JPS6088331A - Colormetric detector - Google Patents

Colormetric detector

Info

Publication number
JPS6088331A
JPS6088331A JP19579383A JP19579383A JPS6088331A JP S6088331 A JPS6088331 A JP S6088331A JP 19579383 A JP19579383 A JP 19579383A JP 19579383 A JP19579383 A JP 19579383A JP S6088331 A JPS6088331 A JP S6088331A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
wavelength
conversion element
light
series data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19579383A
Other languages
Japanese (ja)
Inventor
Kunihito Komatsu
小松 国人
Tameo Naito
内藤 為雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP19579383A priority Critical patent/JPS6088331A/en
Publication of JPS6088331A publication Critical patent/JPS6088331A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To enable electric selection of light with a disired wavelength with a simple construction by selectively detecting a series data pertaining to light analyzed with a plurality of photoelectric conversion elements arranged one- dimensionally. CONSTITUTION:A light analyzed with a spectroscope 10 is incident into a photoelectric conversion element train body 20 comprising a plurality of charge storage type photoelectric conversion elements arranged one-dimensionally whose analog output is sent out as series data in response to rays of light different in the wavelength by a shift register pulse. Then, a wavelength signal detection circuit 40 selectively detects analog data with the desired from among the series data from the element train body 20 according to a control signal corresponding to the position of the photoelectric conversion element. Thus, the colorimetric detector thus obtained can detect a plurality of wavelengths close to each other with a simple construction.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明 present invention

