JPS6086358A - Heat pump type air-conditioning hot-water supply device - Google Patents
Heat pump type air-conditioning hot-water supply deviceInfo
- Publication number
- JPS6086358A JPS6086358A JP19451183A JP19451183A JPS6086358A JP S6086358 A JPS6086358 A JP S6086358A JP 19451183 A JP19451183 A JP 19451183A JP 19451183 A JP19451183 A JP 19451183A JP S6086358 A JPS6086358 A JP S6086358A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- water supply
- hot water
- compressor
- coils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Steam Or Hot-Water Central Heating Systems (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は、ヒートポンプ式冷暖房給湯装置に係り、詳し
くは、室内コイル、室外フィルおよび給湯コイルの8つ
のコイルと圧縮機との間を冷媒循環回路で接続して、冷
房、暖房、給湯、冷房給湯およびデフロストの各運転態
様に切換運転可能にするとともに各運転態様の運転時に
利用していないコイルを低圧側に連通ずる如くしたヒー
トポンプ式冷暖房給湯装置の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type air-conditioning/heating/water supply system, and more specifically, eight coils, an indoor coil, an outdoor fill, and a hot water supply coil, are connected to a compressor by a refrigerant circulation circuit to provide cooling. This invention relates to an improvement in a heat pump type air-conditioning/heating/water supply device that is capable of switching between heating, hot water supply, cooling hot water supply, and defrosting modes of operation, and in which a coil that is not used during each mode of operation is connected to the low-pressure side. .
この種のヒートポンプ式冷暖房給湯装置としては、本出
願人が先に提案しており、例えば特願昭58−1496
5号(昭和58年1月81日出願、以下先願例という。This type of heat pump type air-conditioning/heating and hot water supply system was previously proposed by the present applicant, for example, in Japanese Patent Application No. 58-1496.
No. 5 (filed on January 81, 1981, hereinafter referred to as the earlier application example).
)ICより提案しているが、この先願例を第4図に基づ
き説明すると、この装置はつぎの如きものである。) has been proposed by IC, and the example of this prior application will be explained based on FIG. 4. This device is as follows.
(1)は圧縮機、(2)は室内コイル、(3)は室外コ
イル、(4)は給湯コイル、0!9は室内コイル(2)
および給湯コイル(4)から室外コイル(3)への冷媒
流れを減圧する膨張弁、α0は給湯ユニット(4)およ
び室外ユニット(3)から室内ユニット(2)への冷媒
流れを減圧する膨張弁、αηは受液器、11印、(IL
f21mは逆止弁であって、それぞれ室外コイル(3)
、室内コイル(2)、給湯コイル(4)への冷媒流れを
阻止するものであり、(9)はアキュムレータである。(1) is the compressor, (2) is the indoor coil, (3) is the outdoor coil, (4) is the hot water coil, and 0!9 is the indoor coil (2)
and an expansion valve that reduces the pressure of the refrigerant flow from the hot water supply coil (4) to the outdoor coil (3), and α0 is an expansion valve that reduces the pressure of the refrigerant flow from the hot water supply unit (4) and the outdoor unit (3) to the indoor unit (2). , αη is the liquid receiver, mark 11, (IL
f21m is a check valve, and each outdoor coil (3)
, which blocks the flow of refrigerant to the indoor coil (2) and the hot water supply coil (4), and (9) is an accumulator.
而して、これら各機器は(SVl)〜(SV、)の9つ
の電磁弁により各運転態様の各運転へ切換える切換機構
(A)を構成し、かつ各運転時利用していないコイルは
冷媒液溜め防止のために低圧側へ連通する如くなってい
る。Each of these devices constitutes a switching mechanism (A) that switches to each operation mode using nine solenoid valves (SVl) to (SV, ), and the coils that are not used during each operation are used as refrigerant. It is designed to communicate with the low pressure side to prevent liquid accumulation.
例えば、冷房運転時は、(SV2)、(SV4)、(S
V、)を開として、圧縮機(1)−室外コイル(3)−
逆止弁0沸−受液器αη−膨張弁ローー室内コイル(2
)−アキュムレータ(9)−圧縮機(1)の冷媒循環回
路で冷房運転が行われ、一方、このとき利用していない
給湯コイル(4)は(SV8)を開としてアキュムレー
タ(9)から圧縮機(1)へと低圧側に連通している。For example, during cooling operation, (SV2), (SV4), (S
Open the compressor (1) - outdoor coil (3) -
Check valve 0 boiling - Receiver αη - Expansion valve low - Indoor coil (2
) - Accumulator (9) - Compressor (1) refrigerant circulation circuit performs cooling operation, while the hot water supply coil (4), which is not in use at this time, opens (SV8) and connects the accumulator (9) to the compressor. (1) is connected to the low pressure side.
