JPS6086869A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS6086869A
JPS6086869A JP19490583A JP19490583A JPS6086869A JP S6086869 A JPS6086869 A JP S6086869A JP 19490583 A JP19490583 A JP 19490583A JP 19490583 A JP19490583 A JP 19490583A JP S6086869 A JPS6086869 A JP S6086869A
Authority
JP
Japan
Prior art keywords
gate
film
pattern
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19490583A
Other languages
Japanese (ja)
Inventor
Shuji Asai
浅井 周二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19490583A priority Critical patent/JPS6086869A/en
Publication of JPS6086869A publication Critical patent/JPS6086869A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To equalize the gate cut-off voltage by a method wherein an n<+> conductive layer at high concentration to be source and drain part near a gate electrode is selfmatchingly formed with high precision and excellent reproducibility without diffusing a gate metal in an operating layer. CONSTITUTION:A plasma silicon nitride film 23 as a protecting film is grown on a high resistance GaAs substrate 4 implanting Si<+> ion therethrough to form an N type opening layer 5. A silicon oxide film 21 is evaporated and another plasma silicon nitride film 22 is grown to form a pattern covering the peripheral part of the pattern 22 and the N type opening layer 5 to be a gate part on said layer 5. Firstly the film 21 is etched to form the gate pattern 21 further forming a high concentration conductive layer 6 by ion implanting process. Secondly overall surface is covered with a plasma nitride film 24 and after coating and drying up a photoresist film 26, overall surface is etched and the residual photoresist film 26 is removed to form electrodes 1-3. In such a constitution, gate metal may be prevented from diffusing in the operating layer as well as the gate Schottky characteristics from deteriorating to equalize the gate cut-off voltage.

Description

【発明の詳細な説明】 本発明はショットキーバリアゲート型電界効果トランジ
スタの製造方法に関し、特にゲート部とソースおよびド
レイ/部との間隔を短かく自己整合方式で形成する電界
効果トランジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a Schottky barrier gate type field effect transistor, and more particularly to a method for manufacturing a field effect transistor in which the distances between the gate part and the source and drain/parts are shortened and formed in a self-aligned manner. Regarding.

G a A s半導体は、8iに較べて5〜6倍と大き
な電子移動度を有し、この高速性に大きな特長があるた
めに、近年、超高速集積回路(IC)に応用する研究開
発が活発に行なわれている。このG a A sICの
能動素子としては、基本的に第1図に示すようにショッ
トキーバリア型電界効果トランジスタ(ME8FET 
)が提案されている。これはプレーナ構造と呼ばれ、半
絶縁性Ga A s基板4上にエピタキシャル成長やイ
オン注入によシ厚さ約0.2μmのn形不純物からなる
動作層5を形成し、ホトレジスト膜を用いたリフトオフ
法などによシゲート電極1を形成し、マスクの位置合せ
をして同様なリフトオフ法などによυソースおよびドレ
インのオーミック電極2,3を形成した比較的単な構造
のものである。
GaAs semiconductors have an electron mobility that is 5 to 6 times higher than that of 8i, and because of this high speed characteristic, research and development for application to ultrahigh-speed integrated circuits (ICs) has been conducted in recent years. It is actively carried out. The active element of this GaA sIC is basically a Schottky barrier field effect transistor (ME8FET) as shown in Figure 1.
) has been proposed. This is called a planar structure, and an active layer 5 made of n-type impurities with a thickness of approximately 0.2 μm is formed on a semi-insulating GaAs substrate 4 by epitaxial growth or ion implantation, and then lift-off is performed using a photoresist film. It has a relatively simple structure, in which a gate electrode 1 is formed by a method or the like, a mask is aligned, and ohmic electrodes 2 and 3 for the source and drain are formed by a similar lift-off method or the like.

しかし、このようなプレーナ構造の製造方法では、オー
ミック電極を形成するために目合せが必要である。目合
せ精度は最良の機器においても±0.5μmぐらいであ
シ、実用機では±1.0μmぐらいである。このような
目合せ装置を用いて製造するME8FETではオーミッ
ク電極とゲート電極との電極間隔を1.0μm以下にす
ることは、実際上困難である。一方、ゲート電極間のG
aAg動作層表面では、表面での結晶性の乱れや気体の
吸着などによシ第2図に示すように表面空乏層9が発生
し実効的な動作層が薄くなシ、オーミック電極とゲート
電極との電極間隔が長い場合には、ゲート・ソース間の
動作層抵抗(ソース直列抵抗)が増大して相互コンダク
タンスgmが著しく低下し、良好なFBT特性を得るこ
とが難しい。
However, such a method of manufacturing a planar structure requires alignment in order to form an ohmic electrode. The alignment accuracy is about ±0.5 μm even in the best equipment, and about ±1.0 μm in practical machines. In ME8FET manufactured using such an alignment device, it is actually difficult to reduce the electrode distance between the ohmic electrode and the gate electrode to 1.0 μm or less. On the other hand, G between the gate electrodes
On the surface of the aAg active layer, as shown in Figure 2, a surface depletion layer 9 is generated due to disturbance of crystallinity on the surface, adsorption of gas, etc., and the effective active layer becomes thin. If the distance between the electrodes is long, the active layer resistance between the gate and the source (source series resistance) increases and the mutual conductance gm decreases significantly, making it difficult to obtain good FBT characteristics.