【ま、−次元的に配列された複数の光電変19県
子よりなる光電変換素子列体を用いた比色検出V、直に
関りる。 クロア1−グラフ等で用いられる比色検出装置の−(小
に、−次元的に配列された複数の光電変換素子j、す1
.rる光電変換素子列体を用いて、全波長の同時測光を
(]い、光光電変換素子列で検出したノアナログ(g 
′;83を△/1〕変換器でデジタル16号に変換して
メーしりに一1待格納し、これら−11,’743納さ
れたデジタル(g g;に対してブに]シツリににり所
定の目的に応じた演算処理を施した後、l)7′△変操
器でアナ1」グ信号に変換し、変換されたアナ1−】グ
信号をレコーダに加えてその大きさ4記録りるJ、うに
tf4成したものがある。しかし、このよ−)な構成で
は、ハードウェアの他にラフ1−ウェアも必要に41す
、コス1へが高くなるという欠点かある。 又、他の装置どして、ポリクロメータの焦点11iiに
複数の単1本光電変換系子を配置し、各Zζ子にそれぞ
れ信用増幅器系を設りて>波長検出をI)うj、うに構
成されたものがある。しかし、このような構成では、測
定波長の変更は極めてgVI九C゛あり、史に、近接し
た複数の波長検出にあたってはlii (41光電変換
素子の配列可11ヒ密磨にJ5る制限を受りることにな
る。 本発明は、これらの点に鑑みてなされたしので、その目
的は、比較的@+1工な回路構成で汀意の波長を電気的
に選択することができ、近接し1.、:複数の波長検出
し可能な比色検出装置を12供づることにある。。 この目的を遂1戊りる本発明は、−次元的に配列された
複数の光電変換素子よりなり分光された光に関連したア
リ[1グk) 号を直列データどして取り出される光電
変模索了IJ11体と、該光電変換素子列体を構成りる
各光電変換素子の位置に応じた制御(ハシーシにi、′
Lつ−(前記直列データの中から目的とづる少なくとし
1波艮のアナログイG8を選択的に検出づる波LQ (
+? ;j検出回路とを含むことを特徴とづるしのであ
る。 双手、図面を参照し本発明の詳細な説明りる。 第′1図は木fC明の一実施例の概略図で、分光器10
で一分光され1.:光を光電変換素子列4本20に加え
(i’ J 1.Jグ1.−号に変換し、該−ノツプl
コグはシシを増幅:に:30(増幅した後、波長(ム号
検出回路40に加えC1目的とする波長のアノ−ログ信
号を選択的に検出し、該選(Rアブログ(Q弓を記録計
50 ′c記録Jるように174成したちのである。 ヅ)光器10jよ、第2図に示ずように、光源11の出
力光をミラー12で反射さμ′7回折格子73に加え、
回1バ4δ了13で分光された光をミラー14及びミラ
ー15で反則させてレンズ゛16に入用ざIL、レンズ
16の出力)しを試料はル17に加えるようになってい
る。 又、光電変換素子列体2 OL;J 、複カスの光電変
換素子が一次元的に配列されたものであって、例えば1
28個の光電変換素子が全長3111mにわたって等間
隔に配列されてデュアルライン形パッケージに収納され
、分光されIこ尤に関連した各光電変操素子のアノ−1
コグ出力信号がシフト・レジスタパルスに従って直列デ
ータとして送出される電伺蓄積形のものを用いる。 波長flI号検出回路40は、光′tUi変技・累了列
1イー20を構成する各光電変換素子の位置に応じた制
御信号に従って光重変換素子列1ホ2oがら送出される
直列データの中から目的とづる波長のアノ−1コグ(8
号を選択的に検出Vる機能をイ1りるものである。 第3図はこのにうな波長1;i号検出回路4oの1;1
1+例を示づ回路図であって、単波長を検出りる例を示
したしので、128個の光電変換素子で構成された光電
変画素rり11休20から送出される直列データの中か
ら所望の単波長のアナログ信号を選択検出りる1り1を
/j、し7いる。第3図にJ3いて、J K−ノリyツ
ノIIツ1/11からは4ピツ1〜カウンタ42.43
のクリV信号が送出される。4ビツト・カウンタ/12
にμ、1/2分周器44,715で1/4に分周されI
ζクロック信号が加えられ、4ピッ1−ノノウンタ43
には、4ビツトカウンク42のキt・リ−(、;目が加
えられている。1〕形フリツプフ1」ツブ7′I6及び
17+他的論理和ゲート47は8ピツ1への各じツ1へ
にり・j応りるにうに8個づつ設(Jられでいる。8D
形ノリツ1フロツプ46のクロック端J′(よ、J K
ノリツノフロツブ41のJ端子ど」ム通に接続され、D
 67!’了には、−でれそれ対応したビット選1/J
軒;J“2° 〜27が接続されている。又、Q剋’l
: r 1.L IJ応した名jJl他的論理和ゲー1
へ47の一方の人/J 端J” aに接続されている。 各排他的論理和グー1−47の他方の入力端子すには、
それぞれにλ・I I、i:; L /、、: 4ピッ
1−ノノウンタ42./13の各ピッ1−出力端子Qa
 =Qd及びQ a L〜Qd’ が接続され、出力端
子Cは抵抗Rを介して電源q、H子十VにJ、を通に接
t1A−されると共にサンプルホールド回路48の制御
端子aに接続され−(いる。サンプルホールド回路48
の入ツノ端子すには、光電変換素子列体20から送出さ
れる直列データが加えられ、出力端子Cからはサンプル
ホールドされた所望の単波長のアナログ信号が記録訓5
0に送出される。 このように構成される装置の動作について第4図の波形
図を用いて説明りる。 第3図の6. D形フリップフロップ/16のD端子に
接続されたピッ1〜接続端子2°〜27 には、例えば
デrツブ形スイッチがそれぞれ接続され、これらディッ
プ形スイッチのAン、A]段設定従って、光電変換素子
列体20を構成する128個の各充電変換素子の位置が
選択的に指定される。イして、ItIl!!的論理和ゲ
ート47からは、光電変換素子列(420から送出され
る第4図<a>のような直列データS1の中から、目的
とりる第4図(1+)のような単波長アナログ(E@ 
S2を選]II!的に取り出りための制御信号が、サン
プルホールド回路41)に’r’lr出される。これに
より、→ノンプルホールド回路48は、次の制御信号が
加えられるまでリンプルしたアノ−1コグ低i:をホー
ルドし、第4し1(C)のような連続したアナログ信号
S3を送出りる。ここで、例えば光゛市変換素子列体2
0として前述のように128個の光電変換素子が全長3
1旧11にわたつ(等間隔に配列されたものを用いて0
2011111〜47Or+mの波長を測定りるしのと
すると、分光器10として150/ 3−50直m/制
nの線分数をイ1づるbのを用い、これに波長がalη
定徒囲の略中火(=J近の546nmのスペクトル源チ
電す:1)4入用して、第64番目の光電変換素子の出
力が最大になる1二うに、回折格子13の角1哀を調D
i」JればJ、い。尚、このような測定範囲の中火f−
1′Iiに適当なスペクトル源が見つからない場合、回
11i 125了を用いた分光器にJ3いては、光電変
検素T′昌2J11と測定波長λ11との間には比例関
係が成立するので、次式から糸了番F411をめること
ができる。 11 ・ (λ11 −λs ) / ((λ2−λ、
)/Ml・・・ (1) ここで、λ1は測定波長の下限値、λ2は測定波長の上
限論、Mは全素子数である。 このような416成によれば、バードウ」、アのみで任
意の波長を電気的に容易に選択Jることかでさ、ソフト
ウェアを必要とする従来の構成に比べてコストを低く1
′ることができる。又、単体光電変操素子を複数個配列
した従来の構成に比べて、近接した波長に対づる検出分
解能の十分優れたものが得られる。又、同様な構成の単
波長信号検出回路及び記録計を複数系統を用いることに
J、す、同1.1に複数の任意の波長を選択検出覆るこ
ともできる。 一般に、ルーチン分1iでは、最大吸収若しくは妨害の
少4iい波LkIIlliの吸収を経時的に観察するこ
とが多く、一度波長を設定りるど☆更りることは少ない
が、このような要求に対しても本発明による波長の任意
選択ど低コスト化の実現【よ極め(イi効である。 尚、上記実施例では、波長信号検出回路とじて単波長検
出回路を用いて単波長を検出する例を説明したが、同時
に隣接する複数+)lllilの光電変換素子のアナロ
グ(ji IEをナンプルホールド回路を介して取り出
すようにしてもよい。この場合には、波長信号検出回路
として所望の測定に必要な波長幅に対応した素子n個を
選択づるために連続した11個のパルス列(、? @n
1回路を用いればよく、これによりある分布を持った光
