JPS6086827A - Electron beam exposure method - Google Patents

Electron beam exposure method

Info

Publication number
JPS6086827A
JPS6086827A JP58195582A JP19558283A JPS6086827A JP S6086827 A JPS6086827 A JP S6086827A JP 58195582 A JP58195582 A JP 58195582A JP 19558283 A JP19558283 A JP 19558283A JP S6086827 A JPS6086827 A JP S6086827A
Authority
JP
Japan
Prior art keywords
chip
mark
marks
electron beam
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58195582A
Other languages
Japanese (ja)
Inventor
Shuji Oshio
大塩 修二
Koichi Kobayashi
孝一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58195582A priority Critical patent/JPS6086827A/en
Publication of JPS6086827A publication Critical patent/JPS6086827A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the exclusive area of a chip mark by forming the rectangular chip mark having long sides parallel with an axis of arrangement of a scribing line. CONSTITUTION:Rectangular chip marks 14 having long sides parallel with axes of arrangement of scribing lines are formed in regions in the vicinity of each chip corner 13a, 13b, 13c, 13d on scribing lines 12y, 12x demarcating a chip region 11 on a semiconductor substrate to be treated. Chip marks 15, 16 to other chip regions and other adjacent chip regions are also formed adjacently in series. These marks are scanned by electron beams in the directions rectangular to the long sides and the central coordinates of each chip mark on scanning lines are detected, drawing exposure regions are determined while using the positions of quadrilaterals formed by tying these central coordinates as references, and several layer pattern is drawn and exposed. Accordingly, the exclusive areas of chip positioning marks disposed on the scribing lines can be reduced, and areas capable of being used for applications other than the scribing lines can be increased.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は電子ビーム露光方法に係C,Sに同−基板上に
複数層のパターンを重ねて描画する際に用いる直接描画
方式の電子ビーム露光方法に於けるチップ領域の位置決
め方法に関する◎(b) 技術の背景 を子ビームによるパターンの直接描画法は、高い解像性
とアライメント機能を有するのでサブミクロンデバイス
の製作工程に於て最も威力を発揮するでおろうことが期
待されている〇一方最近のデバイス生涯は少量多品種化
の傾向が強まっており、マスクを必要としない該直接描
画技術はその製造原価の低減及び製造手番の短縮に大き
な効果t−あられしている◎又最近半導体産業に於ける
技術開発速度はますます早まって来ており、かかる事情
の中で各機デバイスの開発並びに試作期間を短縮するう
えにも該技術は有効に用いられている。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an electron beam exposure method. ◎ (b) Regarding the method of positioning the chip area in the exposure method: Background of the technology The direct pattern writing method using a sub-beam has high resolution and alignment function, so it is the most powerful method in the manufacturing process of submicron devices. 〇On the other hand, in recent years, there has been a growing trend towards small-volume, high-variety device lifecycles, and this direct writing technology, which does not require a mask, will reduce manufacturing costs and increase production time. ◎Recently, the speed of technology development in the semiconductor industry has been accelerating, and under these circumstances, it has been shown that it has a great effect on shortening the development and prototyping period for each device. The technique has been used successfully.

(c) 従来技術と問題点 上記電子ビームによる直接描画方法に於ては。(c) Conventional technology and problems In the above-mentioned direct writing method using an electron beam.

被熟瑠基板例えば被処理半導体基板上に凹部又は凸部よ
りなる特定のマークを設け、該マークを電子ビームで検
出することにより該マークを基準にして数層からtoa
lf4のパターンが重ねて描画される。そしてチップサ
イズが該電子ビームの走査フィールドよりも小さい一般
の場合に於ては、チップ領域の四隅にマーク(チップマ
ーク)を設け、これらのマーク位置を電子ビームの走査
によって検出し、該マーク位置のデータからめられる回
転誤差1位置ずれ、伸び0台形誤差等をもとに正確なチ
ップ領域の位置及び形状が決められ、それに基づいて電
子ビームの偏向の補正がなされて該チップ領域の正確な
位置にパターンの描画がなされる。上記チップ領域の四
隅にチップマークを設ける方式は4点マーク方式と呼ば
れている。この他にチップ領域の3隅にチップマークを
設ける方式もあるが、この方式に於ても露光操作は上記
4点マーク方式と同様である。
A specific mark consisting of a concave or convex portion is provided on a substrate to be ripened, for example, a semiconductor substrate to be processed, and by detecting the mark with an electron beam, several layers are toned using the mark as a reference.
The lf4 patterns are drawn in an overlapping manner. In the general case where the chip size is smaller than the scanning field of the electron beam, marks (chip marks) are provided at the four corners of the chip area, and the positions of these marks are detected by scanning the electron beam. The accurate position and shape of the chip area is determined based on the rotational error (1) positional error, elongation (0) trapezoidal error, etc., which can be seen from the data, and the deflection of the electron beam is corrected based on this to determine the accurate position of the chip area. A pattern is drawn. The method of providing chip marks at the four corners of the chip area is called the four-point mark method. In addition to this, there is also a method in which chip marks are provided at three corners of the chip area, but the exposure operation in this method is the same as in the four-point mark method.