そこで、目合せの問題を避けてソース直列抵抗を小さく
するために、種々の方法が提案されている。第3図はリ
セス構造と呼ばれるもので、動作層5を厚く形成し、ホ
トレジストなどをマスクとしてゲート部を堀込み、ゲー
ト電極1をリフトオフ法などによシ自己整合的に形成す
るものである。
Therefore, various methods have been proposed to avoid the alignment problem and reduce the source series resistance. FIG. 3 shows what is called a recessed structure, in which the active layer 5 is formed thickly, the gate portion is dug using photoresist or the like as a mask, and the gate electrode 1 is formed in a self-aligned manner by a lift-off method or the like.

この構造はゲート近傍外の動作層を厚くすることによシ
ソース直列抵抗を少なくしている。しかしゲート部を湿
式エツチングによシ堀込むためKFETのゲート遮断電
圧V7−のばらつきが犬きくなシ、高集積回路には好ま
しくない。第4図は短電極間構造と呼ばれるもので、ホ
トレジストをマスクにしてAIゲート電極1をサイドエ
ツチングによ多形成し、オーミック電極AuGe 2.
 3をリフトオフによシ自己整合的に形成するものであ
る。この構造は電極間隔を0.4μmまで狭めることは
可能であるが、これ以下は精度的に難かしい欠点がある
This structure reduces the source series resistance by thickening the active layer outside the vicinity of the gate. However, since the gate portion is etched by wet etching, the gate cut-off voltage V7- of the KFET varies considerably, which is not desirable for highly integrated circuits. FIG. 4 shows what is called a short interelectrode structure, in which an AI gate electrode 1 is formed by side etching using a photoresist as a mask, and an ohmic electrode AuGe 2.
3 is formed in a self-aligning manner by lift-off. Although this structure allows the electrode spacing to be narrowed to 0.4 .mu.m, it has the drawback that it is difficult to achieve accuracy below this.

第5図はオーミック電極2,3下に高濃度にn形不純物
をイオン注入したn千尋電層6をゲート電極1に近ずけ
るように設けたものである。しかし、n千尋電層6自体
は再度の目合せによ多形成するため、表面空乏層の影響
は第1図と同じであシ、高集積回路には実用的ではない
In FIG. 5, an n-chiroelectric layer 6 in which n-type impurities are ion-implanted at a high concentration is provided under the ohmic electrodes 2 and 3 so as to be close to the gate electrode 1. However, since the n-chihiro conductive layer 6 itself is formed in large numbers by re-alignment, the influence of the surface depletion layer is the same as in FIG. 1, and this is not practical for highly integrated circuits.

第6図は、n形動作層5を形成した後、高耐熱性ゲート
電極lをマスクにイオン注入してn千尋電層6を自己整
合的に形成し、オーミック電極2゜3を設けたものであ
る。この構造ではGaAsの高耐熱性ゲート電極1の微
細加工が難かしい、また、n千尋電層6をイオン注入後
、結晶性回復のために約800℃の熱処理が必要となる
が、ゲート電極金属1がn形動作層5の中へ拡散してシ
aツ)キー特性が悪くなること、ゲート遮断電圧V丁が
変化しやすいことなどの問題があった。
In Figure 6, after forming an n-type active layer 5, ions are implanted using a highly heat-resistant gate electrode l as a mask to form an n-chihiro conductive layer 6 in a self-aligned manner, and an ohmic electrode 2°3 is provided. It is. With this structure, it is difficult to microfabricate the highly heat-resistant GaAs gate electrode 1. Also, after ion implantation of the n-chihiro conductive layer 6, heat treatment at about 800°C is required to recover crystallinity. 1 diffuses into the n-type active layer 5, resulting in poor key characteristics and gate cut-off voltage V being susceptible to change.

第7図(、)〜(r)は、高耐熱性ゲート金属を用いず
に第4図の応用としてn千尋電層を形成するものである
FIGS. 7(a) to (r) show the formation of an n-chihiro conductive layer as an application of FIG. 4 without using a highly heat-resistant gate metal.