以下、暖房、給湯、冷房給湯、デフロスト尋者運転態様
の各運転も前記(SV)〜(SV、)の9つの電磁弁か
らなる切換機構(A)の容置を適宜開閉制御して各運転
へ切換える制御と、その時利用していないコイルを低圧
側へ連通する制御とを行っている◎すなわち、暖房運転
時は(SVl)、(SV、 ’)、(SV7)を開とし
て暖房運転を行い、利用していない給湯コイル(4)の
低圧側への連通には(SV8)を開とし、また、給湯運
転時はC5V )、(SV)、(SV7)を開と5
して給湯運転を行い、利用していない室内コイル(2)
の低圧側への連通には(SV4)を開とし、さらに冷房
給湯運転時には(SV ’)、(SV)、(SV、)t
Mト4
して冷房給湯運転を行い、利用していない室外コイル(
3)の低圧側への連通には(SV7)を開とし、また、
暖房運転時のデクロスト運転は、熱源を給湯ニア イル
(41とするために、(SV2)、(5V6)を開とし
、利用していない室内コイル(2)の低圧側への連通に
は(SV、)を開とL、給湯運転時のデクロスト運転は
、熱源を室内コイル(2)とするために、(SV2)、
(SV4)、(SV、)を開とし、利用していない給湯
コイル(4)の低圧側への連通には(SV8)を開とし
ている。Hereinafter, each operation of heating, hot water supply, cooling hot water supply, and defrost interrogation mode will be performed by controlling the opening and closing of the switching mechanism (A) consisting of the nine solenoid valves (SV) to (SV, ) as appropriate. ◎In other words, during heating operation, (SVl), (SV, '), and (SV7) are opened during heating operation. , open (SV8) to communicate with the low pressure side of the unused hot water supply coil (4), and open C5V), (SV), and (SV7) during hot water supply operation. Indoor coil that has been used but is not used (2)
(SV4) is opened for communication to the low pressure side, and (SV'), (SV), (SV,)t
Mt4 to perform cooling hot water supply operation, and connect the unused outdoor coil (
(SV7) is opened for communication to the low pressure side of 3), and
In the decrost operation during heating operation, (SV2) and (5V6) are opened in order to use the hot water supply coil (41) as the heat source, and (SV , ) is opened, L, decrost operation during hot water supply operation uses the indoor coil (2) as the heat source, (SV2),
(SV4) and (SV,) are left open, and (SV8) is left open for communication to the low-pressure side of the hot water supply coil (4) that is not in use.
以上の如き先願例によるときは、冷房、暖房、給湯、冷
房給湯、デフロストなど各運転時利用していないコイル
の低圧側への連通には各運転には直接使用しない弁を開
閉制御する電気制御回路を必要とし複雑化し、全体コス
トが高くつくなどの問題がある。In the case of the prior application example as mentioned above, in order to communicate with the low voltage side of the coil that is not used during each operation such as cooling, heating, hot water supply, cooling hot water supply, defrosting, etc., there is electricity that controls the opening and closing of valves that are not directly used for each operation. There are problems such as requiring a control circuit, complicating it, and increasing the overall cost.
本発明は、上記の点に鑑みこれを改良すべ〈発明したも
ので、本発明の目的とするところは、冷房、暖房、給湯
、冷房給湯、暖房運転時および給湯運転時のデフロスト
など各運転態様の各運転へ切換える切換機構、および前
記各運転時利用していないコイルの低圧側へ連通させる
ための弁制御回路を簡易化し、全体コストを安価にし、
これによって利用していないコイルに液冷媒が溜まらな
いようにして、圧縮機への液バツク防止および冷媒循環
量に不足を来すことなく安定運転を可能とすることであ
り、本発明の構成は、この目的達成のために室内コイル
、室外コイル、給湯コイルの8つのコイルと圧縮機との
間を冷媒循環回路で接続して冷房、暖房、給湯、冷房給
湯、デフロスト等の各運転態様に切換えるようにしたヒ
ートポンプ式冷暖房給湯装置において、前記室内コイル
、室外コイル、給湯コイルの8つのコイルの各−側に前
記圧縮機を含みバルブ類よりなり前記各運転態様に切換
える切換機構をそれぞれ接続し、一方、前記8つのコイ
ルの各他側に、各コイルからの流れを減圧し各コイルへ
の流れは減圧しない往復流を得る各膨張機構の各−側を
それぞれ接続するとともに該各膨張機構の常時低圧とな
る各他側を合流点に接続し、前記各運転態様の運転時に
利用していないコイルを低圧側へ連通する如くしたこと
を特徴とするヒートポンプ式冷暖房給湯装置としたこと
を特徴とする。The present invention has been made to improve the above-mentioned problems.The purpose of the present invention is to improve various operation modes such as cooling, heating, hot water supply, cooling hot water supply, defrosting during heating operation and hot water supply operation. The switching mechanism for switching to each operation, and the valve control circuit for communicating with the low pressure side of the coil that is not used during each operation are simplified, reducing the overall cost,
This prevents liquid refrigerant from accumulating in unused coils, prevents liquid from backing up to the compressor, and enables stable operation without causing a shortage of refrigerant circulation. To achieve this objective, a refrigerant circulation circuit is connected between the eight coils (indoor coil, outdoor coil, and hot water supply coil) and the compressor, and the operation mode is switched to cooling, heating, hot water supply, cooling hot water supply, defrosting, etc. In the heat pump type air-conditioning/heating/water supply system, a switching mechanism including the compressor and consisting of valves for switching between the respective operation modes is connected to each of the negative sides of the eight coils, the indoor coil, the outdoor coil, and the hot water supply coil. On the other hand, each side of each expansion mechanism that obtains a reciprocating flow that reduces the pressure of the flow from each coil and does not reduce the pressure of the flow to each coil is connected to the other side of each of the eight coils, and the negative side of each expansion mechanism is connected to the other side of each of the eight coils. The heat pump type air-conditioning/heating and hot water supply apparatus is characterized in that each other side having a low pressure is connected to a confluence point, and the coils that are not used during operation in each of the above-mentioned operation modes are communicated with the low pressure side. .