の入射に対して所定の光強度を(qることができる。 又、F記実施例では、選択波長をfイップスイッJのA
ン、Δ]で設定する例を示し/こが、選択1べさ光電変
換素子の泣首を2進数で表示しなければならツ、不便で
ある。このような場合、第5図に承りようなり CD→
2進数変換回路を用いれば、MSD−LSDの4本づつ
合計12本のBCl) lLi号線によりO・〜127
までの表示を10進数で表示することがでさ、操作性を
高めることがでさる、。 第6図はカウンタを用いて自動掃引する例を示により表
示器1〕P1〜DP3の表示値はOから128まで順次
カウントアツプ覆る。イして、目的と4る波長に対応し
た光電変換素子の番号に達し1、:時にストップスイッ
ヂSWがAンになり、カラン1〜アツプは1亭止してそ
の1直が各ラッチに記憶され、ストップスイッヂSWを
Aフにし次のパルスが入力されるまで保持される。この
ような構成にJ:れば、自動掃引にJζり目的どづる波
長に対応しlζ光電変4IA素子の位置で掃引を停止さ
せることができ、所望の波長のアナログ4g8を容易に
検出1Jることができる。 又、上記各実施例では光電変j灸素芋列イホ召構成づる
各光電変換素子の位βのみを2進数又f!10進数で設
定づる例を示したが、第7図のように構成づることによ
り選択設定された光電変換素子の位置を自動的に波J2
 fiQで表示させることもでさる。 即ち、(1)式を変形づると、県子番号11の測定波長
λ11が、 λ11−21+in(λ2−21) 7’M l・・・
(2)し/X、t−−L、#イー1m+−r>l、に、
−,1BAI+、2Lヲ+J二d−;−\−せることか
でさる。この第7図にJ3いて、第1のメモリM1に…
り定波長の下限1i(i /l、を格納し、第2のメし
りM2に測定波長の、L−限値λ2を格納づる。そして
、(λ2−λI)を演算してその結果を第3のメ[すM
3に格納づる。次に、全素子数Mを用いT’ (/l、
−/+1 >/Mを演算し゛((の結果を第4のメしり
M4に格納づる。次に、素子番号11を用いてn (λ
2−λ+)/Mを演算してその結果を第!5のメモリM
5に格納づる。その後、閉1のメしりMlに格納されて
いる測定波長の下限1自λlを用いてλ、 (−(n 
(λ2−λ+)/M)を演算してその結果を表示部で表
示ざUる。このように構成Vることにより、光電変換素
子の位置1:を対応した波長値λ11どして直接表示覆
ることがでさ、i狡処ill!が容易になる。 史に、上記各実施例では、光電変換素子列体とし−r 
1281161の光電変換素子で構成されたものを用い
る例を示しlこがこれに限るものではなく、増減でさる
こと【、Lいうまでもない。 以上説明したように、本発明によれば、−次元的に配列
された複数の光電変換素子J、りなる光電変換素子列体
を用い、比較的簡単な構成でffaの波長を電気的に選
択でさ′、近接しIこ複数の波j(検出し行える比色検
出M置を実現できる。。
[This is directly related to colorimetric detection V using a photoelectric conversion element array consisting of a plurality of 19 photoelectric converters arranged in a -dimensional manner. Croix 1 - A colorimetric detection device used in graphs, etc. (a plurality of small, -dimensionally arranged photoelectric conversion elements
.. Simultaneous photometry of all wavelengths is carried out using a photoelectric conversion element array (), and the analogue (g) detected by the photoelectric conversion element array is
';83 to △/1] converted to digital No. 16 using a converter and stored for 11 minutes, and these -11,'743 stored digital (g g; After performing arithmetic processing according to a predetermined purpose, it is converted into an analog signal using a 7'△ transformer, and the converted analog signal is added to a recorder to record its magnitude 4 Recorded by J, there is something that was created by Uni TF4. However, this type of configuration requires rough hardware in addition to hardware, and has the drawback of increasing cost. In addition, as another device, a plurality of single photoelectric conversion elements are placed at the focal point 11ii of the polychromator, and a reliable amplifier system is provided for each Z element to perform wavelength detection. There is something configured. However, with such a configuration, changing the measurement wavelength is extremely difficult, and in the past, when detecting multiple wavelengths in close proximity, it has been The present invention has been made in view of these points, and its purpose is to be able to electrically select a desired wavelength with a relatively simple circuit configuration, and to 1. The object of the present invention is to provide 12 colorimetric detection devices capable of detecting a plurality of wavelengths. Control according to the position of the 11 photoelectric conversion elements that are extracted by serial data of the ant [1gk) related to the separated light and the position of each photoelectric conversion element that makes up the photoelectric conversion element array. (hashish i,'
Selectively detect the analog signal G8 of at least one wave from among the serial data LQ (
+? ;j detection circuit. A detailed description of the invention will now be given with reference to the drawings. FIG.
The light is emitted for one minute at 1. : Add light to four photoelectric conversion element rows 20 (convert it to i' J 1.