(、)のように半絶縁性G a A s基板4上にn形
動作層5を形成し、(b)のように保護膜12としてプ
ラズマ窒化膜0.15μm1続いて高耐熱レジスト11
を0.8μm1スパツタ蒸着酸化膜13を0.3μmに
よシ全面を覆い、ホトレジストをマスクに平行平板ドラ
イエツチングでCF4 + atガスによシスバッタ蒸
着酸化膜高耐熱レジメ)11をエツチングしてオーミッ
ク部を形成するための開口を設け、さらに残った酸化膜
13をマスクに円筒形ドライエツチングで酸素ガスによ
シ高耐熱レジスト11を数千又サイドエツチングした後
、残った酸化膜13をマスクにプラズマ窒化膜の保護膜
を通してイオン注入をすることによυn十導電層6を形
成し、(C)のようにスパッタ蒸着酸化膜14厚さ0.
3μmによシ全面を覆い、(d)のようにバックアト弗
酸液で転くエツチングすると高耐熱レジスト11の側壁
についたスパッタ蒸着酸化膜14は弱いために速く溶け
てなくなり、高耐熱レジストをはくシ液で溶してリフト
オンするとゲート部となるゲート開口15が生じ、プラ
ズマ窒化膜12を保護膜として熱処理をすることによシ
動作層5およびn千尋電層6の結晶性を回復し、(C)
のように円筒型ドライエツチングでqF4ガスによシ酸
化膜14をマスクにプラズマ窒化膜15をエツチングし
て動作層5を露出させ、(f)のようにゲート開口15
上にオーバーレイのゲート電極1を、n千尋電層6上に
ソースおよびドレインのオーミック電極2,3を形成し
てME8FETを完成するものである。この製造方法は
ゲート金属電極をイオン注入層の熱処理後に形成するた
め、ゲート金属が動作層に拡散する問題はない。しかし
、この製造方法で問題になることは、高耐熱レジストに
付着したスパッタ蒸着酸化膜の結晶性が弱いことを利用
してバッファド弗酸で溶してリフトオフしゲート開口1
5を形成するが、FIT特性上の要求される形状精度と
してこのような選択性を利用した湿式エツチングでは再
現性や加工精度が悪く、安定な大量生産には適さないこ
とである。
As shown in (,), an n-type active layer 5 is formed on a semi-insulating GaAs substrate 4, and as shown in (b), a plasma nitride film of 0.15 μm 1 is applied as a protective film 12, followed by a high heat-resistant resist 11.
Sputter-deposited oxide film 13 of 0.8 μm thick is coated on the entire surface with a thickness of 0.3 μm, and using photoresist as a mask, parallel plate dry etching is performed to etch sputter-deposited oxide film 11 (high heat resistance regime) using CF4+AT gas to form ohmic parts. After that, the remaining oxide film 13 was used as a mask to perform cylindrical dry etching using oxygen gas, and the highly heat-resistant resist 11 was side-etched several thousand times. A conductive layer 6 is formed by ion implantation through the nitride protective film, and the sputter-deposited oxide film 14 has a thickness of 0.0 mm as shown in (C).
When the entire surface is covered with a thickness of 3 μm and etched with a back-atto hydrofluoric acid solution as shown in (d), the sputter-deposited oxide film 14 attached to the side wall of the high heat resistant resist 11 is weak and melts quickly, causing the high heat resistant resist to disappear. When it is dissolved in a comb solution and lifted on, a gate opening 15 that becomes a gate portion is created, and by heat treatment using the plasma nitride film 12 as a protective film, the crystallinity of the operating layer 5 and the n-chiroelectric layer 6 is restored. (C)
As shown in (f), the plasma nitride film 15 is etched using the oxidized film 14 as a mask by cylindrical dry etching to expose the active layer 5, and the gate opening 15 is opened as shown in (f).
The ME8FET is completed by forming an overlay gate electrode 1 on top and forming source and drain ohmic electrodes 2 and 3 on the n-chihiro conductive layer 6. In this manufacturing method, the gate metal electrode is formed after the ion-implanted layer is heat-treated, so there is no problem of the gate metal diffusing into the active layer. However, the problem with this manufacturing method is that the sputter-deposited oxide film attached to the highly heat-resistant resist has weak crystallinity and is dissolved in buffered hydrofluoric acid to lift off the gate opening 1.
However, wet etching using such selectivity as the shape accuracy required by the FIT characteristic has poor reproducibility and processing accuracy, and is not suitable for stable mass production.

ゲート開口15の精度として、保護膜イオン注入ではn
千尋電層の表面のキャリア濃度が高くなシ、ドレイン耐
電圧やFET飽和特性が悪くなるととを防ぐために酸化
膜13をマスクに高耐熱性レジスト11を数千芙サイド
エツチングしているが、ゲート開口15の精度はこれ以
下である必要がある。
The accuracy of the gate opening 15 is n in the case of protective film ion implantation.
In order to prevent the high carrier concentration on the surface of the Chihiro conductive layer from deteriorating the drain withstand voltage and FET saturation characteristics, the highly heat-resistant resist 11 is side-etched several thousand times using the oxide film 13 as a mask. The accuracy of the aperture 15 needs to be less than this.

