic optical axis 10, i.e. , the degree of orthogonality of the fundamental optical axis '10 with the reflecting surface of the flat mirror 18C is confirmed.
この実施例においては、従来のコーナーキューブ18△
及び平面反射鏡18Bからなる反射鏡を、1枚の平面反
射鏡18Gに置換えることによって、そのコスト及び重
量が低減され、■つ、取イ」(プ調整を容易とすること
ができる。In this embodiment, a conventional corner cube 18△
By replacing the reflecting mirror consisting of the flat reflecting mirror 18B and the flat reflecting mirror 18B with one plane reflecting mirror 18G, the cost and weight can be reduced, and the adjustment can be made easier.
なお、−F記実施例のモニタ手段34はオー1−コリメ
ーションの原理を刊用するものであるが、本発明はこれ
に限定されるものでなく、平面反射鏡18Cの基本光軸
10に対する直交度を[ニタできるものであればよい。Although the monitoring means 34 in the embodiment described in -F is based on the principle of O-1 collimation, the present invention is not limited to this, and the monitoring means 34 is based on the principle of O-1 collimation. It is fine as long as you can monitor the degree.
次に第3図に示される本光明の第2実施例につき説明す
る。Next, a second embodiment of the present invention shown in FIG. 3 will be described.
この第2実施例は、前記第1実施例における前記観測側
光軸20上の、前記第1のハーフミラ−16と第2のハ
ーフミラ−22との間の位置に、コリメークレンズ30
を、又、前記基本光軸10上の、前記第1のハーフミラ
−16と平面反射鏡18Cの間の位置に、前記第2のハ
ーフミラ−22を介して段用されたターグツ1〜像を、
前記第1のハーフミラ−16から見て、前記第1の対物
レンズ14と反対側のり本光軸10上にリレー結像させ
る第2の対物レンズ32を、それぞれ配置したものであ
る。In this second embodiment, a collimating lens 30 is provided at a position between the first half mirror 16 and the second half mirror 22 on the observation side optical axis 20 in the first embodiment.
In addition, the target image 1 through the second half mirror 22 is placed on the basic optical axis 10 at a position between the first half mirror 16 and the plane reflecting mirror 18C.
A second objective lens 32 for forming a relay image on the optical axis 10 on the opposite side to the first objective lens 14 when viewed from the first half mirror 16 is arranged.
即ち、この実施例においては、観測側光軸20上の第2
のハーフミラ−22に投射されたターグツ1〜26は、
該第2のハーフミラ−22で第1のハーフミラ−16方
向に反射され、コリメータレンズ28を通ることにより
収束方向に屈折にされ、この1大寒で第1のハーフミラ
−1Gで反射されて第2の対物レンズ32により、該第
2の対物レンズ32の基本光軸10上の焦点30A又は
その前後位置にリレーIi!i像されるようにしたもの
である。That is, in this embodiment, the second
Targuts 1 to 26 projected onto the half mirror 22 of
It is reflected by the second half mirror 22 in the direction of the first half mirror 16, and is refracted in the convergent direction by passing through the collimator lens 28, and is reflected by the first half mirror 1G and becomes the second half mirror. By the objective lens 32, the relay Ii! It is designed to be viewed as an i-image.
即ら、このリレー結像の点は、前記第1図に示される従
来のレンズの偏心測定Iにおけるターグツ1〜26の位
置と同等になる。That is, the points of this relay imaging are equivalent to the positions of the tags 1 to 26 in the conventional lens eccentricity measurement I shown in FIG.
従って、平面反射鏡18Cの可動調整範囲内に、前記従
来の偏心測定機にお番プる観測側光軸20上の光路部分
が入り、測定範囲は大幅に拡大されることになる。Therefore, the optical path portion on the observation side optical axis 20 that is used by the conventional eccentricity measuring device falls within the movable adjustment range of the plane reflecting mirror 18C, and the measurement range is greatly expanded.