The cog amplifies the signal: 30 (after amplification, in addition to the wavelength (M) detection circuit 40, C1 selectively detects the analog signal of the desired wavelength, and records the selected (R alog (Q)). A total of 50'c was recorded as 174 times. ㅅ) In the optical device 10j, as shown in FIG. In addition,
The light separated in the first bar 4δ and 13 is reflected by a mirror 14 and a mirror 15 to enter a lens 16 (IL, the output of the lens 16) and the sample is added to a lens 17. Further, the photoelectric conversion element array 2 OL;J is one in which multiple photoelectric conversion elements are arranged one-dimensionally, for example, one
28 photoelectric conversion elements are arranged at equal intervals over a total length of 3111 m and housed in a dual-line package, and are spectrally separated.
A power storage type is used in which the cog output signal is sent out as serial data according to shift register pulses. The wavelength flI number detection circuit 40 detects the serial data sent from the optical multiplex conversion element array 1H2o in accordance with the control signal corresponding to the position of each photoelectric conversion element constituting the optical multiplex conversion element array 1E20. Anno-1 cog (8
This feature provides a function to selectively detect signals. Figure 3 shows this wavelength 1; 1 of the i detection circuit 4o; 1
This is a circuit diagram showing an example of 1+, in which a single wavelength is detected. A desired single wavelength analog signal is selected and detected from 1/j and 7. In Figure 3, there is J3, and from J K-Nori y Tsuno II Tsu 1/11, 4 pits 1 to counter 42.43
A clear V signal is sent out. 4-bit counter/12
μ, the frequency is divided to 1/4 by the 1/2 frequency divider 44,715, and I
The ζ clock signal is applied to the 4-pin 1-no counter 43.
The 4-bit count 42 has been added with a key (, ;). 1] type flippf 1" knob 7'I6 and 17 + other disjunction gate 47 each inputs 1 to 8 bits 1. Set 8 sea urchins each in the sea urchin and j sea urchin.
Clock end J' (Y, J K
It is connected to the J terminal of Noritsuno Frotub 41, and the D
67! 'To complete, - select the corresponding bit 1/J
Eaves; J"2° ~ 27 are connected. Also, Q'l
: r 1. L IJ corresponding name jJl other disjunction game 1
The other input terminal of each exclusive OR group 1-47 is
λ·I I,i:;L/,,: 4-pitch 1-no counter 42. /13 each pin 1 - output terminal Qa
= Qd and Q a L to Qd' are connected, and the output terminal C is connected to the power supply q, H to V and J through the resistor R, and is connected to the control terminal a of the sample and hold circuit 48. Sample and hold circuit 48
Serial data sent out from the photoelectric conversion element array 20 is added to the input horn terminal C, and a sampled and held desired single-wavelength analog signal is output from the output terminal C.
Sent to 0. The operation of the apparatus configured as described above will be explained using the waveform diagram shown in FIG. 6 in Figure 3. For example, dip-type switches are connected to pins 1 to 2° to 27 connected to the D terminal of the D-type flip-flop/16, respectively, and the A and A] stages of these dip-type switches are set accordingly. The position of each of the 128 charging conversion elements constituting the photoelectric conversion element array 20 is selectively designated. Come on, ItIl! ! From the digital OR gate 47, the target single-wavelength analog signal (1+) as shown in FIG. 4 is selected from the serial data S1 as shown in FIG. E@
