JPH0682229A - Method and apparatus for measuring wave front aberration of specimen with anamorphic shape - Google Patents

Method and apparatus for measuring wave front aberration of specimen with anamorphic shape

Info

Publication number
JPH0682229A
JPH0682229A JP23357492A JP23357492A JPH0682229A JP H0682229 A JPH0682229 A JP H0682229A JP 23357492 A JP23357492 A JP 23357492A JP 23357492 A JP23357492 A JP 23357492A JP H0682229 A JPH0682229 A JP H0682229A
Authority
JP
Japan
Prior art keywords
wavefront aberration
test object
light
reflecting
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23357492A
Other languages
Japanese (ja)
Inventor
Susumu Tsuyusaki
晋 露崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23357492A priority Critical patent/JPH0682229A/en
Publication of JPH0682229A publication Critical patent/JPH0682229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a method and means which enable the obtaining of wave front information also including internal information of a specimen in a method for measuring the accuracy of the specimen by irradiating the object to be measured and a reference surface to be a reference with light allowing interference from the same light source to generate an interference fringe being overlapped with return light therefrom. CONSTITUTION:A reference surface 14 and a specimen 5 are irradiated with light allowing interference from a light source and the reflected light from the control surface is made to overlap the light transmitted through the specimen 5 to generate a one cross-section interference fringe on an image sensor 10. The cross-section interference fringe is analyzed to determine a front wave aberration. The reference surface 14 and the specimen 5 are moved and the front wave aberrations of the respective one cross-sections of the specimen are put together to obtain a total front wave aberration of the entire surface of the specimen 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アナモフィックな形状
を有する被検物の波面収差測定方法及び測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring wavefront aberration of an object having an anamorphic shape.

【0002】[0002]

【従来の技術】同一光源からの可干渉光を被測定物と基
準になる参照面とに照射して、これらからの戻り光を重
畳して干渉縞をつくり、被検物精度を測定する装置にお
いて、被検物の面を測定する装置として、BTS測定機
が提案されている。
2. Description of the Related Art An apparatus for irradiating an object to be measured and a reference surface serving as a reference with coherent light from the same light source, and superimposing return light from these to form interference fringes to measure the accuracy of the object to be inspected. In the above, a BTS measuring machine has been proposed as a device for measuring the surface of a test object.

【0003】ここで、BTSはバレル・トロイダル・サ
ーフェイスの略で、図7に示すように、頂点で直交する
主径線とこれら主径線の各曲率半径が相違するとき、こ
の一方の主径線を母線(以後「G主径線」という)と
し、これを他方の主径線(以後「R主径線」という)に
沿って回転して形成した面のことである。また、別の表
現をすれば、G主径線を回転軸O−O回りに回転して形
成したものともいえる。
Here, BTS is an abbreviation for barrel toroidal surface. As shown in FIG. 7, when the main diameter lines orthogonal to each other at vertices and the respective radii of curvature of these main diameter lines are different, one of the main diameters is used. A line is a surface formed by making a line a busbar (hereinafter referred to as "G main radial line") and rotating this along the other main radial line (hereinafter referred to as "R main radial line"). In other words, it can be said that it is formed by rotating the G main diameter line around the rotation axis OO.

【0004】これらの主径線が等しければ通常の球面レ
ンズとなり、一方の曲率半径が無限大であればシリンダ
ーレンズとなる。
If these major diameter lines are equal, it becomes a normal spherical lens, and if one radius of curvature is infinite, it becomes a cylinder lens.

【0005】これに関し、本願の出願人は、特願平2−
126659号で、ドーナツ型又はノーマル型のトロイ
ダル面を測定方法を提案している。また、同じ出願人に
よる特願平3−050104号では、G主径線が長くR
主径線の短い樽型のトロイダル面又は鞍型のトロイダル
面の測定方法を提案している。
In this regard, the applicant of the present application has filed Japanese Patent Application No. 2-
No. 126659 proposes a method for measuring a toroidal surface of donut type or normal type. Also, in Japanese Patent Application No. 3-050104 by the same applicant, the G main diameter line is long and R
A method for measuring a barrel-shaped toroidal surface or a saddle-shaped toroidal surface with a short main diameter line is proposed.

【0006】従来のBTS測定機ないし測定方法では、
光源から出射された可干渉光はビームエキスパンダで適
当な大きさの平行光にされ、対物レンズに入射される。
この対物レンズの最終面はある曲率をもったハーフミラ
ーとなっており、入射光の一部は反射されてもときた光
路を戻る。
In the conventional BTS measuring machine or measuring method,
The coherent light emitted from the light source is converted into parallel light of an appropriate size by the beam expander, and is incident on the objective lens.
The final surface of this objective lens is a half mirror having a certain curvature, and even if a part of the incident light is reflected, it returns to the optical path occasionally.

【0007】また、対物レンズを透過した参照光の波面
は、球面波となっており、一点に集光する。この集光点
の前方に被検レンズが配置されているとする。この場
合、被検レンズの曲率中心と参照光の波面の曲率中心が
一致していれば、被検レンズの表面からの反射光がもと
きた光路を戻る。
Further, the wavefront of the reference light that has passed through the objective lens is a spherical wave and is condensed at one point. It is assumed that the test lens is arranged in front of this condensing point. In this case, if the center of curvature of the lens to be inspected and the center of curvature of the wavefront of the reference light coincide with each other, the reflected light from the surface of the lens to be inspected returns to the original optical path.