以下本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.
第1図は本発明に係るヒートポンプ式冷暖房給湯装置の
冷媒循環回路を示す一例、第2図、第8図はそれぞれ他
の冷媒循環回路例である。FIG. 1 shows one example of a refrigerant circulation circuit of a heat pump type air-conditioning/heating/hot-water supply apparatus according to the present invention, and FIGS. 2 and 8 show other examples of the refrigerant circulation circuit, respectively.
11)は圧縮機、(2)は室内コイル、(3)は室外コ
イル、(4)は給湯コイルでタンク(5b)内に収容さ
れており、(9)はアキュムレータ、曲、(13)、(
14)は出荷時閉鎖据付時開ける開閉弁である。11) is a compressor, (2) is an indoor coil, (3) is an outdoor coil, (4) is a hot water supply coil which is housed in the tank (5b), (9) is an accumulator, and (13), (
14) is an on-off valve that is closed during shipment and opened during installation.
また、(6)、(7)、(8)は第1.2.8.キャピ
ラリーチューブ、口0)、(1υ、(12は逆止弁であ
って、第1キヤピラリーチユーブ(6)は室内コイル(
2)からの流れを減圧し、逆止弁口αは室内コイル(2
)への流れを減圧せずに許容する如く第1キヤピラリー
チユーブ(6)に並列して設けられ、該第1キヤピラリ
ーチユーブ(6)と逆止弁(lσ1とで室内コイル(2
)側の膨張機構(B)を構成し、該膨張機構(B)を室
内コイル(2)の他側(2e)の配管(2b)へ接続し
、以下同様作用を行うように第2キヤピラリーチユーブ
(7)と逆止弁α1)とで室外コイル(3)側の膨張機
構(C)を構成し、該膨張機構(C)を室外コイル(3
)の他側(8e)の配管(8b)へ接続し、第3キヤピ
ラリーチユーブ(8)と逆止弁α1)とで給湯コイル(
4)億(1の膨張機# (D)を構成し、該膨張機構(
D)を給湯コイル(4)の他側(4e)の配管(4b)
へ接続する。而して各膨張機構(B)、(C)、(D)
の各後流側の低圧配管(2c)、(8c)、(4C)は
合流点(E)に合流する如く構成されている。Also, (6), (7), and (8) are in Section 1.2.8. Capillary tube, port 0), (1υ, (12 is a check valve, and the first capillary tube (6) is connected to the indoor coil (
2), and the check valve port α is connected to the indoor coil (2).
) is provided in parallel with the first capillary reach tube (6) to allow the flow to the indoor coil (2
) side, the expansion mechanism (B) is connected to the piping (2b) on the other side (2e) of the indoor coil (2), and the second capillary is connected to perform the same operation. The tube (7) and the check valve α1) constitute an expansion mechanism (C) on the outdoor coil (3) side, and the expansion mechanism (C) is connected to the outdoor coil (3).
) to the piping (8b) on the other side (8e), and the hot water coil (
4) Configure a billion (1) expander # (D), and the expansion mechanism (
D) to the piping (4b) on the other side (4e) of the hot water coil (4)
Connect to. Each expansion mechanism (B), (C), (D)
The low-pressure pipes (2c), (8c), and (4C) on the downstream side of each are configured to merge at a confluence point (E).