Select S2] II! A control signal for extracting the data is output to the sample hold circuit 41). As a result, the non-pull hold circuit 48 holds the rippled Anno-1 cog low i: until the next control signal is applied, and sends out a continuous analog signal S3 like the fourth one (C). Ru. Here, for example, the optical city conversion element array 2
As mentioned above, 128 photoelectric conversion elements have a total length of 3
1 old 11 (using those arranged at equal intervals, 0
Assuming that the wavelength of 2011111~47Or+m is to be measured, the spectrometer 10 is 150/3-50 diameter m/number of line segments of 1 × b, and the wavelength is alη
The angle of the diffraction grating 13 is adjusted so that the output of the 64th photoelectric conversion element becomes maximum. 1 Sorrow key D
i”J, then J,i. In addition, medium heat f-
If an appropriate spectral source is not found for 1'Ii, in a spectrometer using 11i 125 了, a proportional relationship is established between the photoelectric variable detector T'sho 2J11 and the measurement wavelength λ11. , the thread finishing number F411 can be determined from the following formula. 11 ・(λ11 −λs) / ((λ2−λ,
)/Ml... (1) Here, λ1 is the lower limit of the measurement wavelength, λ2 is the upper limit of the measurement wavelength, and M is the total number of elements. According to such a 416 configuration, it is possible to easily select any wavelength electrically using just a bird's eye, which reduces costs compared to conventional configurations that require software.
' can be done. Furthermore, compared to the conventional configuration in which a plurality of single photoelectric conversion elements are arranged, sufficiently superior detection resolution for adjacent wavelengths can be obtained. Furthermore, by using a plurality of single wavelength signal detection circuits and recorders having similar configurations, it is also possible to selectively detect a plurality of arbitrary wavelengths. Generally, in the routine 1i, the maximum absorption or the absorption of the 4i wave LkIIlli with less interference is often observed over time, and once the wavelength is set, it is unlikely to be changed. In addition, in the above embodiment, a single wavelength detection circuit is used as a wavelength signal detection circuit to detect a single wavelength. Although an example has been described in which analogs (ji IEs) of adjacent plural +)llil photoelectric conversion elements are simultaneously taken out via a number hold circuit. In order to select n elements corresponding to the wavelength width required for measurement, a continuous pulse train of 11 (,?@n
It is only necessary to use one circuit, and with this, it is possible to obtain a predetermined light intensity (q) for incident light having a certain distribution. In addition, in the embodiment described in F, the selected wavelength is set by
An example is shown in which the value is set using 1, Δ], but it is inconvenient that the neck of the selected photoelectric conversion element must be displayed in binary. In such a case, please refer to Figure 5.CD→
If a binary number conversion circuit is used, a total of 12 BCls (4 each for MSD and LSD) O・~127 by the lLi line