例えば上記4点マーク方式に於て一般的には正方形の凹
部よりなるチップマークが用いられるが。
For example, in the four-point mark method described above, a chip mark consisting of a square concave portion is generally used.

この場合各隅に1個即ち一組のチップマークを用いて複
数の層の露光を行うことは困難である。そよりlO〜2
0回程度X、Y方向に反復走査するので、該走査領域に
形成されているポジレジスト膜が極端に過剰な露光のた
めにネガ化し、パターンの描画を終って該ポジレジスト
膜を現像した際。
In this case, it is difficult to expose multiple layers using one or a set of chip marks at each corner. From the sun 1O~2
Since scanning is repeated approximately 0 times in the X and Y directions, the positive resist film formed in the scanning area becomes negative due to extremely excessive exposure, and when the positive resist film is developed after pattern drawing is completed. .

前記ネガ化した領域が除去されない。従って該レジスト
膜をマスクにして例えば酸化膜をパターンニングした際
、ネガ化したレジスト膜が残留していたチップマーク上
に酸化膜が残留し、該チップマークが変形する。この状
態を模式的に示したのが第1図(イ)の上面図及び第【
図(0)のA−A矢視断面図で、図中1は半導体基板、
2はチップマーク、3は酸化膜、sx、syは走査方向
矢印しである。
The negative areas are not removed. Therefore, when patterning, for example, an oxide film using the resist film as a mask, the oxide film remains on the chip mark where the negative resist film remained, and the chip mark is deformed. This state is schematically shown in the top view of Figure 1 (A) and the top view of Figure 1 (A).
This is a sectional view taken along the line A-A in Figure (0), and 1 in the figure is a semiconductor substrate;
2 is a chip mark, 3 is an oxide film, and sx and sy are scanning direction arrows.

多層のパターンを描画露光する際には上記チップマーク
の変形が次々に加わって行き、チップマーク位置の正確
な検出ができなくなる。そのため従来は第2図に模式的
に示したように、露光の層数に応じた数のチップマーク
例えば6層の露光を行う場合、2al+ 2at+ 2
as+ 2a++ 2al+ 28@+ 2J +2J
 r 2bs + 2ba * 2ba + 2ba 
r 2 e 1 t 2 e!e 20 a+2c4+
 2cs* 2ca* 2d+* 2dt+ 2ds+
 2d4+ 2ds+2d6をチップ領域4のそれぞれ
コーナ部5 a + 5 b *5c、5dに近いスク
ライブライン6上に並べて配設し5層毎に例えば2al
+ 2bI+ zc、、 za、よりなる−組のチップ
マーク成るいは28 @ + 2 b I + 2 e
 * +2 d sよりなる一組のチップマーク上をそ
れぞれ電子ビームによってX及びY方向に走査して各−
組のチップマークの中心位置を検出することによってチ
ップ領域4の正確な位置がめられていた。
When a multilayer pattern is drawn and exposed, the chip marks are deformed one after another, making it impossible to accurately detect the chip mark position. For this reason, conventionally, as schematically shown in FIG. 2, the number of chip marks corresponding to the number of layers to be exposed is 2al+2at+2 when exposing 6 layers, for example.
as+ 2a++ 2al+ 28@+ 2J +2J
r 2bs + 2ba * 2ba + 2ba
r 2 e 1 t 2 e! e 20 a+2c4+
2cs* 2ca* 2d+* 2dt+ 2ds+
2d4 + 2ds + 2d6 are arranged side by side on the scribe line 6 near the corner portions 5a + 5b *5c and 5d of the chip area 4, and for example 2al is arranged every 5 layers.
+ 2 b I + zc, za, - set of chip marks or 28 @ + 2 b I + 2 e
* A set of chip marks consisting of +2 ds is scanned in the X and Y directions by an electron beam, and each -
The exact position of the chip area 4 was determined by detecting the center position of a set of chip marks.