つぎに、(SVl)は圧縮機(1)吐出口から後述四路
切換弁(SV4)が実線時これを介し室内コイル(2)
の−側(2d)の配管(2a)または室外コイル(3)
の−側(8d)の配管(8a)への冷媒通路を開閉する
電磁弁、(SV、)は圧縮機(1)から給湯コイル(4
)の−側(4d)の配管(4a)への冷媒通路を開閉す
る電磁弁、(SV8)は給湯コイル(4)の−側(4d
)の配管(4a)からアキュムレータ(9)を介し圧縮
機(1)吸入口への冷媒通路を開閉する電磁弁、(SV
4)は四路切換弁でオフ作動時は実線の如く、オン作動
時は破線の如く切換わり、オフ作動降圧縮機(1)吐出
口からの冷媒通路は(SVI)を介し室内コイル(2)
の−側(2d)の配管(2a)へ連通し、一方、室外コ
イル(3)の−側(8d)の配管(8a)からアキュム
レータ(9)を介し圧縮機(1)吸入口へ連通し、また
、オン作動時は圧縮機(il吐出口からの冷媒通路は(
SVl)を介し室外コイル(3)の−側(8d)の配管
(8a)へ連通し、一方、室内コイル(2)の−側(2
d)の配管(2a)からアキュムレータ(9)を介し圧
縮機(1)吸入口へ連通さすものである。Next, (SVl) is a four-way switching valve (SV4) which will be described later from the discharge port of the compressor (1) when the solid line is connected to the indoor coil (2).
Piping (2a) or outdoor coil (3) on the negative side (2d)
The solenoid valve (SV,) that opens and closes the refrigerant passage to the piping (8a) on the - side (8d) is connected from the compressor (1) to the hot water coil (4).
) is a solenoid valve that opens and closes the refrigerant passage to the piping (4a) on the negative side (4d) of the hot water coil (4).
), a solenoid valve (SV
4) is a four-way switching valve that switches as shown by the solid line when it is off, and as shown by the broken line when it is on. )
It communicates with the piping (2a) on the - side (2d) of the outdoor coil (3), and on the other hand, it communicates with the suction port of the compressor (1) via the accumulator (9) from the piping (8a) on the - side (8d) of the outdoor coil (3). , Also, when the on-operation is activated, the refrigerant passage from the compressor (il discharge port) is (
SVl) to the - side (8d) of the outdoor coil (3), and on the other hand, the - side (2) of the indoor coil (2).
The piping (2a) of d) is connected to the suction port of the compressor (1) via the accumulator (9).
以上の如き電磁弁(SV )、(SV2)、(SV8)
オヨび四路切換弁(SV4’Iと圧縮機(1)により各
運転態様の運転へ切換制御するもので、これらにより切
換機構囚を構成し、該切換機構(A)は前記の如く室内
フィル(2)、室外フィル(3)、給湯フィル14)の
それぞれの−側の配管(2a)、(8a)、(4a)へ
接続されて冷媒循環回路を形成し、6弁の開閉制御によ
り各運転態様の運転が第1表の如く得られるようになっ
ている。Solenoid valves (SV), (SV2), (SV8) as above
The four-way switching valve (SV4'I) and the compressor (1) are used to control switching to each operation mode, and these constitute a switching mechanism, and the switching mechanism (A) is used for the indoor filter as described above. (2), the outdoor fill (3), and the hot water supply fill 14) are connected to the - side piping (2a), (8a), and (4a), respectively, to form a refrigerant circulation circuit, and each valve is controlled to open and close by six valves. The operating conditions are as shown in Table 1.
第1表(○印:開、×印:閉)
(注) SV4のオフは実線位置、オンは点線位置すな
わち、冷房時は(SVl)を開、(SV4)をオンし、
圧縮機(1)吐出口− (SVl) −(SV4)−室
外コイル(3)−キャピラリー(7)−低圧配管(8C
)−合流点(E)−逆止弁叫一室内コイル+21− (
5V4)−アキュムL’ −1+91−圧縮機(1)吸
入口のサイクルを形成して冷房し、このとき利用してい
ない給湯コイル(4)は、膨張機構CD)のキャピラリ
ー(8)−低圧配管(4c)−合流点(E)−逆止弁O
I−室内コイル121− (5V4)−アキュムレータ
(9)−圧縮機(1)吸入口へと低圧側へ連通する。Table 1 (○ mark: open, × mark: closed) (Note) SV4 off is in the solid line position, on is in the dotted line position, that is, when cooling, (SVl) is open, (SV4) is on,
Compressor (1) Discharge port - (SVl) - (SV4) - Outdoor coil (3) - Capillary (7) - Low pressure piping (8C
) - Confluence point (E) - Check valve scream 1 Indoor coil +21 - (
5V4) - Accum L' -1 + 91 - Compressor (1) Inlet cycle is formed to cool the water supply coil (4), which is not used at this time, is connected to the capillary (8) of the expansion mechanism CD) - low pressure piping (4c) - Junction (E) - Check valve O
I - Indoor coil 121 - (5V4) - Accumulator (9) - Compressor (1) communicates with the suction port to the low pressure side.
また、冷房給湯時は、(SV2)を開、(SV4)をオ
ンし、圧縮機(1)吐出口−(SV、)−給湯コイル(
4)−キャピラリー(8)−低圧配管(4c)−i&−
流点(E)−逆止弁叫一室内コイル+2) −(SV、
)−アキュムレータ(9)−圧縮機(1)吸入口のサイ
クルを形成して冷房給湯し、このとき利用していない室
外コイル(3)は、膨張機構(C)のキャピラリー(7
)−配管(8c)−合流点(E)−逆止弁(1(1−室
内コイル121− (SV4)−アキュムレータ(9)
−圧縮機(1)吸入口へと低圧側へ連通する。Also, when supplying hot water for cooling, open (SV2), turn on (SV4), compressor (1) discharge port - (SV, ) - hot water supply coil (
4) - Capillary (8) - Low pressure piping (4c) -i&-
Flow point (E) - check valve scream 1 indoor coil + 2) - (SV,
) - Accumulator (9) - Compressor (1) Inlet cycle is formed to supply cooling and hot water, and the outdoor coil (3) which is not used at this time is connected to the capillary (7) of the expansion mechanism (C).
) - Piping (8c) - Junction (E) - Check valve (1 (1 - Indoor coil 121 - (SV4) - Accumulator (9)
- communicates with the low pressure side to the compressor (1) inlet;
つぎに、給湯時は(SV、)を開とし、圧縮機(1)吐
出口−(5V2)−給湯コイル(4)−キャピラリ=(
8)−低圧配管(4c)−合流点(E)−逆止弁αB−
室外コイル(3)−(SV4)−アキュムレータ(9)
−圧縮機(1)吸入口のサイクルを形成して給湯し、こ
のとき、利用していない室内コイル(2)は、膨張機構
(B)のキャピラリー(6)−低圧配管(2c)−合流
点(E)−逆止弁a1)−室外コイル(31−(SV4
)−アキュムレータ(9)−圧縮機(1)吸入口へと低
圧側へ連通する。Next, when supplying hot water, open (SV,), compressor (1) discharge port - (5V2) - hot water supply coil (4) - capillary = (
8) - Low pressure piping (4c) - Confluence point (E) - Check valve αB -
Outdoor coil (3) - (SV4) - Accumulator (9)
- The compressor (1) inlet cycle is formed to supply hot water, and at this time, the unused indoor coil (2) is connected to the capillary (6) of the expansion mechanism (B) - low pressure pipe (2c) - confluence point (E) - Check valve a1) - Outdoor coil (31 - (SV4
) - accumulator (9) - communicates to the compressor (1) suction to the low pressure side.
また、暖房時は、(5V1)を開とし、圧縮機(1)吐
出ロー(SV ’I−(SV8)−室内コイル+21−
4−?ピラリ−(6)−低圧配管(2C)−合流点(E
)−逆止弁αD−室外コイル131− (5V4)−ア
キュムレータ(9)−圧縮機(1)吸入口のサイクルを
形成して暖房し、このとき利用していない給湯コイル(
4)は、膨張機構(D)のキャピラリー(9)−低圧配
管(4c)−合流点(E)−室外コイル+31−(5V
4)−アキュムレータ(9)−圧縮機(1)吸入口へと
低圧側へ連通する。Also, during heating, open (5V1) and compressor (1) discharge low (SV'I-(SV8)-indoor coil +21-
4-? Pillary (6) - Low pressure piping (2C) - Confluence (E
) - Check valve αD - Outdoor coil 131 - (5V4) - Accumulator (9) - Compressor (1) The inlet cycle is formed to perform heating, and the hot water coil (
4) is the capillary (9) of the expansion mechanism (D) - low pressure piping (4c) - confluence (E) - outdoor coil +31 - (5V
4) - Accumulator (9) - communicates to the compressor (1) suction to the low pressure side.
さらに、給湯時のデフロストおよび暖房時のデフロスト
は(SV)、(5V8)を開、(SV4)をyFンし、
圧縮機(1)吐出ロー (SV、) −(SV4)−室
外:l イル(31−キャピラリー(7)−低圧配管(
8C)−合流点(E)と流れ、合流点(E)から分流し
て、一方は、逆止弁111−室内コイル(2)−アキュ
ムレータ(9)−圧縮機(1)吸入口へ、他方は逆止弁
α2−給湯コイル+41− (5V8)−アキュムレー
タ(9)−圧縮機(1)吸入口へと流れ、二つのサイク
ルが形成され、室外コイル(3)の着繕をデフロストす
る。これはデフロスト運転では逆サイクルするために給
湯時は給湯コイル(4)へ、暖房時は室内コイル(2)
へそれぞれ悪影響があるので、熱源を給湯コイル(4)
と室内コイル(2)の2つとして同時に2つから熱を取
得して悪影響を軽減するものである。Furthermore, for defrost during hot water supply and defrost during heating, open (SV), (5V8), turn (SV4) on,
Compressor (1) Discharge low (SV,) - (SV4) - Outdoor: l Ile (31 - Capillary (7) - Low pressure piping (
8C) - Flows from the confluence point (E) and branches from the confluence point (E), one to the check valve 111 - indoor coil (2) - accumulator (9) - compressor (1) suction port, the other flows to check valve α2 - hot water supply coil +41 - (5V8) - accumulator (9) - compressor (1) suction, two cycles are formed and the outdoor coil (3) is defrosted. During defrost operation, the cycle is reversed, so when hot water is being supplied, it is sent to the hot water coil (4), and when heating, it is sent to the indoor coil (2).
Since each has an adverse effect on the heat source, the hot water coil (4)
and the indoor coil (2), thereby simultaneously acquiring heat from both to reduce the negative effects.
第1図例は以上の如きものであるが、つぎに第2図例に
ついて説明すると、第2図例は第1図例と異なるところ
は、切換機構(5)の電磁弁(SVl)の位置が、第1
図例では圧縮機は)と四路切換弁(SV4)、との間に
介設されていたものを、第2図例では回路切換弁(SV
、)と室外コイル(3)との間に介設したもので、これ
によh装置の開閉制御は第1図例と若干異なるがほぼ同
様であるので説明は省略する。The example in Figure 1 is as described above, but next we will explain the example in Figure 2.The example in Figure 2 differs from the example in Figure 1 in the position of the solenoid valve (SVl) of the switching mechanism (5). But the first
In the example shown, the compressor is interposed between the four-way switching valve (SV4) and the four-way switching valve (SV4), whereas in the example shown in FIG.
, ) and the outdoor coil (3), and the opening/closing control of the device is slightly different from the example shown in FIG. 1, but is almost the same, so a description thereof will be omitted.
また、第8図例も切換機構(A)の設計変更例で、切換
機構FA)として前記先願例の第4図の切換機構(A)
と類似し、異なる点は第8図例においては第4図例の膨
張弁a粉、αeと直列に設けた電磁弁(5V6)、(S
V、 )がないものであり、本第8図例では、この2つ
の電磁弁がなくても本発明装置の回路構成が可能である
ことを示し、その弁の開閉制御は前記第4図と同様であ
るので説明を省略する。その他切換機構例としては覆々
のものが用いられる。The example in FIG. 8 is also an example of a design change of the switching mechanism (A), and the switching mechanism (A) in FIG. 4 of the prior application example is used as the switching mechanism FA).
Similar to, but different from, the example in Figure 8, the solenoid valve (5V6), (S
The example in Fig. 8 shows that the circuit configuration of the device of the present invention is possible without these two solenoid valves, and the opening/closing control of the valves is similar to that shown in Fig. 4 above. Since they are similar, the explanation will be omitted. There are many other examples of switching mechanisms that can be used.
なお、前記第1〜第8図例では前記膨張機構CB)、(
C)、(D)はそれぞれのキャピラリーチューブ(6)
、(7)、(8)、逆止弁[lα、C11)、C2の組
合せで各コイルからの流れを減圧し、各コイルへの流れ
は減圧しない往復流を有する如くしたが、同様作動を呈
する全開、全閉、膨張制御する電気式膨張弁(電気式膨
張弁の具体例は特開昭56−49856号公報参照)に
それぞれ置換することは可能である。In addition, in the examples in FIGS. 1 to 8, the expansion mechanisms CB), (
C) and (D) each capillary tube (6)
, (7), (8), The flow from each coil was reduced in pressure by a combination of check valves [lα, C11) and C2, and the flow to each coil was made to have a reciprocating flow without pressure reduction, but the same operation was performed. It is possible to replace the valve with an electric expansion valve that controls full open, fully close, and expansion (see Japanese Patent Application Laid-Open No. 56-49856 for a specific example of an electric expansion valve).
本発明例は以上の如きものであるが、本発明は室内コイ
ル(2)、室外コイル(3)、給湯コイル(4)の8つ
のコイルと圧縮機は)との間を冷媒循環回路で接続して
冷房、暖房、給湯、冷房給湯、デフロスト等の各運転態
様に切換えるようにしたヒートポンプ式冷暖房給湯装置
において、前記室内コイル(2)、室外コイル(3)、
給湯コイル(4)の8つのユニットの各−側(2d)、
(8d)、(4d)に、前記圧縮機(1)を含みバルブ
類よりなり前記各運転態様に切換える切換機構(A)を
それぞれ接続し、一方、前記8つのコイルの各他側(2
e)、(8e)、(4e)に、各コイルからの流れを減
圧し、各コイルへの流れは減圧しない往復流を得る各膨
張機構(B)、(C)、(D)の各−側(B )、(C
)、(Dl)をそれぞれ接続するとともに1
該各膨張機構(B)、(C)、(D)の常時低圧となる
各他側(B2)、(C2)、(B2)を合流点(E)に
接続し、前記各運転態様の運転時に利用していないコイ
ルを低圧側へ連通する如くしたことを特徴とするヒート
ポンプ式冷暖房給湯装置としたことにより、冷房、暖房
、給湯、冷房給湯、暖房運転時および給湯運転時のデフ
ロストなど各運転態様の各運転へ切換える切換機構(A
)および前記各運転時利用していないユニットの低圧側
へ連通さす各膨張機構は、特に、各膨張機構は冷媒循環
回路構成上必要なものであるが、この各膨張機構(Bl
、(C1、(D)を各低圧配管(2c)、(8c)、(
4c)で合流点(E)へ合流さすという特異な構成とし
たので、制御する弁数が少くても同様機能が発揮できる
ようになり、結局容置を開閉制御する電気回路が簡易化
され、従って全体コストの安価な前記各運転態様の各運
転が得られ、また、利用していないユニットに液冷媒が
溜まらないので、圧縮機への液バツクのおそれがなくな
り、また循環冷媒量の不足も来たさないので、前記各運
転態様の各運転が安定して行えるという特徴がある0The example of the present invention is as described above, but the present invention connects eight coils, the indoor coil (2), the outdoor coil (3), and the hot water supply coil (4), with the compressor through a refrigerant circulation circuit. In the heat pump type air-conditioning/heating/water supply device, the indoor coil (2), the outdoor coil (3),
Each negative side (2d) of the eight units of the hot water supply coil (4),
(8d) and (4d) are respectively connected to the switching mechanism (A) which includes the compressor (1) and is made up of valves and switches to each of the operating modes, while the other side (2
e), (8e), and (4e), each expansion mechanism (B), (C), and (D) that reduces the pressure of the flow from each coil and obtains a reciprocating flow without reducing the pressure of the flow to each coil. Side (B), (C
) and (Dl) respectively, and connect the other sides (B2), (C2), and (B2) of the expansion mechanisms (B), (C), and (D), which are always at low pressure, to the confluence point (E ), and the coils that are not used during each of the above operating modes are connected to the low-pressure side.The heat pump type air-conditioning, heating, and hot-water supply system is characterized in that the coils are connected to the A switching mechanism (A
) and each expansion mechanism that communicates with the low pressure side of the unit that is not used during each operation, in particular, each expansion mechanism is necessary for the refrigerant circulation circuit configuration.
, (C1, (D) to each low pressure piping (2c), (8c), (
Because of the unique configuration in which the valves merge into the junction point (E) at point 4c), the same function can be achieved even with a small number of valves to control, and in the end, the electric circuit that controls opening and closing of the container is simplified. Therefore, each of the above-mentioned operation modes can be performed at a low overall cost, and since liquid refrigerant does not accumulate in unused units, there is no risk of liquid backflow to the compressor, and there is no shortage of circulating refrigerant. The feature is that each operation of each of the above-mentioned operation modes can be performed stably.