It is possible to display up to 100% in decimal notation, which improves operability. FIG. 6 shows an example of automatic sweeping using a counter, and the displayed values of the display 1 P1 to DP3 are sequentially counted up and overturned from 0 to 128. When the number of the photoelectric conversion element corresponding to the target wavelength is reached, the stop switch SW is turned to A, and the 1st to 2nd cycles are stopped by 1 and the 1st shift is applied to each latch. The pulse is memorized and held until the stop switch SW is turned to A-off and the next pulse is input. With such a configuration, automatic sweeping can be performed to correspond to the desired wavelength and the sweep can be stopped at the position of the photoelectric variable 4IA element, making it easy to detect the analog 4g8 of the desired wavelength. be able to. In addition, in each of the above embodiments, only the place β of each photoelectric conversion element constituting the photoelectric conversion element is expressed as a binary number or f! Although we have shown an example of setting in decimal numbers, by configuring it as shown in Figure 7, the position of the selected photoelectric conversion element can be automatically set using wave J2.
It is also possible to display it on fiQ. That is, if formula (1) is modified, the measurement wavelength λ11 of prefecture number 11 is λ11-21+in(λ2-21) 7'M l...
(2) Shi/X, t--L, #E1m+-r>l,
-, 1BAI+, 2Lwo+J2d-;-\-. In this figure, J3 is stored in the first memory M1...
Then, store the lower limit 1i (i/l) of the constant wavelength, and store the L-limit value λ2 of the measurement wavelength in the second meter M2. Then, calculate (λ2 - λI) and use the result as the 3rd name
Stored in 3. Next, using the total number of elements M, T' (/l,
−/+1 >/M is calculated and the result of ゛((() is stored in the fourth mesh M4. Next, using element number 11, n (λ
2−λ+)/M and take the result as ! 5 memory M
Stored in 5. After that, using the lower limit of the measurement wavelength 1st λl stored in the closed 1st mesh Ml, λ, (-(n
(λ2-λ+)/M) and displays the result on the display. With this configuration, it is possible to directly display and cover the position 1 of the photoelectric conversion element with the corresponding wavelength value λ11. becomes easier. Historically, in each of the above embodiments, as a photoelectric conversion element array -r
An example is shown in which a photoelectric conversion element composed of 1281161 is used, but the number is not limited to this, and it goes without saying that the number can be increased or decreased. As explained above, according to the present invention, the wavelength of ffa can be electrically selected using a relatively simple configuration using a plurality of photoelectric conversion elements J arranged in a -dimensional manner and another photoelectric conversion element array. Therefore, it is possible to realize a colorimetric detection M position where multiple waves J (I) can be detected in close proximity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図は本発明で
用いる分光器の一例を示り構成説明図、第3図は本発明
で用いる波長信号検出回路の具体例を示づ回路図、第4
図は第3図の動作を説明覆るための波形図、第5図は)
パ択位置を10進数指定する回路側図、第6図は)パ択
位置を自動1i’j3引づ−る回路側図、第7図は選I
F<波長4−ノでジタル表示りる回路側図である。 10・・・分光器 20・・・光電変換索子列体3o・
・・増幅器 40・・・波1:’51i:号検出回路5
0・・・記録訓 Qh KT出願人 「1本電子株式会社代理人 弁理1
− 月 島 藤 冶
FIG. 1 is a schematic diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram showing an example of a spectrometer used in the present invention, and FIG. 3 is a specific example of a wavelength signal detection circuit used in the present invention. Circuit diagram, 4th
The figure is a waveform diagram to explain the operation of Figure 3, and Figure 5 is)
Figure 6 is a circuit diagram for specifying the selection position in decimal notation, Figure 6 is a circuit diagram for automatically subtracting the selection position by 1i'j3, and Figure 7 is for the selection I.
It is a side view of a circuit that is digitally displayed when F<wavelength 4-no. 10... Spectrometer 20... Photoelectric conversion cord array 3o.
...Amplifier 40...Wave 1: '51i: Signal detection circuit 5
0...Record lesson Qh KT applicant "1hondenshi Co., Ltd. agent patent attorney 1
− Osamu Tsukishima Fuji