しかし、このような結晶質の選択性を利用した湿式エツ
チングでは、ゲート開口を正確にしようとしてエツチン
グ時間を短かくするとリフトオフされない部分があシ、
確実にリフトオフしようとしてエツチング時間を長くす
るとゲート開口が広がシ、最終的なゲート長が長くなり
、ドレイン耐電圧やドレインコンダクタンスが小さくな
るなどの問題が生じる。さらに、スパッタ蒸着酸化膜の
角部における結晶膜質の境界はマイクロクラック方向で
あシ、エツチングされたゲート開口15の壁面は垂直で
はなく斜めになる。この酸化膜のゲート開口をマスクに
下のプラズマ窒化膜を円筒型ドライエツチングによシ等
方的にエツチングすると、酸化膜自身もエツチングされ
て広がシ、プラズマ窒化膜のゲート開口は広くなる。さ
らにまた、ゲート開口にプラズマ窒化膜が確実に残らな
いようにしようとしてエツチング時間を長くすると、サ
イドエツチングされてまたゲート開口は広くなる。
However, in wet etching that takes advantage of the selectivity of crystalline materials, if the etching time is shortened in order to make the gate opening more precise, some areas may not be lifted off.
If the etching time is increased in order to ensure lift-off, the gate opening will widen, the final gate length will become longer, and problems such as drain withstand voltage and drain conductance will decrease. Furthermore, the boundaries of the crystalline film at the corners of the sputter-deposited oxide film are in the direction of microcracks, and the walls of the etched gate openings 15 are not vertical but oblique. When the underlying plasma nitride film is isotropically etched by cylindrical dry etching using the gate opening of this oxide film as a mask, the oxide film itself is etched and spread, and the gate opening of the plasma nitride film becomes wider. Furthermore, if the etching time is increased in an attempt to ensure that no plasma nitride film remains in the gate opening, side etching occurs and the gate opening becomes wider.

このように工程を追うごとにゲート開口は広くなると同
時にゲート長のばらつきも大きくなっている。この結果
、最終的なFIT4I性としてもげらつきが大きくなシ
、このような製造方法を高集積回路に適用しても素子特
性の整合が悪いために希望する良好な回路特性を得るこ
とができない。
As described above, as the process progresses, the gate opening becomes wider and at the same time the variation in gate length becomes larger. As a result, the final FIT4I properties have large fluctuations, and even if this manufacturing method is applied to highly integrated circuits, the desired good circuit characteristics cannot be obtained due to poor matching of device characteristics. .

本発明の目的は、表面空乏層の影響がなく、ゲート遮断
電圧が均一である良好なMFt8FETを得るために、
ゲート金属が動作中へ拡散することがなく、ケート電極
の近傍までソースおよびドレイン部となる高濃度n千尋
電層を高精度に再現性よく自己整合的に形成する電界効
果トランジスタの製造方法を提供することにある。
The purpose of the present invention is to obtain a good MFt8FET that is free from the influence of the surface depletion layer and has a uniform gate cut-off voltage.
Provided is a method for manufacturing a field effect transistor in which gate metal does not diffuse during operation and a highly concentrated n-chihiro conductive layer that becomes the source and drain parts is formed in a self-aligned manner with high precision and reproducibility up to the vicinity of the gate electrode. It's about doing.

本発明によれば、半導体基板上に電界効果トランジスタ
部となる不純物層と表面を覆う保護膜を形成する工程と
、該不純物層の保護膜上にゲート形状を決めるための第
1のパターンおよび該第1のパターンよシ面積が大きい
第2のパターンを該第1のパターン上に積み上けて形成
する工程と、イオン注入によシ前記第2のパターンをマ
スクとして前記不純物層に高濃度不純物層を形成する工
程と、熱処理によシ前記高濃度不純物層の結晶性を回復
する工程と、被覆膜で全面を覆い前記第1のパターン上
部の該被覆膜を除去する工程と、前記第1のパターンを
除去し前記被覆膜に開口を設ける工程と、該被覆膜の開
口下の前記保護膜を除去して前記不純物層を露出しゲー
ト開口を設ける工程と、該ゲート開口にゲート電極を形
成する工程を有することを特徴とする電界効果トランジ
スタの製造方法が得られる。
According to the present invention, a step of forming an impurity layer that becomes a field effect transistor portion and a protective film covering the surface on a semiconductor substrate, and forming a first pattern and a first pattern on the protective film of the impurity layer to determine the shape of the gate. a step of stacking and forming a second pattern having a larger area than the first pattern on the first pattern; and a step of forming a highly concentrated impurity in the impurity layer by ion implantation using the second pattern as a mask. a step of restoring the crystallinity of the high concentration impurity layer by heat treatment; a step of covering the entire surface with a coating film and removing the coating film above the first pattern; a step of removing the first pattern to form an opening in the covering film; a step of removing the protective film under the opening of the covering film to expose the impurity layer to form a gate opening; A method for manufacturing a field effect transistor is obtained, which includes a step of forming a gate electrode.