第1図は本発明に係るヒートポンプ式冷暖房給湯装置の
冷媒循環回路の一例を示し、第2図、第8図は同冷媒循
環回路のそれぞれ他の例、第4図は先願に係るヒートポ
ンプ式冷暖房給湯装置の冷媒循環回路を示す図である。
l・・・圧縮機、 2・・・室内コイル、8・・・室外
コイル、 4・・・給湯コイル、A・・・切換機構、
B、 C,D・・・膨張機構、E・・・合流点。
以上
16−
第1図FIG. 1 shows an example of a refrigerant circulation circuit of a heat pump type air-conditioning/heating/water supply device according to the present invention, FIGS. 2 and 8 show other examples of the same refrigerant circulation circuit, and FIG. FIG. 2 is a diagram showing a refrigerant circulation circuit of an air conditioning/heating/hot water supply device. l...Compressor, 2...Indoor coil, 8...Outdoor coil, 4...Hot water supply coil, A...Switching mechanism,
B, C, D... Expansion mechanism, E... Confluence point. 16- Figure 1
Claims (1)
コイル(4)の8つのコイルと圧縮機(1)との間を冷
媒循環回路で接続して冷房、暖房、給湯、冷房給湯、デ
フロスト等の各運転態様に切換えるようにしたヒートポ
ンプ式冷暖房給湯装置において、前記室内コイル(2)
、室外コイル(3)、給湯コイル(4)の8つのコイル
の各−側(2d)、(8d)、(4d)に、前記圧縮機
(1)を含みバルブ類よりなり前記各運転態様に切換え
る切換機構囚をそれぞれ接続し、一方、前記8つのコイ
ルの各他側(2e)、(8e)、(46)に、各コイル
からの流れを減圧し、各コイルへの流れは減圧しない往
復流を得る各膨張機構(B)、(C)S(D)の各−側
(B1)、(C1)、(Dl)をそれぞれ接続するとと
もに該各膨張機構(B)、(C)、(D)の常時低圧と
なる各他側(B2)、(C2)、(B2)を合流点(E
)に接続し、前記各運転態様の運転時に利用していない
コイルを低圧側へ連通する如くしたことを特徴とするヒ
ートポンプ式冷暖房給湯装置。(1) A refrigerant circulation circuit connects eight coils: indoor coil (2), outdoor coil (31), and hot water supply coil (4) to the compressor (1) for cooling, heating, hot water supply, cooling hot water supply, and defrosting. In the heat pump type air-conditioning/heating water supply device which is configured to switch to each operation mode such as, the indoor coil (2)
, the outdoor coil (3), and the hot water supply coil (4), each negative side (2d), (8d), (4d) of the eight coils includes the compressor (1) and valves, and is adapted to each of the operating modes. On the other hand, the flow from each coil is reduced in pressure to the other side (2e), (8e), and (46) of the eight coils, and the flow to each coil is reciprocated without pressure reduction. Connect the negative sides (B1), (C1), (Dl) of each expansion mechanism (B), (C) and S (D) that obtain the flow, respectively, and connect the expansion mechanisms (B), (C), ( The other sides (B2), (C2), and (B2), which always have low pressure of D), are connected to the confluence point (E
), and the coils which are not used during each of the above-mentioned operation modes are connected to the low pressure side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19451183A JPS6086358A (en) | 1983-10-17 | 1983-10-17 | Heat pump type air-conditioning hot-water supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19451183A JPS6086358A (en) | 1983-10-17 | 1983-10-17 | Heat pump type air-conditioning hot-water supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6086358A true JPS6086358A (en) | 1985-05-15 |
Family
ID=16325741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19451183A Pending JPS6086358A (en) | 1983-10-17 | 1983-10-17 | Heat pump type air-conditioning hot-water supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6086358A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11020948B2 (en) | 2017-09-28 | 2021-06-01 | Wilsonart Llc | High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816161A (en) * | 1981-07-22 | 1983-01-29 | 株式会社日立製作所 | Hot-water supply air conditioner |
-
1983
- 1983-10-17 JP JP19451183A patent/JPS6086358A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5816161A (en) * | 1981-07-22 | 1983-01-29 | 株式会社日立製作所 | Hot-water supply air conditioner |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11020948B2 (en) | 2017-09-28 | 2021-06-01 | Wilsonart Llc | High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4766734A (en) | Heat pump system with hot water defrost | |
JPH0232546B2 (en) | ||
JPH0331666A (en) | Heat pump type air conditioner | |
US5372013A (en) | Quick cooling air conditioning system | |
JPS6086358A (en) | Heat pump type air-conditioning hot-water supply device | |
JPS5997462A (en) | Defrosting circuit for heat pump | |
JPS592454Y2 (en) | Heat pump refrigeration equipment | |
KR100484635B1 (en) | Expansion Valve of Heat Pump System for Automobile | |
JPS6244277Y2 (en) | ||
JPH0512628B2 (en) | ||
JPS59219667A (en) | Air conditioner | |
JPS5971963A (en) | Heat pump type refrigeration cycle | |
JPS6117873A (en) | Air-conditioning hot-water supply device | |
JPS59112161A (en) | Refrigerator | |
JP2666331B2 (en) | Heat pump type accumulator cycle | |
JPS62237260A (en) | Defrostation control method of heat pump type air conditioner | |
JP2983869B2 (en) | Air conditioner, cooling operation method thereof, and method of separating outdoor unit and indoor unit | |
JPS60140071A (en) | Heat pump air-conditioning hot-water supply device | |
JPH04186062A (en) | Heat pump type air conditioning machine | |
JPS6146878A (en) | Pefrigerator | |
JPS6321462A (en) | Air conditioner | |
JPH03255864A (en) | Heat pump type air conditioner | |
JPS5926224B2 (en) | Heat pump air conditioner | |
JPH05340625A (en) | Air conditioner | |
JPS61211670A (en) | Heat pump type refrigerant controller |