Claims (1)

【特許請求の範囲】[Claims] 一次元的に配列された複数の光電変換素子よりなり分光
された光に関連したアナログ信号を直列データどして取
り出される光電変yA素子列体と、該光電変換素子列体
を構成する各光電変191素子の位置に応じた制御信号
に従って前記直列データの中から目的とする少なくとも
1波長のアノ−ログ信号を選択的に検出する波長信号検
出回路とを含むことを特徴とづる比色検出装置。
A photoelectric conversion yA element array consisting of a plurality of photoelectric conversion elements arranged one-dimensionally and extracting analog signals related to separated light as serial data, and each photoelectric conversion element array constituting the photoelectric conversion element array. A colorimetric detection device comprising: a wavelength signal detection circuit that selectively detects a target analog signal of at least one wavelength from the serial data according to a control signal according to the position of the variable 191 element. .
JP19579383A 1983-10-19 1983-10-19 Colormetric detector Pending JPS6088331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19579383A JPS6088331A (en) 1983-10-19 1983-10-19 Colormetric detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19579383A JPS6088331A (en) 1983-10-19 1983-10-19 Colormetric detector

Publications (1)

Publication Number Publication Date
JPS6088331A true JPS6088331A (en) 1985-05-18

Family

ID=16347060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19579383A Pending JPS6088331A (en) 1983-10-19 1983-10-19 Colormetric detector

Country Status (1)

Country Link
JP (1) JPS6088331A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530632A (en) * 1978-08-28 1980-03-04 Nippon Kogaku Kk <Nikon> Spectroscopic photmeter of variable reception type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530632A (en) * 1978-08-28 1980-03-04 Nippon Kogaku Kk <Nikon> Spectroscopic photmeter of variable reception type

Similar Documents

Publication Publication Date Title
US4253765A (en) Multi-wavelength spectrophotometer
JPH10508940A (en) Apparatus and method for measuring and analyzing spectral radiation mainly for measuring and analyzing color characteristics
US4867563A (en) Spectroradio-meter and spectrophotometer
US4320971A (en) Spectrophotometer
WO1997042474A9 (en) Improved ratio type infrared thermometer
US4176957A (en) Method and apparatus for optically analyzing specimen by using two light beams
US4140394A (en) Spectrometer sequential readout system
US4937037A (en) Combined inforamtion recording and graphic display device
US3531202A (en) Spectrometer readout system
US4012145A (en) Spectroscopic analysis apparatus employing measurement and reference radiation
JPS6088331A (en) Colormetric detector
Makisara et al. Airborne imaging spectrometer for applications (AISA)
JPH043492B2 (en)
US4563089A (en) Method and apparatus for converting spectral and light intensity values directly to digital data
US4214835A (en) Spectrometer sequential readout system
JPH0718796B2 (en) Fluorescence measuring device
Bakas A new optical multichannel analyser using a charge coupled device as detector for thermoluminescence emission measurements
Mertz Rapid scanning fourier transform spectrometry
SU1377605A1 (en) Spectrophotometer
JPH03102229A (en) Multi-wavelength spectroscopic method and multi-wavelength spectroscope
US3337738A (en) Manually operated sequential logarithmic spectrometer readout system
SU970128A1 (en) Spectrum radio digital pyrometer
JPS6079248A (en) Spectrophotometer
JPS59178323A (en) Method and device for converting radiant energy level into digital-data
AU593544B2 (en) Information transfer from spectrometric apparatus