ヌ、目e124に結像されるターゲット(象の(8率も
対物レンズ14の倍率によって左右されないために、目
盛24における角度の読みが変わるという煩しさは解消
される。Since the 8th ratio of the target (elephant) imaged on the eye e124 is not affected by the magnification of the objective lens 14, the trouble of changing the reading of the angle on the scale 24 is eliminated.
本発明は上記のように梧成したので、レンズの偏心測定
はにおける重量、コス1へ及び相イリけの手数を低減す
ることができるという優れた効果を有づる。Since the present invention has been developed as described above, it has the excellent effect of being able to reduce the weight, cost, and number of steps involved in measuring the eccentricity of a lens.
第1図は従来のレンズの偏心測定我における光学系を示
す光路図、第2図は本発明に係るレンズの偏心測定機の
実施例を示す光路図、第3図はlid第2実施例を示す
光路図である。
10・・・基本光軸、
12・・・被検レンズ、
14・・・対物レンズ、
16・・・第1のハーフミラ−1
18C・・・平面反射鏡、
20・・・観測側光軸、
22・・・第2のハーフミラ−1
24・・・目盛、
26・・・ターゲット像、
28・・・コリメータレンズ、
30・・・第2の対物レンズ、
34・・・モニタ手段、
36・・・第3のハーフミラ−0
代理人 松 山 圭 佑
(ばか1名)
第3図Fig. 1 is an optical path diagram showing an optical system in a conventional lens eccentricity measuring device, Fig. 2 is an optical path diagram showing an embodiment of a lens eccentricity measuring device according to the present invention, and Fig. 3 is a diagram showing a second embodiment of a lid. FIG. DESCRIPTION OF SYMBOLS 10... Basic optical axis, 12... Test lens, 14... Objective lens, 16... First half mirror 1 18C... Plane reflecting mirror, 20... Observation side optical axis, 22... Second half mirror 1 24... Scale, 26... Target image, 28... Collimator lens, 30... Second objective lens, 34... Monitor means, 36...・Third Half Mirror-0 Agent Keisuke Matsuyama (1 idiot) Figure 3
Claims (1)
ハーフミラ−及び該第1のハーフミラ−に対して進退自
在の反射鏡をこの順で配置すると共に、前記第1のハー
フミラ−上で前記基本光軸と交差する観測測光軸上に、
第2のハーフミラ−及び目盛を配置し、該観測側光軸の
側方から前記第2のハーフミラ−に、ターゲットを照射
して前記第1のハーフミラ一方向に前記観測側光軸に沿
って反射させ、更に該第1のハーフミラ−により、前記
基本光軸に沿って前記反射鏡方向に反射さけ、この反射
鏡によって反射された後、前記第1のハーフミラ−及び
対物レンズを透過して、前記被検−レンズ表面で反射さ
れ、更に該対物レンズ、第1のハーフミラ−を透過して
前記反射鏡で反射された後、前記第1のハーフミラ−で
反射され、第2のハーフミラ−を透過する光路を通って
、前記目盛上にターグツl−像をIi!i像させ、口の
ターゲツト像の光軸に対するずれ吊により被検レンズの
偏心を測定するレンズの偏心測定閑において、前記反射
鏡を基本光軸と直交する反射面を備えた平面反射鏡とで
ると共に、前記対物レンズと被検レンズ間の光路を両者
間に介在された第3のハーフミラ−を介して、前記基本
光軸の側方に外して設け、且つ、前記基本光軸上におけ
る前記対物レンズの前記第3のハーフミラ−側の焦点位
置に、前記平面反射鏡の反射面の前記基本光軸に対する
直交度をN1認するモニタ手段を設けてなるレンズの1
−心測定(戊。(1) A test lens, an objective lens, a first half mirror, and a reflecting mirror that can move forward and backward with respect to the first half mirror are arranged in this order on the basic optical axis, and the first half mirror On the observation photometry axis that intersects the basic optical axis above,
A second half mirror and a scale are arranged, and a target is irradiated onto the second half mirror from the side of the observation side optical axis and reflected in one direction of the first half mirror along the observation side optical axis. The first half mirror then reflects the light along the basic optical axis in the direction of the reflecting mirror, and after being reflected by the reflecting mirror, the light passes through the first half mirror and the objective lens. It is reflected by the surface of the test lens, further transmitted through the objective lens and the first half mirror, reflected by the reflecting mirror, reflected by the first half mirror, and transmitted through the second half mirror. Through the optical path, a tag l-image Ii! is placed on the scale. In the lens eccentricity measuring machine, which measures the eccentricity of the lens to be tested by measuring the deviation of the target image of the mouth from the optical axis, the reflecting mirror is a flat reflecting mirror with a reflecting surface perpendicular to the basic optical axis. In addition, the optical path between the objective lens and the test lens is provided off to the side of the basic optical axis via a third half mirror interposed between them, and the objective lens on the basic optical axis is 1 of the lens, which is provided with a monitor means for checking the orthogonality N1 of the reflecting surface of the plane reflecting mirror to the basic optical axis at a focal position on the third half mirror side of the lens;