【0008】この被検レンズからの戻り光には、被検レ
ンズ表面の凹凸の情報が波面の乱れとして含まれてい
る。
The return light from the lens to be inspected contains information on the unevenness of the surface of the lens to be inspected as disturbance of the wavefront.

【0009】一方、前記参照光と前記対物レンズからの
戻り光とが重なると、干渉縞が発生する。もし、被検レ
ンズの表面に凹凸がなければ、得られる干渉縞は真っ白
か、まっ黒の一色になる。実際は解析ため被検面を若干
傾けて等厚干渉縞を発生させる。こうして発生したスリ
ット状の細長い干渉縞を1次元CCD等で検出し、フー
リエ変換法で解析し、面精度情報を得る。
On the other hand, when the reference light and the return light from the objective lens overlap, interference fringes are generated. If there is no unevenness on the surface of the lens to be inspected, the obtained interference fringe will be pure white or pure black. Actually, for analysis, the test surface is slightly tilted to generate equal-thickness interference fringes. The slit-shaped elongated interference fringes thus generated are detected by a one-dimensional CCD or the like and analyzed by the Fourier transform method to obtain surface accuracy information.

【0010】[0010]

【発明が解決しようとする課題】前記提案されているB
TL測定装置では、被検物たる平面シリンダー面、バレ
ルトロイダル面などの表面精度を測定することを目的と
したものであり、被検物の内部情報、例えば被検物内部
の気泡、脈理等の、透明媒質における不均一等を含む測
定情報を得ることはできない。
[Problems to be Solved by the Invention]
The TL measuring device is intended to measure the surface accuracy of a flat cylinder surface, a barrel toroidal surface, or the like, which is an object to be inspected. Internal information of the object to be inspected, for example, bubbles inside the object to be inspected, striae, etc. However, it is impossible to obtain measurement information including nonuniformity in a transparent medium.

【0011】従って本発明は、被検物の内部情報をも加
味した波面情報を得ることのできる測定方法及び手段を
得ることを目的とする。
Therefore, it is an object of the present invention to provide a measuring method and means capable of obtaining wavefront information in consideration of internal information of an object to be inspected.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に本発明は、次の何れかの構成とした。
In order to achieve the above object, the present invention has any one of the following configurations.

【0013】(1).光源からの可干渉光を参照面と被
検物に照射し、参照面からの反射光と被検物を透過した
光とを重畳して1断面干渉縞を発生させる工程と、その
1断面干渉縞を解析してその断面の波面収差を求める工
程と、前記参照面及び前記被検物の少なくとも一方を移
動することにより被検物の各断面の波面収差をつなぎ合
わせて被検物全面の波面収差を得る工程を有することと
した(請求項1)。
(1). A step of irradiating the reference surface and the test object with coherent light from a light source, and superimposing the reflected light from the reference surface and the light transmitted through the test object to generate a one-section interference fringe, and the one-section interference The step of analyzing the fringes to obtain the wavefront aberration of the cross section, and connecting the wavefront aberrations of the respective cross sections of the test object by moving at least one of the reference surface and the test object, thereby forming the wave front of the entire test object. It is decided to have a step of obtaining an aberration (claim 1).

【0014】(2).(1)において、参照面が平面で
あり、被検物を透過した光を反射させる手段として反射
球面を用い、この反射球面を前記被検物の移動と共に光
軸方向に移動させて、前記反射球面の曲率中心と前記被
検物による集光位置とを略一致させた状態で、被検物を
測定することした(請求項2)。
(2). In (1), the reference surface is a flat surface, and a reflecting spherical surface is used as a means for reflecting the light that has passed through the object to be inspected. The test object was measured in a state where the center of curvature of the spherical surface and the focus position of the test object were substantially matched (claim 2).

【0015】(3).(1)において、参照面が球面で
あり、被検物を透過した光を反射させる手段として反射
平面を用い、被検物を光軸方向及びこの光軸方向と直交
する方向に移動させることにより、対物レンズの集光位
置と被検レンズの焦点位置を略一致させた状態で、被検
物を測定することとした(請求項3)。
(3). In (1), the reference surface is a spherical surface, and a reflection plane is used as a means for reflecting the light transmitted through the test object, and the test object is moved in the optical axis direction and a direction orthogonal to the optical axis direction. The object to be measured is measured in a state in which the focal point of the objective lens and the focal point of the lens to be inspected are substantially matched (claim 3).

【0016】(4).(1)において、参照面が平面で
あり、被検物を透過した光を反射させる手段として反射
平面を用い、この反射平面を前記被検物の移動と共に光
軸方向に移動させて、前記被検物による集光位置と前記
反射平面の位置とを略一致させた状態で、被検物を測定
することとした(請求項4)。
(4). In (1), the reference surface is a flat surface, and a reflection plane is used as a means for reflecting the light transmitted through the test object. The reflection plane is moved in the optical axis direction along with the movement of the test object, The object to be measured is measured in a state in which the light collecting position by the object and the position of the reflection plane are substantially matched (claim 4).

【0017】(5).(2)又は(3)又は(4)にお
いて、被検物の波面収差による1断面干渉縞が発生した
ときの反射球面又は被検物又は反射平面の光軸方向の移
動量を検出する手段と、各断面での移動量を記憶する手
段と、被検物の波面収差が最小の位置をもってなす被検
物の結像位置の軌跡を求める手段を有することとした
(請求項5)。
(5). In (2) or (3) or (4), means for detecting the amount of movement of the reflecting spherical surface or the object or the reflecting plane in the optical axis direction when one-section interference fringes due to the wavefront aberration of the object occur. A means for storing the amount of movement in each cross section and a means for obtaining the locus of the image forming position of the test object formed at the position where the wavefront aberration of the test object is the minimum (claim 5).

【0018】(6).(2)において、被検物の波面収
差による1断面干渉縞が発生したときの反射球面の光軸
方向の移動量を検出する手段と、反射球面及び被検物の
移動に伴う各移動量を記憶する手段を有することとした
(請求項6)。
(6). In (2), the means for detecting the amount of movement of the reflecting spherical surface in the optical axis direction when one-section interference fringes due to the wavefront aberration of the object are generated, and the respective amounts of movement associated with the movement of the reflecting spherical surface and the object to be inspected A means for storing is provided (Claim 6).

【0019】(7).(3)において、被検物の波面収
差による1断面干渉縞が発生したときの被検物の光軸方
向の移動量を検出する手段と、被検物の移動に伴って移
動量を記憶する手段を有することとした(請求項7)。
(7). In (3), a unit that detects the amount of movement of the object in the optical axis direction when one-section interference fringes due to the wavefront aberration of the object are generated, and the amount of movement is stored as the object moves. It has a means (Claim 7).

【0020】(8).(4)において、被検物の波面収
差による1断面干渉縞が発生したときの反射平面の光軸
方向の移動量を検出する手段と、反射平面及び被検物の
移動に伴う各移動量を記憶する手段を有することとした
(請求項8).
(8). In (4), the means for detecting the amount of movement of the reflecting plane in the optical axis direction when the one-section interference fringes due to the wavefront aberration of the subject are generated, and the amount of movement associated with each movement of the reflecting plane and the subject are described. It has a storage means (claim 8).

【0021】[0021]

【作用】被検物の透過光が測定情報として用いられる。Function: The transmitted light of the test object is used as the measurement information.

【0022】[0022]

【実施例】【Example】

1.請求項2、請求項6に対応する例(図1、図2参
照) 図1、図2において、光源1は可干渉性の高いガスレー
ザー又は半導体レーザー等が使用されている。この光源
1から出射されたレーザービームはビームエキスパンダ
2aでビーム径を拡大されて空間フィルタ3に入る。こ
の空間フィルタ3は、ゴースト光や反射光等の不要な光
をカットする。
1. Examples corresponding to claims 2 and 6 (see FIGS. 1 and 2) In FIGS. 1 and 2, the light source 1 is a gas laser or a semiconductor laser having high coherence. The laser beam emitted from the light source 1 has its beam diameter expanded by the beam expander 2a and enters the spatial filter 3. The spatial filter 3 cuts off unnecessary light such as ghost light and reflected light.

【0023】空間フィルタ3より出射されたビームは、
ビームスプリッタ4a、λ/4板4bよりなる光アイソ
レータ4に入射する。さらに、光アイソレータ4を出射
したビームは、ビームエキスパンダ2bでビーム径を拡
大されて平行光として、参照面が平面の参照平面板14
に至る。
The beam emitted from the spatial filter 3 is
The light enters the optical isolator 4 including the beam splitter 4a and the λ / 4 plate 4b. Further, the beam emitted from the optical isolator 4 has its beam diameter expanded by the beam expander 2b to be parallel light, and the reference plane plate 14 having a flat reference plane.
Leading to.

【0024】この参照平面板14に入射したビームの一
部は反射してもときた光路を戻る。つまり、ビームスプ
リッタ4aの反射面4cで偏向されてから集光レンズ9
を経て、イメージセンサ10に至る。
Even if a part of the beam incident on the reference plane plate 14 is reflected, it returns along the optical path. That is, after being deflected by the reflecting surface 4c of the beam splitter 4a, the condenser lens 9
After that, the image sensor 10 is reached.

【0025】一方、参照平面板に入射した他の一部のビ
ームは、参照平面板14を透過して被検物たる被検レン
ズ5に至る。このビームの光軸方向をx軸方向とする。
アナモフィックな表面形状を有する被検レンズ5は光軸
方向(x軸方向)と直交する関係にあるy軸方向に移動
可能なエアスライドテーブル13上にて、中心軸O−O
(図7参照)をy軸と合致させて載置されている。な
お、図2に符号13aで示したのは、エアスライドテー
ブル13の案内軸である。
On the other hand, the other part of the beam incident on the reference plane plate passes through the reference plane plate 14 and reaches the lens 5 to be inspected as an object to be inspected. The optical axis direction of this beam is the x-axis direction.
The test lens 5 having an anamorphic surface shape is mounted on the air slide table 13 which is movable in the y-axis direction, which is in a relationship orthogonal to the optical axis direction (x-axis direction), on the central axis OO.
(See FIG. 7) is aligned with the y-axis. The reference numeral 13a in FIG. 2 indicates the guide shaft of the air slide table 13.

【0026】この参照平面板14を透過したビームは被
検物たる被検レンズ5を透過し、該被検レンズの集光作
用により該被検レンズの後方の集光位置にて集光した
後、拡大ビームとなり、台17上に固定された反射球面
16aに至る。
The beam that has passed through the reference plane plate 14 passes through the lens 5 to be inspected, which is an object to be inspected, and is condensed at a condensing position behind the lens to be inspected by the condensing action of the lens to be inspected. , Becomes an expanded beam, and reaches the reflecting spherical surface 16a fixed on the table 17.

【0027】この台17はx軸方向に移動されるように
なっており、リニアエンコーダ18により移動量が検出
される。かつ、移動による位置は結像位置記憶手段19
により記憶される。
The table 17 is designed to be moved in the x-axis direction, and the linear encoder 18 detects the amount of movement. Moreover, the position resulting from the movement is the imaging position storage means 19
Stored by.

【0028】ここで、反射球面16aはエアスライドテ
ーブル側に曲率中心をもつミラーであり、当該曲率中心
に集光点を有する。
Here, the reflecting spherical surface 16a is a mirror having a center of curvature on the air slide table side, and has a condensing point at the center of curvature.

【0029】反射球面16aで反射されたビームは、も
ときた光路を折り返されて、再び被検レンズ5を透過
し、該レンズのx−z断面における片道分の波面収差δ
の2倍である2δの波面収差を含んでイメージセンサ1
0に至る。
The beam reflected by the reflecting spherical surface 16a is returned to the original optical path, passes through the lens 5 to be inspected again, and has a wavefront aberration δ for one way in the xz section of the lens.
The image sensor 1 including the wavefront aberration of 2δ which is twice the
It reaches 0.

【0030】ここで、被検レンズ5による集光位置と反
射球面16aの曲率中心を略一致させた場合、参照平面
板14からの戻り光と、反射球面16aからの戻り光と
が重畳されるため、イメージセンサ10上にスリット状
の干渉縞を生ずる。
Here, when the focus position of the lens 5 to be inspected and the center of curvature of the reflecting spherical surface 16a are substantially matched, the returning light from the reference plane plate 14 and the returning light from the reflecting spherical surface 16a are superposed. Therefore, slit-shaped interference fringes are generated on the image sensor 10.

【0031】このように被検レンズ5によるビームの集
光位置と、反射球面16aの曲率中心を略一致させたと
き、イメージセンサ10上に干渉縞が発生する。この干
渉縞は被検レンズの任意の断面における波面収差情報を
含むので、1断面干渉縞と証する。
In this way, when the beam focusing position of the lens 5 to be inspected and the center of curvature of the reflecting spherical surface 16a are substantially aligned with each other, interference fringes are generated on the image sensor 10. Since this interference fringe includes wavefront aberration information in an arbitrary cross section of the lens to be inspected, it is proved to be a one-section interference fringe.

【0032】かかる干渉縞の発生をもって被検レンズ5
の結像位置と判断し、結像位置記憶手段19からの情報
を結像位置検出装置20に送り、この情報に基づき演算
装置21においてフーリエ変換法を用いて解析し、被検
レンズ5における当該断面における波面収差の情報を得
る。
The occurrence of such interference fringes causes the lens 5 to be inspected.
It is determined that the image forming position is the image forming position, and the information from the image forming position storing means 19 is sent to the image forming position detecting device 20. Based on this information, the calculating device 21 analyzes it by using the Fourier transform method, and the information in the subject lens 5 Obtain information on wavefront aberration in a cross section.

【0033】この測定結果はあくまで被検レンズ5の1
断面における測定にすぎない。そこで、全面の情報を得
るべく、さらに、エアスライドテーブル13のy軸方向
の移動と、台17のx軸方向の移動の組み合わせにより
被検レンズ5のy軸方向上でのx−z断面における測定
を順次行ない、これらのデータをつなぎ合わせて被検レ
ンズ5全体の波面収差情報を得る。
This measurement result is only 1 of the lens 5 to be inspected.
It is only a cross section measurement. Therefore, in order to obtain information on the entire surface, a combination of movement of the air slide table 13 in the y-axis direction and movement of the base 17 in the x-axis direction is used in the x-z cross section of the lens 5 to be inspected in the y-axis direction. The measurement is sequentially performed, and these data are connected to obtain the wavefront aberration information of the entire lens 5 to be inspected.

【0034】つまり、エアスライドテーブル13のy軸
方向の移動により、集光点のx軸方向での位置が変化す
るので、反射球面16aの位置をこれに伴って変化させ
て曲率中心と合致させるべく、台17の移動を制御する
ようにしている。また、この時の位置をリニアエンコー
ダ18で検出し、結像位置記憶手段19で記憶し、これ
により被検レンズ5を走査手段に実装したときの結像位
置の軌跡を知ることができる。
That is, since the position of the converging point in the x-axis direction changes due to the movement of the air slide table 13 in the y-axis direction, the position of the reflecting spherical surface 16a is changed accordingly to match the center of curvature. Therefore, the movement of the table 17 is controlled. Further, the position at this time is detected by the linear encoder 18 and is stored in the image forming position storage means 19, whereby the locus of the image forming position when the lens 5 to be inspected is mounted on the scanning means can be known.