しかしこのような従来方法に於ては、各チップマークの
位置を検出するためのビーム走査がチップマークの並ん
でいる方向にもなされるので、チップマークの位置を確
実に検出できるビームの振幅及び該ビーム走査によって
生ずるレジスト膜上面の痕跡が隣接するチップマークの
検出に影響を与えないための余量寸法を見込まねばなら
ず、そのためチップマークの間隔が広くなってチップマ
ークがスクライブライン上を専有する長さが非常に大き
くたる。−例を示せばチップマーク15〔μm〕角で6
層露光の場合、ビームの振幅は40〔μm〕程度、余裕
寸法は10(μm〕程度でチップマークがスクライブラ
インを専有する長さは約0.3(朋)程度になる。
However, in such conventional methods, the beam scanning for detecting the position of each chip mark is also performed in the direction in which the chip marks are lined up. It is necessary to allow for an extra dimension so that the traces on the upper surface of the resist film caused by the beam scanning do not affect the detection of adjacent chip marks. Therefore, the interval between the chip marks becomes wider and the chip mark occupies the scribe line. The length is very large. - For example, a chip mark of 15 [μm] square is 6
In the case of layer exposure, the amplitude of the beam is about 40 [μm], the margin dimension is about 10 [μm], and the length that the chip mark occupies the scribe line is about 0.3 [μm].

該スクライブラインは、別に各種のモニターパターンや
ステップアンドリピート法による投影露光の際の位置合
わせマークの配設領域としても使用されるので、上記の
ようにチップマークが多くの領域を専有することは、該
半導体装置の製造工と 根土不都合であるfいう問題があった。
The scribe line is also used as an area for placing alignment marks for various monitor patterns and projection exposure using the step-and-repeat method, so chip marks do not occupy a large area as described above. , there was a problem that caused problems with the manufacturing staff of the semiconductor device.

(d) 発明の目的 本発明は上記問題点に鑑み、電子ビームによるパターン
の描画が多層になされる場合に、チップマークがスクラ
イブライン上を専有する面積を縮小し、該スクライブラ
インの他の用途に用いられる領域の面積を増大せしめる
目的でなされたものである0 (e) 発明の構成 即ち本発明は電子ビーム露光方法に於て、被処環基板上
にスクライブラインによって画定配設された複数のチッ
プ領域に、それぞれのチップ領域ごとに配設されたチッ
プマークを基準にして複数層のパターンを重ねて直接描
画する電子ビーム露光に際し、該チップ領域の少なくと
も三つ以上のコーナのそれぞれを画定する各2本のスク
ライブラインに於ける該コーナの近傍領域上に、それぞ
れスクライブラインの配役軸に平行な長辺を有する長方
形のチップマークを設け、パターン描画の層ごとに各長
方形チップマーク上の異なる場所をそれぞれのチップマ
ークの長辺を横切る方向に電子ビームで走食し、該走査
線上のチップマークの座標位置を検出することによって
チップ領域の位置決めを行うことを特徴とするC 第3図(イ)は本発明の水沫に用いるチップマークの形
状及び配置を示す一実施例の模式上面図で。
(d) Purpose of the Invention In view of the above-mentioned problems, the present invention reduces the area occupied by chip marks on the scribe line when patterns are drawn in multiple layers using an electron beam, and provides other uses for the scribe line. (e) Structure of the Invention That is, the present invention is an electron beam exposure method in which a plurality of areas are defined and arranged by scribe lines on a substrate to be processed. At least three or more corners of the chip area are defined during electron beam exposure in which multiple layers of patterns are directly drawn in a stacked manner based on the chip marks arranged for each chip area on the chip area. A rectangular chip mark having a long side parallel to the cast axis of the scribe line is provided on the area near the corner of each of the two scribe lines, and a rectangular chip mark is placed on each rectangular chip mark for each pattern drawing layer. C, characterized in that the chip area is positioned by scanning different locations with an electron beam in a direction across the long sides of each chip mark and detecting the coordinate position of the chip mark on the scanning line. A) is a schematic top view of one embodiment showing the shape and arrangement of chip marks used for water droplets of the present invention.