- Heart measurement (戊.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19570383A JPS6088344A (en) | 1983-10-19 | 1983-10-19 | Eccentricity measuring apparatus for lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19570383A JPS6088344A (en) | 1983-10-19 | 1983-10-19 | Eccentricity measuring apparatus for lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6088344A true JPS6088344A (en) | 1985-05-18 |
Family
ID=16345571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19570383A Pending JPS6088344A (en) | 1983-10-19 | 1983-10-19 | Eccentricity measuring apparatus for lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6088344A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925891A (en) * | 2014-04-01 | 2014-07-16 | 中国人民解放军63863部队 | Auxiliary collimation device of autocollimator |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57163839A (en) * | 1982-03-12 | 1982-10-08 | Tokyo Optical Co Ltd | Lens meter |
-
1983
- 1983-10-19 JP JP19570383A patent/JPS6088344A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57163839A (en) * | 1982-03-12 | 1982-10-08 | Tokyo Optical Co Ltd | Lens meter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103925891A (en) * | 2014-04-01 | 2014-07-16 | 中国人民解放军63863部队 | Auxiliary collimation device of autocollimator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5302983A (en) | Projector | |
EP0856728B1 (en) | Optical method and apparatus for detecting defects | |
JPH04232951A (en) | Face state inspecting device | |
KR20110016400A (en) | Measurement apparatus, exposure apparatus, and device fabrication method | |
JPH045508A (en) | Method and device for detecting shape of body | |
JPH02161332A (en) | Device and method for measuring radius of curvature | |
US5448350A (en) | Surface state inspection apparatus and exposure apparatus including the same | |
JPS6088344A (en) | Eccentricity measuring apparatus for lens | |
JPH04212120A (en) | Scanner for optically scanning face along line | |
JPS6227604A (en) | Pattern detector | |
US4660966A (en) | Optical alignment apparatus | |
JP2518171B2 (en) | Lighting fiber bundle inspection device | |
JP3448663B2 (en) | Projection exposure equipment | |
JP2005003667A (en) | Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system | |
JPH086263A (en) | Surface position detecting device | |
JPS6088343A (en) | Eccentricity measuring apparatus for lens | |
JP2001336919A (en) | Inspection system of integrated circuit with lead | |
JPH0471453B2 (en) | ||
JPH03130639A (en) | Optical-axis aligning method for mtf measuring apparatus | |
JP3214063B2 (en) | Hologram interferometer | |
JPS60155912A (en) | Wide visual field distance measuring apparatus | |
JPH03130603A (en) | Inspection of molding die for roof reflecting mirror | |
JPH0682229A (en) | Method and apparatus for measuring wave front aberration of specimen with anamorphic shape | |
JPH10221013A (en) | Detecting method for focusing point | |
JPH06347369A (en) | Lens performance inspecting apparatus |