【0035】2.請求項3、請求項7に対応する例(図
3、図4参照) 図3、図4に示すように本例において、ビームエキスパ
ンダ2bよりも光源1寄りの各光学部材等の配置に関し
ては、前記例1にかかる図1、図2における配置と同様
である。
2. Examples corresponding to claims 3 and 7 (see FIGS. 3 and 4) As shown in FIGS. 3 and 4, in this example, regarding the arrangement of the optical members and the like closer to the light source 1 than the beam expander 2b, The arrangement is the same as that shown in FIGS. 1 and 2 according to the first example.

【0036】本例では、ビームエキスパンダ2bからの
出射ビームが球面の参照面6aを有する対物レンズ6に
入射されるようになっており、この対物レンズ6x軸方
向に微調可能に配置されている。
In this example, the beam emitted from the beam expander 2b is made incident on the objective lens 6 having a spherical reference surface 6a, and the objective lens 6 is arranged so that it can be finely adjusted in the axial direction. .

【0037】よって、この対物レンズ6の参照面6aに
よりビームの一部は反射されてもときた光路を戻り、他
の一部のビームは透過してこの透過光はこの対物レンズ
6の集光作用により集光位置にて集光された後、発散す
る球面波となって、被検レンズ5に入射される。
Therefore, even if a part of the beam is reflected by the reference surface 6a of the objective lens 6, the beam returns through the optical path and the other part of the beam is transmitted, and the transmitted light is condensed by the objective lens 6. After being condensed by the action at the condensing position, it becomes a diverging spherical wave and is incident on the lens 5 to be inspected.

【0038】この入射光は被検レンズ5を透過して反射
平面16bに入射される。この反射平面16bは不動部
材に固定されている。ここで被検レンズ5は、G主径線
側を反射平面16b側に向けてy軸方向に中心軸O−O
(図7参照)を合わせて台17上に取り付けられてい
る。
The incident light passes through the lens 5 to be inspected and is incident on the reflection plane 16b. This reflection plane 16b is fixed to a stationary member. Here, the lens 5 to be inspected has a central axis OO in the y-axis direction with the G main diameter line side facing the reflection plane 16b side.
(See FIG. 7) and are mounted on the base 17.

【0039】台17はy軸方向に移動可能なエアスライ
ドテーブル13上に設けられており、前記台17はこの
エアスライドテーブル上にて、y軸方向と直交するx軸
方向に移動可能であり、その移動量はリニアエンコーダ
18により検出されるようになっている。従って、被検
レンズ5はx軸及びy軸方向に移動自在である。
The base 17 is provided on an air slide table 13 which is movable in the y-axis direction, and the base 17 is movable on the air slide table in the x-axis direction orthogonal to the y-axis direction. The moving amount is detected by the linear encoder 18. Therefore, the lens 5 to be inspected is movable in the x-axis and y-axis directions.

【0040】これらエアスライドテーブル13及び、台
17による被検レンズ5のxy方向の移動により、対物
レンズ6の集光点と被検レンズ5の焦点位置との合致状
態を得る。この合致位置を図3、図4に符号Pで示す。
かかる合致状態のとき、イメージセンサ10上に干渉縞
が発生する。これにより、被検レンズ5におけるx−z
断面での波面収差情報が得られる。
By moving the lens 5 to be tested in the xy directions by the air slide table 13 and the table 17, the converging point of the objective lens 6 and the focal position of the lens 5 to be tested can be matched. This matching position is indicated by the symbol P in FIGS. 3 and 4.
In such a matched state, interference fringes are generated on the image sensor 10. Thereby, x-z in the lens 5 to be inspected
Information on the wavefront aberration at the cross section can be obtained.

【0041】次に、エアスライドテーブル13のy軸方
向の移動により、集光点のx軸方向での位置が変化する
ので、被検レンズ5のx軸方向での位置を台17の移動
により調整し、両集光位置の合致を得、被検レンズの各
断面位置での波面収差情報を得る。
Next, since the position of the focal point in the x-axis direction is changed by the movement of the air slide table 13 in the y-axis direction, the position of the lens 5 to be inspected in the x-axis direction is changed by moving the table 17. Adjustment is performed to obtain coincidence of both condensing positions, and wavefront aberration information at each cross-sectional position of the lens under test is obtained.

【0042】これらの位置を前記1の例に準じてリニア
エンコーダで検出し、結像位置記憶手段で記憶し、これ
により被検レンズ5を走査手段に実装したときの結像位
置の軌跡を知ることができる。
These positions are detected by the linear encoder according to the above-mentioned example 1 and stored in the image forming position storage means, and the locus of the image forming position when the lens 5 to be inspected is mounted on the scanning means is known. be able to.

【0043】3.請求項4、請求項8に対応する例(図
5、図6参照) 図5、図6に示すように本例において、ビームエキスパ
ンダ2bよりも光源1寄りの各光学部材等の配置に関し
ては、前記例1にかかる図1、図2における配置と同様
である。
3. Examples corresponding to claims 4 and 8 (see FIGS. 5 and 6) As shown in FIGS. 5 and 6, in this example, regarding the arrangement of each optical member and the like closer to the light source 1 than the beam expander 2b, The arrangement is the same as that shown in FIGS. 1 and 2 according to the first example.

【0044】本例では、ビームエキスパンダ2bからの
出射ビームを平面の参照面を有する参照平面板14に入
射させる。この平面参照板14は不動部材に固定的に設
けられている。
In this example, the outgoing beam from the beam expander 2b is made incident on the reference plane plate 14 having a plane reference plane. The plane reference plate 14 is fixedly provided on the immovable member.

【0045】この参照平面板14により入射ビームの一
部は反射されてもとの光路を戻る。入射ビームの他の一
部は、平面反射板14を透過して平行光として被検レン
ズ5に入射する。この入射光は被検レンズ5を透過して
反射平面16bに入射される。この反射平面16bは台
17上に取り付けられており、この台17と共に光軸方
向と同一のx軸方向に移動自在に構成されている。
A part of the incident beam is reflected by the reference plane plate 14 and returns to the original optical path. The other part of the incident beam passes through the flat reflecting plate 14 and enters the lens 5 to be inspected as parallel light. This incident light passes through the lens 5 to be inspected and is incident on the reflection plane 16b. The reflecting plane 16b is mounted on a table 17 and is movable together with the table 17 in the same x-axis direction as the optical axis direction.

【0046】ここで被検レンズ5は、G主径線側を参照
平面板14側に向けてy軸方向に中心軸O−O(図7参
照)を合わせて、y軸方向に移動自在のスライドテーブ
ル13上に取り付けられている。
Here, the lens 5 to be inspected is movable in the y-axis direction by aligning the central axis OO (see FIG. 7) in the y-axis direction with the G main diameter line side facing the reference plane plate 14 side. It is mounted on the slide table 13.

【0047】反射平面16bが被検レンズ5を透過した
ビームの集光点上の位置にあるとき、所謂キャッツアイ
の状態となり、その戻り光が前記参照平面板14からの
戻り光と重畳されて、イメージセンサ10上に前記各例
と同様に干渉縞を生ずる。
When the reflection plane 16b is located on the condensing point of the beam transmitted through the lens 5 to be inspected, a so-called cat's eye state occurs, and the return light thereof is superposed on the return light from the reference plane plate 14. An interference fringe is generated on the image sensor 10 as in the above-described examples.

【0048】以下、前記の例に準じてスライドテーブル
13及び台17を移動させて、被検レンズの各断面にお
ける波面収差情報を得、被検レンズ5全体の波面収差情
報を求める。
In the following, the slide table 13 and the table 17 are moved according to the above example to obtain the wavefront aberration information in each cross section of the lens to be inspected, and the wavefront aberration information of the entire lens to be inspected 5 is obtained.

【0049】[0049]

【発明の効果】本発明によれば、被検物の内部情報をも
加味した波面収差情報を得ることができる。
According to the present invention, it is possible to obtain the wavefront aberration information in consideration of the internal information of the object to be inspected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明した光学系を正面
からみたときの説明図である。
FIG. 1 is an explanatory diagram of an optical system illustrating a first embodiment of the present invention when viewed from the front.

【図2】本発明の第1の実施例を説明した光学系を側面
からみたときの説明図である。
FIG. 2 is an explanatory view of the optical system for explaining the first embodiment of the present invention when viewed from the side.

【図3】本発明の第2の実施例を説明した光学系を正面
からみたときの説明図である。
FIG. 3 is an explanatory view of an optical system for explaining a second embodiment of the present invention when viewed from the front.

【図4】本発明の第2の実施例を説明した光学系を側面
からみたときの説明図である。
FIG. 4 is an explanatory view of the optical system for explaining the second embodiment of the present invention when viewed from the side.

【図5】本発明の第3の実施例を説明した光学系を正面
からみたときの説明図である。
FIG. 5 is an explanatory diagram of an optical system for explaining a third embodiment of the present invention when viewed from the front.

【図6】本発明の第3の実施例を説明した光学系を側面
からみたときの説明図である。
FIG. 6 is an explanatory view of the optical system for explaining the third embodiment of the present invention when viewed from the side.

【図7】アナモフィックな形状を有する被検レンズの説
明図である。
FIG. 7 is an explanatory diagram of a test lens having an anamorphic shape.

【符号の説明】[Explanation of symbols]

5 (被検物としての)被検レンズ 6a 参照面 13 エアスライドテーブル 14 参照平面板 16a 反射球面 16b 反射平面 17 台 5 Lens to be inspected (as an object to be inspected) 6a Reference surface 13 Air slide table 14 Reference flat plate 16a Reflective spherical surface 16b Reflective flat surface 17 units

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年9月14日[Submission date] September 14, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【発明が解決しようとする課題】前記提案されているB
TL測定装置では、被検物たる平面シリンダー面、バ
レルトロイダル面などの表面精度を測定することを目的
としたものであり、被検物の内部情報、例えば被検物内
部の気泡、脈理等の、透明媒質における不均一等を含む
測定情報を得ることはできない。
[Problems to be Solved by the Invention]
The TL measuring device is intended to measure the surface accuracy of a flat surface , a cylinder surface, a barrel toroidal surface, or the like, which is an object to be inspected. Internal information of the object to be inspected, for example, bubbles inside the object or striae. It is not possible to obtain measurement information including nonuniformity in a transparent medium such as.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0036】本例では、ビームエキスパンダ2bからの
出射ビームが球面の参照面6aを有する対物レンズ6に
入射されるようになっており、この対物レンズ6x軸
方向に微調可能に配置されている。
In this example, the outgoing beam from the beam expander 2b is made incident on the objective lens 6 having the spherical reference surface 6a, and the objective lens 6 is arranged so that it can be finely adjusted in the x-axis direction. ing.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0045[Name of item to be corrected] 0045

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0045】この参照平面板14により入射ビームの一
部は反射されてもとの光路を戻る。入射ビームの他の一
部は、参照反射板14を透過して平行光として被検レン
ズ5に入射する。この入射光は被検レンズ5を透過して
反射平面16bに入射される。この反射平面16bは台
17上に取り付けられており、この台17と共に光軸方
向と同一のx軸方向に移動自在に構成されている。
A part of the incident beam is reflected by the reference plane plate 14 and returns to the original optical path. The other part of the incident beam passes through the reference reflection plate 14 and enters the lens 5 to be inspected as parallel light. This incident light passes through the lens 5 to be inspected and is incident on the reflection plane 16b. The reflecting plane 16b is mounted on a table 17 and is movable together with the table 17 in the same x-axis direction as the optical axis direction.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】同一光源からの可干渉光を被測定物と基準
になる参照面とに照射して、これらからの戻り光を重畳
して干渉縞をつくり、被検物精度を測定する方法におい
て、 光源からの可干渉光を参照面と被検物に照射し、参照面
からの反射光と被検物を透過した光とを重畳して1断面
干渉縞を発生させる工程と、その1断面干渉縞を解析し
てその断面の波面収差を求める工程と、前記参照面及び
前記被検物の少なくとも一方を移動することにより被検
物の各断面の波面収差をつなぎ合わせて被検物全面の波
面収差を得る工程を有することを特徴とするアナモフィ
ックな形状を有する被検物の波面収差測定方法。
1. A method for measuring the accuracy of an object to be measured by irradiating an object to be measured and a reference surface serving as a reference with coherent light from the same light source and superimposing return light from these to form interference fringes. A step of irradiating the reference surface and the test object with coherent light from a light source and superimposing the reflected light from the reference surface and the light transmitted through the test object to generate one-section interference fringes; The step of analyzing the cross-sectional interference fringes to obtain the wavefront aberration of the cross section, and connecting the wavefront aberration of each cross section of the test object by moving at least one of the reference surface and the test object The method for measuring the wavefront aberration of an object having an anamorphic shape, comprising:
【請求項2】請求項1において、参照面が平面であり、
被検物を透過した光を反射させる手段として反射球面を
用い、この反射球面を前記被検物の移動と共に光軸方向
に移動させて、前記反射球面の曲率中心と前記被検物に
よる集光位置とを略一致させた状態で、被検物を測定す
ることを特徴とするアナモフィックな形状を有する被検
物の波面収差測定方法。
2. The reference surface according to claim 1, wherein the reference surface is a flat surface,
A reflecting spherical surface is used as a means for reflecting the light transmitted through the test object, and the reflecting spherical surface is moved in the optical axis direction along with the movement of the test object so that the center of curvature of the reflecting spherical surface and the light collection by the test object. A method for measuring a wavefront aberration of an object having an anamorphic shape, which is characterized in that the object is measured in a state where the positions are substantially matched.
【請求項3】請求項1において、参照面が球面であり、
被検物を透過した光を反射させる手段として反射平面を
用い、被検物を光軸方向及びこの光軸方向と直交する方
向に移動させることにより、対物レンズの集光位置と被
検レンズの焦点位置を略一致させた状態で、被検物を測
定することを特徴とするアナモフィックな形状を有する
被検物の波面収差測定方法。
3. The reference surface according to claim 1, wherein the reference surface is a spherical surface,
A reflection plane is used as a means for reflecting the light transmitted through the test object, and the test object is moved in the optical axis direction and in a direction orthogonal to the optical axis direction. A method of measuring a wavefront aberration of an object having an anamorphic shape, which comprises measuring the object in a state where focal points are substantially matched.
【請求項4】請求項1において、参照面が平面であり、
被検物を透過した光を反射させる手段として反射平面を
用い、この反射平面を前記被検物の移動と共に光軸方向
に移動させて、前記被検物による集光位置と前記反射平
面の位置とを略一致させた状態で、被検物を測定するこ
とを特徴とするアナモフィックな形状を有する被検物の
波面収差測定方法。
4. The reference surface according to claim 1, wherein the reference surface is a plane,
A reflection plane is used as a means for reflecting the light transmitted through the test object, and the reflection plane is moved in the optical axis direction along with the movement of the test object, so that the light collecting position by the test object and the position of the reflection plane. A method of measuring a wavefront aberration of an object having an anamorphic shape, comprising:
【請求項5】請求項2又は請求項3又は請求項4におい
て、被検物の波面収差による1断面干渉縞が発生したと
きの反射球面又は被検物又は反射平面の光軸方向の移動
量を検出する手段と、各断面での移動量を記憶する手段
と、被検物の波面収差が最小の位置をもってなす被検物
の結像位置の軌跡を求める手段を有することを特徴とす
るアナモフィックな形状を有する被検物の波面収差測定
装置。
5. The movement amount in the optical axis direction of the reflecting spherical surface or the object or the reflecting plane when one-section interference fringes are generated by the wavefront aberration of the object according to claim 2, 3, or 4. Anamorphic, characterized by having means for detecting the distance, means for storing the amount of movement in each cross section, and means for obtaining the locus of the imaging position of the test object with the position where the wavefront aberration of the test object is the minimum. Device for measuring wavefront aberration of an object having a unique shape.
【請求項6】請求項2において、被検物の波面収差によ
る1断面干渉縞が発生したときの反射球面の光軸方向の
移動量を検出する手段と、反射球面及び被検物の移動に
伴う各移動量を記憶する手段を有することを特徴とする
アナモフィックな形状を有する被検物の波面収差測定装
置。
6. The means for detecting the amount of movement of the reflecting spherical surface in the optical axis direction when one-section interference fringes are generated due to the wavefront aberration of the measuring object, and the moving of the reflecting spherical surface and the object according to claim 2. A wavefront aberration measuring apparatus for an object having an anamorphic shape, characterized by having a means for storing each movement amount involved.
【請求項7】請求項3において、被検物の波面収差によ
る1断面干渉縞が発生したときの被検物の光軸方向の移
動量を検出する手段と、被検物の移動に伴って移動量を
記憶する手段を有することを特徴とするアナモフィック
な形状を有する被検物の波面収差測定装置。
7. The means for detecting the amount of movement of the test object in the optical axis direction when one-section interference fringes are generated due to the wavefront aberration of the test object according to claim 3, and A wavefront aberration measuring apparatus for an object having an anamorphic shape, characterized by having a means for storing a movement amount.
【請求項8】請求項4において、被検物の波面収差によ
る1断面干渉縞が発生したときの反射平面の光軸方向の
移動量を検出する手段と、反射平面及び被検物の移動に
伴う各移動量を記憶する手段を有することを特徴とする
アナモフィックな形状を有する被検物の波面収差測定装
置。
8. The means for detecting the amount of movement of the reflecting plane in the optical axis direction when one-section interference fringes due to the wavefront aberration of the subject are generated, and the moving of the reflecting plane and the subject according to claim 4. A wavefront aberration measuring apparatus for an object having an anamorphic shape, characterized by having a means for storing each movement amount involved.
JP23357492A 1992-09-01 1992-09-01 Method and apparatus for measuring wave front aberration of specimen with anamorphic shape Pending JPH0682229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23357492A JPH0682229A (en) 1992-09-01 1992-09-01 Method and apparatus for measuring wave front aberration of specimen with anamorphic shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23357492A JPH0682229A (en) 1992-09-01 1992-09-01 Method and apparatus for measuring wave front aberration of specimen with anamorphic shape

Publications (1)

Publication Number Publication Date
JPH0682229A true JPH0682229A (en) 1994-03-22

Family

ID=16957207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23357492A Pending JPH0682229A (en) 1992-09-01 1992-09-01 Method and apparatus for measuring wave front aberration of specimen with anamorphic shape

Country Status (1)

Country Link
JP (1) JPH0682229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693704B1 (en) * 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693704B1 (en) * 2000-09-26 2004-02-17 Nikon Corporation Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method

Similar Documents

Publication Publication Date Title
EP2538170A1 (en) Method and device for measuring multiple parameters of differential confocal interference component
US5039223A (en) Interferometer for measuring aspherical form with the utilization of computer generated hologram
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
US6965435B2 (en) Interferometer system for measuring surface shape
JP2005098933A (en) Instrument for measuring aberrations
GB2265215A (en) Optical apparatus for measuring surface curvature
US4810895A (en) Method and apparatus for optical examination of an object particularly by moire ray deflection mapping
JPH0682229A (en) Method and apparatus for measuring wave front aberration of specimen with anamorphic shape
JPH06288735A (en) Phase conjugate interferometer for parabolic mirror shape inspection measurement
JPH0755638A (en) Device and method for measuring focal length of optical system
JP2000097622A (en) Interferometer
JP3061653B2 (en) Aspherical surface measuring method and measuring device
JP2915599B2 (en) Method and apparatus for measuring toroidal surface
CN114486198B (en) Large-caliber reflector detection system
JP2005003667A (en) Reference axis setting optical system, eccentricity measuring machine and eccentricity-measuring method using the optical system
JPH05223690A (en) Measuring device for lens transmissivity
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface
JP2003021577A (en) Method and apparatus for measuring refractive-index distribution
JPH0540025A (en) Shape measuring instrument
JP2902417B2 (en) Interferometer for measuring wavefront aberration
CN116448009A (en) Method and device for detecting relative errors of curvature radius of split lens
JP2678473B2 (en) Anamorphic lens measuring device
JPH0755640A (en) Device and method for measuring focal length of optical system
JP2657405B2 (en) How to measure anamorphic lens
JP3373552B2 (en) Method for analyzing alignment of reflection objective lens and method for adjusting reflection objective lens