次に本発明を実施例によシ説明する。第8図(a)〜(
h)が本発明の製造工程を説明するだめの図である。
Next, the present invention will be explained using examples. Figure 8(a)-(
h) is a diagram illustrating the manufacturing process of the present invention.

(a)のように高抵抗GaAs基板4上に保護膜として
プラズマシリコン窒化膜23を厚さ0.1μm全面に成
長し、ホトレジストパターンをマスクとしプラズマ窒化
膜23を通してS1イオ/を加速電圧100KeV 、
ドーズ量3.2 X 10”tX−”でイオン注入しn
形動作層5を形成し、(b)のようにシリコン酸化膜2
1を厚さ0.6μmスパッタ蒸着し、再びプラズマシリ
コン窒化膜22を厚さ0.3μm成長し、ホトレジスト
パターンをマスクとしてCF、ガスを用いた平行電極型
ドライエツチングによJ)n形動作層5の上にゲート部
となるゲート長1.5μmのパターン22およびn形動
作層5の周辺部を覆うパターンを形成し、(C)のよう
に弗酸を弗化アンモニウム水からなるバッファド弗酸液
にょシプラズマ窒化膜22下の酸化膜21をo、25μ
mサイドエツチングし、ゲート長1.0μmの酸化膜の
ゲートパターン21を形成し、(d)のようにプラズマ
窒化膜22をマスクとして8i+イオンを加速電圧18
0KeV 、ドーズ量7 X 10”aa−”でイオン
注入して高濃度導電層6を形成し、水素中で800℃2
0分間の熱処理によシ動作層5および高濃度導電層6の
結晶性を回復し、(e)のように被覆膜として厚さ0.
6μmのプラズマ窒化膜24で全面を覆い、ホトレジス
)膜26を厚さi、oμm塗布し180℃30分間乾燥
するとホトレジスト膜26の表面は平滑になり、ゲート
パターン21上のホトレジスト膜26は薄くな、C1(
r)のようにCF4ガスを用いた平行電極型ドライエツ
チングにょシ全面をエッチジグし、酸化膜のゲートパタ
ーン21を露出させ、ωのように残ったホトレジスト膜
26をはぐシ液で除去し、バッファド弗酸液で酸化膜の
ゲートパターン21を選択的にエツチング除去するとプ
ラズマ窒化膜24にゲート開口25が残jD、CHF、
ガスによる平行電極型ドライエツチングにょシプラズマ
窒化膜24をマスクとしてゲート開口25の下のプラズ
マ窒化膜24を垂直にエツチングしてGaAs表面を露
出させ、H2中450℃30分間の熱処理にょシトライ
エツチングのダメージを回復し、(h)のようにアルミ
二り体を全面に蒸着しホトレジストパターンをマスクに
エツチングしてアルミニウムのゲート電極1を形成し、
高濃度導電層6上に開口があるホトレジストパターンを
マスクにプラズマ窒化膜23.24をエツチング除去し
、オーミック金属AuGe−Ptを蒸着し、ホトレジス
トパターンt−溶かしてリフトオフし、水素中で480
℃5分間の熱処理によ]AuGeを高濃度導電層6に拡
散させることによシソースおよびドレインのオーミック
電極2,3が形成され、GaAs ME’5FETが完
成する。
As shown in (a), a plasma silicon nitride film 23 is grown to a thickness of 0.1 μm over the entire surface of the high-resistance GaAs substrate 4 as a protective film, and S1 ions are accelerated at a voltage of 100 KeV through the plasma nitride film 23 using a photoresist pattern as a mask.
Ion implantation was performed at a dose of 3.2 x 10"tX-".
After forming a functional layer 5, a silicon oxide film 2 is formed as shown in (b).
1 is sputter-deposited to a thickness of 0.6 μm, a plasma silicon nitride film 22 is grown again to a thickness of 0.3 μm, and a parallel electrode type dry etching is performed using CF and gas using the photoresist pattern as a mask to form an n-type active layer. A pattern 22 with a gate length of 1.5 μm which will become a gate part and a pattern covering the peripheral part of the n-type operating layer 5 are formed on the buffered hydrofluoric acid made of ammonium fluoride water as shown in (C). The oxide film 21 under the liquid plasma nitride film 22 is heated to 25 μm.
M side etching is performed to form an oxide film gate pattern 21 with a gate length of 1.0 μm, and as shown in (d), 8i+ ions are accelerated at a voltage of 18 using the plasma nitride film 22 as a mask.
A highly concentrated conductive layer 6 was formed by ion implantation at 0 KeV and a dose of 7 x 10"aa-", and heated at 800°C2 in hydrogen.
The crystallinity of the active layer 5 and the high concentration conductive layer 6 is restored by heat treatment for 0 minutes, and the coating film is formed into a coating film with a thickness of 0.0 minutes as shown in (e).
The entire surface is covered with a plasma nitride film 24 of 6 μm, and a photoresist film 26 is applied to a thickness of i, 0 μm and dried at 180° C. for 30 minutes. The surface of the photoresist film 26 becomes smooth, and the photoresist film 26 on the gate pattern 21 becomes thinner. ,C1(
As shown in r), the entire surface is etched by parallel electrode type dry etching using CF4 gas to expose the gate pattern 21 of the oxide film, and as shown in ω, the remaining photoresist film 26 is removed with a stripping solution, and then buffered. When the gate pattern 21 of the oxide film is selectively etched away using a hydrofluoric acid solution, a gate opening 25 remains in the plasma nitride film 24.
Using the plasma nitride film 24 as a mask, the plasma nitride film 24 under the gate opening 25 is vertically etched to expose the GaAs surface, and then heat treated in H2 at 450° C. for 30 minutes. After recovering the damage, as shown in (h), a double aluminum body is deposited on the entire surface and etched using a photoresist pattern as a mask to form an aluminum gate electrode 1.
Using the photoresist pattern with an opening on the high concentration conductive layer 6 as a mask, the plasma nitride film 23, 24 is removed by etching, ohmic metal AuGe-Pt is deposited, the photoresist pattern t is melted and lifted off, and the etching is performed in hydrogen for 480°C.
By diffusing AuGe into the high-concentration conductive layer 6 by heat treatment for 5 minutes at °C, source and drain ohmic electrodes 2 and 3 are formed, completing a GaAs ME'5FET.