第3図仲)はその部分拡大図である〇 本発明の電子ビームによる直接露光方法を用いて同一基
板上に複数の層を重ねて描画露光するに際しては1例え
ば第3図(イ)に示すように被処理半導体基板上のチッ
プ領域11を画定するスクライブライン12F++ 1
2.X++ 123’!l l 2xt上に於ける各チ
ップコーナL3a、13b、13c、L3dの近傍領域
に、当該スクライブラインの配設軸に平行な長辺を有す
る長方形のチップマーク14 a y+ L 4 a 
x r、Ic1 14 b ’l 、l 4 b x + L 4 c 
y、14 c x + 14 g F + L 4 t
l xがそれぞれ設けられる0ここで15は他のチップ
領域、16は隣接する他のチップ領域に対するチップマ
ークである@なお基板上へのパターンの配列はチップ領
域11及びチップマーク14ay。
Figure 3 (middle) is a partially enlarged view of the same. 〇When exposing multiple layers on the same substrate using the direct exposure method using an electron beam of the present invention, for example, as shown in Figure 3 (a), A scribe line 12F++1 defining a chip area 11 on a semiconductor substrate to be processed as shown in FIG.
2. X++ 123'! In the vicinity of each chip corner L3a, 13b, 13c, L3d on l l 2xt, a rectangular chip mark 14 a y+ L 4 a having a long side parallel to the axis of arrangement of the scribe line.
x r, Ic1 14 b 'l, l 4 b x + L 4 c
y, 14 c x + 14 g F + L 4 t
15 is another chip area, and 16 is a chip mark for another adjacent chip area @The pattern arrangement on the substrate is the chip area 11 and the chip mark 14ay.

14ax、t4by、14bx、14cy+L4cx+
t4ay。
14ax, t4by, 14bx, 14cy+L4cx+
t4ay.

L4dxを具備したレチクルを用いステップアンドリピ
ート法によりなされる〇 本発明の露光方法に於ては上記のようにチップ領域11
の各コーナ部13a、13b、13c、13dを挾むよ
うにスクライブライン上(形成された長方形のチップマ
ーク14a7.14ax*14b7.14bx。
In the exposure method of the present invention, which is performed by a step-and-repeat method using a reticle equipped with L4dx, the chip area 11
Rectangular chip marks 14a7.14ax*14b7.14bx are formed on the scribe line so as to sandwich each corner portion 13a, 13b, 13c, 13d.

14cy、14cx*L4dy、14dxを長辺にほぼ
直角な方向に電子ビームによって走査し、走査線上の各
チップマークの中心座標を検出し、これら中心座標を結
ぶことによって形成される四辺形の位置を基準にして描
画露光領域の決定がなされて各層パターンの描画露光が
行われる・本発明の方法に於ては上記のような手順で露
光領域の決定がなされるのでチップマークの中心位置を
検出する電子ビームの走査は上記のように該チップマー
クが配設されているスクライブラインに交差する(通常
はぼ直角に交差する)一方向のみでよい0従って該チッ
プマークを、該チップマークが配設されるスクライブラ
インの軸に平行な長辺を持つ長方形に形成しておくこと
によって、一つのチップマーIC下層パターンを露光し
た際のビーム走査で変形した領域を避けて次層パターン
露光の際にチップマークの正確な位置を検出することが
可能になる。
14cy, 14cx*L4dy, 14dx are scanned by an electron beam in a direction approximately perpendicular to the long sides, the center coordinates of each chip mark on the scanning line are detected, and the position of the quadrilateral formed by connecting these center coordinates is determined. The drawing exposure area is determined based on the reference, and the drawing exposure of each layer pattern is performed.In the method of the present invention, the exposure area is determined by the above procedure, so the center position of the chip mark is detected. As mentioned above, the electron beam can be scanned in only one direction that intersects (usually intersects at right angles to) the scribe line on which the chip mark is arranged. By forming the chip in a rectangular shape with long sides parallel to the axis of the scribe line to be exposed, the area deformed by beam scanning when exposing one chipmer IC lower layer pattern can be avoided, and the chip can be easily removed when exposing the next layer pattern. It becomes possible to detect the exact position of the mark.

第3図はチップマーク位置を検出する際のビーム走査の
一例を示す部分拡大図で、図中11はチップ領域−14
ay、L4axはチップ領域11に対するチップマーク
% 16は隣接する他のチップ領域(図示せず)のチッ
プマーク、S XI 、 S Yt 。
FIG. 3 is a partially enlarged view showing an example of beam scanning when detecting the chip mark position, and 11 in the figure is a chip area -14.
ay, L4ax are chip marks % for the chip area 11, 16 are chip marks of other adjacent chip areas (not shown), S XI, S Yt.

SXz、 SYt、SXs、5Y3−5X4− SY4
.SXI −8’Y+、 SXa、 SYaはそれぞれ
1層目、2層目、3層目、4層目、5層目、6層目の位
置決めに際してのビーム走査を示す矢印しである。
SXz, SYt, SXs, 5Y3-5X4- SY4
.. SXI-8'Y+, SXa, and SYa are arrows indicating beam scanning when positioning the first, second, third, fourth, fifth, and sixth layers, respectively.

このように本発明に於ては同一チップマーク上の各層の
ビーム走査が互いに平行な方向のみであるので、ビーム
走査によるチップマークの変形等が隣接してなされるビ
ーム走査に於ける位置検出に影響を及ぼさないためのビ
ーム間隔は例えば通常の1.0〔μm〕角程度の電子ビ
ームを用いる場合14(μm〕程度あれば充分である。
In this way, in the present invention, since the beam scanning of each layer on the same chip mark is only in parallel directions, it is difficult to detect the position in the beam scanning when the chip mark is deformed due to the beam scanning. For example, when using an ordinary electron beam of about 1.0 [μm] square, a beam spacing of about 14 (μm) is sufficient to avoid any influence.

従って従来例同様6層の露光を行う場合に必要な1個の
チップマークの長さは98〔μm〕程度となり、本発明
の方法に於ては各チップコーナに対しては該コーナを挾
んで2側御組のチップマークが必要なので、合計の長さ
は0.2(m)弱となる0このように6層の場合チップ
マークがスクライブラインを専有する長さは従来の0.
3 (m )程度に比べて1程度に゛縮小されるが、更
に層数が増せば縮小率は更に増大し1例えば12層に於
ては上近くに縮小することができる@ (g)発明の詳細 な説明したように本発明によれば電子ビームの直接路光
によって多層のパターンを菫ねて描画する際に、スクラ
イブライン上に配置されるチップ位置合わせマークの専
有面積を縮小することができ、スクライブラインの他用
途に使用し得る面積が増大する0 従9て本発明は半導体装置の製造工程に有効である。
Therefore, when exposing 6 layers as in the conventional example, the length of one chip mark required is approximately 98 [μm], and in the method of the present invention, each chip corner is Since chip marks on two sides are required, the total length is a little less than 0.2 (m).In this way, in the case of 6 layers, the length of the chip mark occupying the scribe line is the same as the conventional length of 0.2 (m).
It is reduced to about 1 compared to about 3 (m), but if the number of layers is further increased, the reduction rate will further increase, and for example, with 12 layers, it can be reduced to near the top (g) Invention As described in detail, the present invention makes it possible to reduce the exclusive area of the chip alignment mark placed on the scribe line when drawing a multilayer pattern in a convergent manner using the direct path light of an electron beam. Therefore, the present invention is effective in the manufacturing process of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のチップマークの形状及び問題点を示す上
面図(イ)及びA−A矢視断面図(0)、第2図は従来
のチップマークの配Re示す模式上面図。 第3図は本発明の方法に用いるチップマークの形状及び
配置を示す一実施例の模式上面図(イ)及びその部分拡
大図(ロ)である・ 図に於て、11はチップ領域、l 2y*+ 12Xx
et zy、、 12x、はスクライブライン、13a
* 13b*L3c、13dはチップコーナ、■B y
 、 l 4 a x *14b)’ m 14 bx
* 14c ’Is 14 cx* L 4dye L
4dxはチップマーク、SXs 、5Yt−SXt、5
Yt−5Xs−8YI−8X4.8Y4.8X8.SY
g、5Xa−8Yeはビーム走査方向矢印を示すO % 1121 (イ) (ロ) 第 2 図 莞 3 図
FIG. 1 is a top view (A) and a sectional view taken along the line A-A (0) showing the shape and problems of a conventional chip mark, and FIG. 2 is a schematic top view showing the arrangement of the conventional chip mark. FIG. 3 is a schematic top view (a) and a partially enlarged view (b) of an example showing the shape and arrangement of chip marks used in the method of the present invention. In the figure, 11 is a chip area, l 2y*+ 12Xx
et zy,, 12x is the scribe line, 13a
*13b*L3c, 13d are chip corners, ■B y
, l 4 a x *14b)' m 14 bx
* 14c 'Is 14 cx* L 4dye L
4dx is chip mark, SXs, 5Yt-SXt, 5
Yt-5Xs-8YI-8X4.8Y4.8X8. S.Y.
g, 5Xa-8Ye indicate the beam scanning direction arrow.

Claims (1)

【特許請求の範囲】[Claims] 被処理基a上にスクライブラインによって画定配設され
た複数のチップ領域に、それぞれのチップ領域ごとに配
設されたチップマークを基準にして被数層のパターンを
重ねて直接描画する電子ビーム露光に際し、該チップ領
域の少なくとも三つ以上のコーナのそれぞれを画定する
各2本のスクライブラインに於ける該コーナの近傍領域
上に、それぞれスクライブラインの配役軸に平行な長辺
を有する長方形のチップマークを設け、パターン描画の
層ごとに各長方形チップマーク上の異なる場所をそれぞ
れのチップマークの長辺を横切る方向に電子ビームで走
査し、該走査線上のチップマークの座標位置を検出する
ことによってチップ領域の位置決めを行うことを特徴と
する電子ビーム露光方法。
Electron beam exposure in which patterns of several layers are directly drawn on a plurality of chip areas defined and arranged by scribe lines on the substrate a to be processed, overlapping each other based on the chip marks arranged for each chip area. In this case, a rectangular chip having a long side parallel to the cast axis of the scribe line is placed on each of the two scribe lines that define each of the at least three corners of the chip area in the vicinity of the corner. By providing a mark, scanning different locations on each rectangular chip mark for each layer of pattern drawing with an electron beam in a direction across the long side of each chip mark, and detecting the coordinate position of the chip mark on the scanning line. An electron beam exposure method characterized by positioning a chip area.
JP58195582A 1983-10-19 1983-10-19 Electron beam exposure method Pending JPS6086827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195582A JPS6086827A (en) 1983-10-19 1983-10-19 Electron beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195582A JPS6086827A (en) 1983-10-19 1983-10-19 Electron beam exposure method

Publications (1)

Publication Number Publication Date
JPS6086827A true JPS6086827A (en) 1985-05-16

Family

ID=16343530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195582A Pending JPS6086827A (en) 1983-10-19 1983-10-19 Electron beam exposure method

Country Status (1)

Country Link
JP (1) JPS6086827A (en)

Similar Documents

Publication Publication Date Title
US4849313A (en) Method for making a reticle mask
JP5792431B2 (en) Manufacturing method of semiconductor device
JP4040210B2 (en) Exposure method, reticle, and semiconductor device manufacturing method
JPS5968928A (en) Manufacture of semiconductor device
JPH021107A (en) Automatic verification apparatus of pattern for mask of reticle use
JPS6086827A (en) Electron beam exposure method
WO2021164608A1 (en) Mask applied to semiconductor photolithography technique, and photolithography technique method
JPH04252016A (en) Pattern drawing method
JP2008085007A (en) Multilayered wafer, its manufacturing method, and its inspection apparatus
JPH1069059A (en) Formation of reticle mask
JPH0629183A (en) Aligning method, aligner and manufacture of semiconductor device
JP2912505B2 (en) Method for manufacturing semiconductor device
JP2001102285A (en) Aligning mark
JP3381225B2 (en) Positioning method and positioning device
JPH07122479A (en) Chip having position indication in wafer and its manufacture
JPH01215022A (en) Manufacture of semiconductor device
JPS63942B2 (en)
JPH0387013A (en) Manufacture of semiconductor device
JP2988384B2 (en) Reticle assembly
JP3485481B2 (en) Method for manufacturing semiconductor device
KR20060133220A (en) Overlay mark and method for drawing the same
JPS588132B2 (en) Integrated circuit manufacturing method
JP2005195877A (en) Reticle and manufacturing method of semiconductor device
JP2892068B2 (en) Charged beam drawing method
JPS62273725A (en) Vernier pattern for evaluating mask alignment accuracy