バックアト弗酸液によるプラズマ窒化膜のエツチング速
度は酸化膜の1/20以下であシ、プラズマ窒化膜の形
状の変化は問題にならない。また、バックアト弗酸液に
よるシリコン酸化膜のサイドエツチングの均一性はよく
、エツチング時間でエツチング量を制御することができ
暮。
The etching rate of the plasma nitride film by the back-atto hydrofluoric acid solution is 1/20 or less of that of the oxide film, so changes in the shape of the plasma nitride film do not pose a problem. Furthermore, the uniformity of side etching of the silicon oxide film using the back-atto hydrofluoric acid solution is good, and the amount of etching can be controlled by the etching time.

実施例では、ゲートパターン21にシリコン酸化膜、保
設膜23、n+の注入マスク22、被覆膜24にプラズ
マ窒化膜を用いたがこれに限ったことはない。保設膜2
3としては800℃の熱処理でG a A sと反応し
ないものであればよく、酸化アルミニウム、−酸化シリ
コン、二酸化シリコン、酸化チタンなどの酸化物、窒化
アルミニウム、窒化シリコン、窒化ホウ素、窒化ガリウ
ムなどの窒化物を用いてもよい。ゲートパターン21と
しては、800℃の熱処理で変化し門ければよく、酸化
物や窒化物などの絶縁膜以外に、チタン、モリブデン、
タングステン、タンタルなどの高融点金属を用いてもよ
い。n十注入マスク22は800℃の熱処理前に除去し
てもよいため、酸化物や窒化物などの絶縁膜以外に金属
や有機樹脂を用いてもよい。
In the embodiment, a silicon oxide film is used for the gate pattern 21, a plasma nitride film is used for the storage film 23, the n+ injection mask 22, and the coating film 24, but the present invention is not limited to this. Storage membrane 2
3 may be any material that does not react with GaAs during heat treatment at 800°C, such as oxides such as aluminum oxide, -silicon oxide, silicon dioxide, and titanium oxide, aluminum nitride, silicon nitride, boron nitride, and gallium nitride. Nitride of may also be used. The gate pattern 21 may be made of titanium, molybdenum, titanium, molybdenum, etc. in addition to insulating films such as oxides and nitrides.
High melting point metals such as tungsten and tantalum may also be used. Since the n+ implantation mask 22 may be removed before heat treatment at 800° C., a metal or organic resin may be used instead of an insulating film such as an oxide or nitride.

また、悸覆膜24の上部を除去してゲートパターン21
を露出させるためにレジストを塗布して全面を工□ッチ
ングしたが、研摩によシ露出させてもよい。
In addition, the upper part of the covering film 24 is removed to form the gate pattern 21.
Although the entire surface was etched by applying a resist to expose it, it may also be exposed by polishing.

また、本発明をショットキーバリアゲート型FITの製
造方法として説明してきたが、ゲート開口25からn型
動作層5にBe 、 Mg 、 Znなどのp型不純物
をイオン注入もしくは拡散させてゲート部としたpn接
合による接合ゲート型FETとしてよい。
Furthermore, although the present invention has been described as a method for manufacturing a Schottky barrier gate type FIT, p-type impurities such as Be, Mg, and Zn are ion-implanted or diffused into the n-type active layer 5 from the gate opening 25 to form a gate portion. It may be a junction gate type FET using a pn junction.

上記のような本発明によれば、始めに形成した壁面が垂
直なゲートパターンを被覆膜にゲート開口として反転し
た形状に変換し、壁面の垂直なゲートを保持したまま結
晶性を回復する熱処理をし、再度このゲート開口をゲー
ト金属で埋めることによりゲートパターンと同一なゲー
ト形状を再現することができる。
According to the present invention as described above, the initially formed gate pattern with vertical walls is converted into an inverted shape as a gate opening in the coating film, and heat treatment is performed to restore crystallinity while maintaining the gate with vertical walls. By filling this gate opening with gate metal again, it is possible to reproduce the same gate shape as the gate pattern.

始めに形成したゲートパターンによシゲート電極のゲー
ト長が決まるため、ショットキー特性やFFtT特性の
良好なMB8FETを再現性よく安定に生産することが
可能となる。そして、結晶を回復させる熱処理後にゲー
ト電極を形成するため、ゲート金属が動作層に拡散し、
ゲートショットキー特性が悪くなシゲート遮断電圧vT
が変動してばらつきが大きくなるなどの問題が生じるこ
とはない。
Since the gate length of the gate electrode is determined by the initially formed gate pattern, it is possible to stably produce MB8FETs with good Schottky characteristics and FFtT characteristics with good reproducibility. Then, in order to form the gate electrode after heat treatment to recover the crystal, the gate metal is diffused into the active layer.
Gate cutoff voltage vT with poor gate Schottky characteristics
There will be no problem such as a large variation due to fluctuations.

ゲート金属としても高耐熱性である必要はなく、一般的
なアルミニウム、チタン、クロムなどを利用することが
可能である。
The gate metal does not need to be highly heat resistant, and common materials such as aluminum, titanium, and chromium can be used.

このようにゲート電極に対してソースおよびドレイン部
が自己整合的に形成された実施例のMESFETの特性
としては、ゲート幅10μm1ゲート長1.0μmにお
いて、ゲート遮断電圧VTは平均値+〇、094V、標
準偏差0.084Vであシ、相互コンダクタンスgmが
2.6 m Sと良好な結果を得た。従来の第4図のよ
うなゲート幅10μm1ゲート長1.0μmの短電極間
構造ではgmは0.8mSであシ、第1図のように目合
せ形成した電極間隔1.5μmのものではgmは0.2
m8以下であり、ドレイン電流がまったく流れないもの
もあった。このように従来のMFi8FETの特性との
比較からも本発明の効果は明らかである。
The characteristics of the MESFET of this embodiment in which the source and drain portions are formed in a self-aligned manner with respect to the gate electrode are as follows: When the gate width is 10 μm and the gate length is 1.0 μm, the gate cutoff voltage VT is the average value +〇, 094 V. Good results were obtained with a standard deviation of 0.084 V and a mutual conductance gm of 2.6 mS. In a conventional short electrode structure with a gate width of 10 μm and a gate length of 1.0 μm as shown in FIG. 4, gm is 0.8 mS, and in a structure with aligned electrode spacing of 1.5 μm as shown in FIG. is 0.2
In some cases, the drain current was less than m8 and no drain current flowed at all. As described above, the effects of the present invention are clear from the comparison with the characteristics of the conventional MFi8FET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の最も基本的なプレーナ構造のショットキ
ーバリアゲート型電界効界トランジスタ(MBSFET
 )の断面図であシ、第2図はこのプレーナ構造MES
FETのGaAs動作層の表面に表面空乏層が発生して
いる状態を示しである。第3図はゲート部を堀込んだリ
セス構造のMBSFETであシ、第4図はソースおよび
ドレイン金属電極をゲート電極に接近させた短電極間構
造のMESFETであり、第5図は目合せによるn千尋
電層があるプレーナ構造のMBSFETでアシ、第6図
は高耐熱性ゲート電極をマスクにして自己整合的にn千
尋電層を設けたものであシ、第7図(a)〜(f)は高
耐熱性ゲート金属を用いずに第4図を応用してn千尋電
層を設けるMESFETの製造方法を説明するだめの図
である。第8図(a)〜(h)は本発明の製造方法を説
明するための図である。 図において、1はゲート電極、2はソース電極、3はド
レイン電極、4は高抵抗G a A s基板、5はn形
動作層、6は高濃度導電層、9は表面空乏層、11は高
耐熱レジスト、12はプラズ々窒化膜、13.14はス
パッタ蒸着酸化膜、15はゲート開口、21はゲートパ
ターン、22は高濃度導電層のイオン注入マスク、23
は保護膜、24は被覆膜、25はゲート開口、26はレ
ジストである。 71−1 図 第4図 才 7 図 (a) (d) 1−8 クス (b) (C) (e) (f) (9)
Figure 1 shows a conventional Schottky barrier gate field effect transistor (MBSFET) with the most basic planar structure.
), and Figure 2 is a cross-sectional view of this planar structure MES.
This figure shows a state in which a surface depletion layer is generated on the surface of the GaAs active layer of the FET. Figure 3 shows an MBSFET with a recessed structure in which the gate portion is dug, Figure 4 shows an MESFET with a short inter-electrode structure in which the source and drain metal electrodes are brought close to the gate electrode, and Figure 5 shows an MBSFET with a recessed structure in which the gate part is dug. Figure 6 shows an MBSFET with a planar structure that has an n-chihiro conductive layer. f) is a diagram illustrating a method of manufacturing a MESFET in which an n-chihiro conductive layer is provided by applying FIG. 4 without using a highly heat-resistant gate metal. FIGS. 8(a) to 8(h) are diagrams for explaining the manufacturing method of the present invention. In the figure, 1 is a gate electrode, 2 is a source electrode, 3 is a drain electrode, 4 is a high resistance GaAs substrate, 5 is an n-type operating layer, 6 is a high concentration conductive layer, 9 is a surface depletion layer, and 11 is a High heat resistant resist, 12 plasma nitride film, 13.14 sputter deposited oxide film, 15 gate opening, 21 gate pattern, 22 ion implantation mask for high concentration conductive layer, 23
24 is a protective film, 24 is a coating film, 25 is a gate opening, and 26 is a resist. 71-1 Figure 4 Figure 7 Figure (a) (d) 1-8 Box (b) (C) (e) (f) (9)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に電界効果トランジスタ部となる不純物層
と表面を覆う保護膜を形成する工程と、該不純物層の保
設膜上にゲート形状を決めるだめの第1のパターンおよ
び該第1のパターンよ多面積が大きい第2のパターンを
該第1のパターン上に積み上げて形成する工程と、イオ
ン注入によシ前記第2のパターンをマスクとして前記不
純物層に高濃度不純物層を形成する工程と、熱処理によ
シ前記高濃度不純物層の結晶性を回復する工程と、被覆
膜で全面を緩い前記第1のパターン上部の該被覆膜を除
去する工程と、前記第1のパターンを除去し前記被覆膜
に開口を設ける工程と、該被覆膜の開口下の前記保護膜
を除去して前記不純物層を露出しゲート開口を設ける工
程と、該ゲート開口にゲート電極を形成する工程を有す
ることを特徴とする電界効果トランジスタの製造方法。
A process of forming an impurity layer that will become a field effect transistor part and a protective film covering the surface on a semiconductor substrate, and forming a first pattern on a holding film for the impurity layer to determine a gate shape, and a process based on the first pattern. a step of stacking and forming a second pattern with a large area on the first pattern; a step of forming a highly concentrated impurity layer in the impurity layer by ion implantation using the second pattern as a mask; a step of restoring the crystallinity of the high concentration impurity layer by heat treatment, a step of removing the covering film on the upper part of the first pattern whose entire surface is covered with a loose covering film, and a step of removing the first pattern. forming an opening in the covering film; removing the protective film under the opening of the covering film to expose the impurity layer to form a gate opening; and forming a gate electrode in the gate opening. A method for manufacturing a field effect transistor, comprising:
JP19490583A 1983-10-18 1983-10-18 Manufacture of field effect transistor Pending JPS6086869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19490583A JPS6086869A (en) 1983-10-18 1983-10-18 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19490583A JPS6086869A (en) 1983-10-18 1983-10-18 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS6086869A true JPS6086869A (en) 1985-05-16

Family

ID=16332283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19490583A Pending JPS6086869A (en) 1983-10-18 1983-10-18 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS6086869A (en)

Similar Documents

Publication Publication Date Title
JPH03774B2 (en)
JPS6037172A (en) Manufacture of field effect transistor
JPS6086869A (en) Manufacture of field effect transistor
JPS6037173A (en) Manufacture of field effect transistor
JPH0212927A (en) Manufacture of mesfet
JPS59127875A (en) Manufacture of schottky barrier gate type field effect transistor
JPS6086871A (en) Manufacture of field effect transistor
JP2541230B2 (en) Method for manufacturing field effect transistor
JPS6086870A (en) Manufacture of field effect transistor
JPS59127874A (en) Manufacture of field effect transistor
JPS5893290A (en) Manufacture of schottky barrier field effect transistor
JPS60136264A (en) Manufacture of semiconductor device
JPS60776A (en) Manufacture of semiconductor device
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS6037176A (en) Manufacture of field effect transistor
JPS6037174A (en) Manufacture of field effect transistor
JPS6336579A (en) Schottky-gate field effect transistor
JPS59127873A (en) Manufacture of field effect transistor
JP2707436B2 (en) Method for manufacturing field effect transistor
JPS6037175A (en) Manufacture of field effect transistor
JPH03289142A (en) Manufacture of compound semiconductor device
JPS59213170A (en) Manufacture of semiconductor device
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPS58202577A (en) Manufacture of field-effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof