JPS6086356A - Air-conditioning hot-water supply device - Google Patents

Air-conditioning hot-water supply device

Info

Publication number
JPS6086356A
JPS6086356A JP19405583A JP19405583A JPS6086356A JP S6086356 A JPS6086356 A JP S6086356A JP 19405583 A JP19405583 A JP 19405583A JP 19405583 A JP19405583 A JP 19405583A JP S6086356 A JPS6086356 A JP S6086356A
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
water supply
heating
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19405583A
Other languages
Japanese (ja)
Inventor
弘 安田
久平 石羽根
千秋 隆雄
天羽 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19405583A priority Critical patent/JPS6086356A/en
Priority to DE8484109370T priority patent/DE3476577D1/en
Priority to EP19840109370 priority patent/EP0134015B1/en
Publication of JPS6086356A publication Critical patent/JPS6086356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Nozzles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヒートポンプ式の冷暖房と同時に給湯を行なう
装置に係り、冷房、暖房、給湯の運転を選択的に行なう
ことができ、エネルギ効果が向上し、経済性が高く、安
定した運転が行える冷暖房給湯装置に関するものである
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heat pump type device that performs heating and cooling as well as supplying hot water at the same time, and is capable of selectively operating cooling, heating, and hot water supply, improving energy efficiency. This invention relates to an air-conditioning, heating, and hot-water supply system that is highly economical and capable of stable operation.

〔発明の背景〕[Background of the invention]

従来技術を第1図より説明する。図において、1は圧縮
機、2は四方弁、3は給湯用蓄熱槽、4は該蓄熱槽内用
熱交換器、5は利用側熱交換器、6は熱源側熱交換器、
7Aは暖房時に開となる逆止弁・ 7Bは冷房時に開と
なる逆止弁、8は−55−頁 冷房用膨張弁、9は暖房用膨張弁、Aは給湯用回路の出
口が冷暖房サイクルの回路と合流する点を示す。この構
成における暖房時の冷媒の流れを実線で、冷暖時の冷媒
の流れを破線で示す。暖房時には、圧縮機1から吐出さ
れた冷媒は利用側熱交換器50回路と給湯用熱交換器4
0回路とに分岐し、合流点Aで合流し、暖房用膨張弁9
、熱源側熱交換器6を通過後圧縮機1に戻り暖房作用を
行う。冷暖時には、圧縮機1から吐出された冷媒は熱源
側熱交換器6の回路と給湯用熱交換器4の回路とに分岐
し、合流点Aで合流し、冷房用膨張弁8、利用側熱交換
器5を通過後圧縮機1に戻り冷房作用を行う◎ この様な従来技術では、暖房時には、給湯と同時に暖房
運転が行われる冷媒回路が形成されるため、給湯槽の温
度レベルが十分高く給湯は不要であるが、暖房運転が必
要な場合、冷媒回路の高圧圧力が異常に上昇するという
問題点、又、逆に暖房が必要で給湯温度が低い場合には
冷媒の凝縮能力が大きい給湯槽での放熱量が増加してし
まい必−62,−頁 要な暖房能力が得られないという冷媒回路上の不安定に
関する問題があった。これらの問題点は暖房運転は不要
であるが、給湯が必要な場合にも同様に生じうる。また
、冷房運転時においても常時給湯と冷房運転を行う冷媒
回路のtめ、給湯は必要であるが、冷房は不要、給湯は
不要であるが、冷房は必要な場合に対向することができ
ない。即ち、各運転が選択的に行えないという問題点が
あった。また、冷媒回路の構成上の問題点として合流点
11は常に高圧となる必要があるため、2個の膨張弁8
.9と2個の逆止弁7A、7B’i使用した構成にする
必要があり、正逆両用の一個の膨張弁で置きかえること
ができないためサイクル構成が複雑となるという欠点も
ある。
The prior art will be explained with reference to FIG. In the figure, 1 is a compressor, 2 is a four-way valve, 3 is a heat storage tank for hot water supply, 4 is a heat exchanger for the heat storage tank, 5 is a user side heat exchanger, 6 is a heat source side heat exchanger,
7A is a check valve that opens during heating, 7B is a check valve that opens during cooling, 8 is an expansion valve for cooling, 9 is an expansion valve for heating, and A is a hot water supply circuit outlet that is connected to the heating and cooling cycle. Indicates the point where the circuit merges with the circuit. In this configuration, the flow of refrigerant during heating is shown by a solid line, and the flow of refrigerant during heating and cooling is shown by a broken line. During heating, the refrigerant discharged from the compressor 1 is transferred to the user side heat exchanger 50 circuit and the hot water supply heat exchanger 4.
0 circuit, merges at confluence point A, and connects heating expansion valve 9.
After passing through the heat source side heat exchanger 6, it returns to the compressor 1 and performs a heating action. During cooling and heating, the refrigerant discharged from the compressor 1 branches into the circuit of the heat source side heat exchanger 6 and the circuit of the hot water supply heat exchanger 4, joins at the confluence point A, and is transferred to the cooling expansion valve 8 and the user side heat exchanger. After passing through the exchanger 5, it returns to the compressor 1 and performs a cooling action.◎ In such conventional technology, during heating, a refrigerant circuit is formed in which heating operation is performed at the same time as hot water supply, so the temperature level of the hot water tank is sufficiently high. Hot water supply is not required, but if heating operation is required, the problem is that the high pressure in the refrigerant circuit increases abnormally, and conversely, if heating is required and the hot water temperature is low, the hot water supply has a large condensing capacity of the refrigerant. There was a problem related to instability in the refrigerant circuit, in which the amount of heat dissipated in the tank increased and the necessary heating capacity could not be obtained. These problems do not require heating operation, but can similarly occur when hot water supply is required. In addition, even during cooling operation, the refrigerant circuit always performs hot water supply and cooling operation, so hot water supply is necessary but cooling is not necessary, hot water supply is not necessary, but cooling cannot be performed when necessary. That is, there was a problem that each operation could not be performed selectively. In addition, as a problem in the configuration of the refrigerant circuit, the confluence point 11 must always be at high pressure, so the two expansion valves 8
.. 9 and two check valves 7A and 7B'i, and it cannot be replaced with a single expansion valve for both forward and reverse use, which also has the drawback of complicating the cycle configuration.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、常時安定して給湯運転、冷暖房運転全
選択的に行うことのできる冷暖房給湯装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an air-conditioning/heating-water supply device that can consistently and stably perform hot water supply operation and cooling/heating operation selectively.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、圧縮機の吐7−頁 出ガス全量を給湯用熱交換器に導ひき給湯熱源とした後
、四方弁を介し冷房運転と暖房運転とに冷媒回路を切換
えると共に、出入口側に夫々開閉弁を備えた冷媒封入量
調整タンクの出入口側経路を、各運転時に冷媒回路の高
圧となる経路と低圧となる経路に夫々接続し、上記開閉
弁の開閉状態を選択することにより、冷媒回路の有効循
環冷媒量を調節し、冷媒の過冷却度を変化させて、熱交
換器の伝熱面積を変え。各運転モード全選択的に行い得
るように構成した特徴を有する。
In order to achieve the above object, the present invention introduces the entire amount of gas discharged from the compressor to a heat exchanger for hot water supply and uses it as a heat source for hot water supply, and then switches the refrigerant circuit between cooling operation and heating operation via a four-way valve. At the same time, the inlet/outlet paths of the refrigerant filling amount adjustment tank, each equipped with an on-off valve on the inlet/outlet side, are connected to a high-pressure path and a low-pressure path of the refrigerant circuit during each operation, respectively, and the open/close state of the on-off valve is selected. By doing so, the amount of effective circulating refrigerant in the refrigerant circuit is adjusted, the degree of subcooling of the refrigerant is changed, and the heat transfer area of the heat exchanger is changed. It has a feature that it is configured to be able to selectively perform each driving mode.

また第2の発明は、上記第1の発明の構成に加え、膨張
弁に並列に第1パイi4ス開閉弁を設け、熱源側熱交換
器と四方弁との間に、第2膨張弁と第2バイパス開閉弁
を並列接続した経路を設け、上記開閉弁及びバイパス開
閉弁の開閉状態を選択することにより、冷媒回路の有効
循環冷媒量を調整し、冷媒の過冷却度を変化させて、熱
交換器の伝熱面積を変え、各運転モードを選択的に行な
い得るようにすると共に、夏期の給湯のみの運転におい
て、冷暖房用熱交換装置では熱交換作用がほとんと行な
われないようにし、該熱交換装置が凍結しないように構
成した特徴を有する。
In addition to the configuration of the first invention, a second invention provides a first piezo on-off valve in parallel with the expansion valve, and a second expansion valve and a second expansion valve are provided between the heat source side heat exchanger and the four-way valve. By providing a path in which the second bypass on-off valves are connected in parallel and selecting the open/close states of the on-off valves and the bypass on-off valves, the amount of effective circulating refrigerant in the refrigerant circuit is adjusted and the degree of subcooling of the refrigerant is changed, The heat transfer area of the heat exchanger is changed so that each operation mode can be selectively performed, and the heat exchange device for heating and cooling has almost no heat exchange action when operating only for hot water supply in the summer, The heat exchange device is characterized in that it does not freeze.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第2図にもとすき説明する。1
0は圧縮機で、吐出側は吐出配管10aにより給湯用蓄
熱槽13の中に設けられている給湯用の第1利用熱交換
器14に接続されており、吸入側は配管10bにより四
方弁12に接続されている。15は冷暖房用蓄熱槽で、
内部には冷暖房用第2利用側熱交換器16が設けられて
おり、片側は配管16aにより上記四方弁12に接続さ
れ、他側は配管16bにより冷暖房用膨張弁18に接続
されている。17は熱源側熱交換器で、片側は配管17
aにより上記冷暖房用膨張弁18に接続されており、他
側は配管17bにより上記四方弁12に接続されている
。19は冷媒封入量調節用タンク(以下冷媒タンクと呼
ぶ)で、出入口側は第1開閉弁11aと第2開閉弁11
b’i接続し、第1開閉弁11a側経路は、第2利用側
熱交換器16より四方弁12に至る配管16aに接続さ
れ、第2開閉弁11b側経路は熱源側熱交換器17より
四−頁 方弁12に至る配管17bに接続されている。加は蛇口
である。
An embodiment of the present invention will be explained below with reference to FIG. 1
0 is a compressor, the discharge side is connected to the first utilization heat exchanger 14 for hot water supply provided in the heat storage tank 13 for hot water supply through a discharge piping 10a, and the suction side is connected to a four-way valve 12 through a piping 10b. It is connected to the. 15 is a heat storage tank for heating and cooling;
A second user-side heat exchanger 16 for heating and cooling is provided inside, and one side is connected to the four-way valve 12 through a pipe 16a, and the other side is connected to an expansion valve 18 for heating and cooling through a pipe 16b. 17 is a heat exchanger on the heat source side, and one side has piping 17
A is connected to the cooling/heating expansion valve 18, and the other side is connected to the four-way valve 12 through a pipe 17b. 19 is a tank for adjusting the amount of refrigerant sealed (hereinafter referred to as a refrigerant tank), and the inlet/outlet side has a first on-off valve 11a and a second on-off valve 11.
b'i connection, the first on-off valve 11a side path is connected to the piping 16a from the second usage side heat exchanger 16 to the four-way valve 12, and the second on-off valve 11b side path is connected from the heat source side heat exchanger 17. It is connected to the piping 17b leading to the four-way valve 12. Add is a faucet.

次に給湯、暖房運転時の冷媒の作動を図に従って説明す
る。冷媒の流れは図中実線矢印の如くなる。即ち、圧縮
機1oから吐出された高温高圧冷媒は先ず給湯用第1利
用側熱交換器14に流入し蓄熱槽13の水を温め、その
後四方弁12全経て冷暖房用第2利用側熱交換器16に
流入し、蓄熱槽15内の媒体(水等)を加熱する。次に
冷媒は膨張弁18で減圧されて熱源側熱交換器17に流
入し、同熱交換器から熱を得て蒸発し、四方弁12全通
って圧縮機10に戻る。
Next, the operation of the refrigerant during hot water supply and heating operations will be explained according to the diagram. The flow of the refrigerant is as shown by the solid arrow in the figure. That is, the high-temperature, high-pressure refrigerant discharged from the compressor 1o first flows into the first user-side heat exchanger 14 for hot water supply to warm the water in the heat storage tank 13, and then passes through the entire four-way valve 12 to the second user-side heat exchanger for air conditioning. 16 and heats the medium (water, etc.) in the heat storage tank 15. Next, the refrigerant is depressurized by the expansion valve 18, flows into the heat source side heat exchanger 17, obtains heat from the heat exchanger, evaporates, and returns to the compressor 10 through the four-way valve 12.

上記冷媒回路において、暖房と給湯全同時に必要とする
場合の運転モードについて説明する。この場合は、例え
ば給湯用蓄熱槽13及び冷暖房用蓄熱槽15の水温が、
両方とも低い場合で、第1利用側熱交換器14および第
2利用側熱交換器16ヲ十分に使って、冷媒回路の性能
を十分に発揮する必要がある。第1の開閉弁11aを閉
じ、第2の開閉弁11b’e開放して運転を行うと、冷
媒タンク19内は10、頁 低圧になり冷媒がたまらず、冷媒回路内の封入冷媒はす
べて冷媒回路を循環し有効に利用される。
In the above-mentioned refrigerant circuit, an operation mode when both heating and hot water supply are required at the same time will be described. In this case, for example, the water temperature of the hot water supply heat storage tank 13 and the cooling/heating heat storage tank 15 is
If both are low, it is necessary to fully utilize the first usage-side heat exchanger 14 and the second usage-side heat exchanger 16 to fully demonstrate the performance of the refrigerant circuit. When the first on-off valve 11a is closed and the second on-off valve 11b'e is opened for operation, the pressure inside the refrigerant tank 19 becomes low and no refrigerant accumulates, and all of the refrigerant sealed in the refrigerant circuit becomes refrigerant. It circulates through the circuit and is used effectively.

次に、給湯が不要で暖房が必要の場合の運転モードにつ
いて説明する。この場合は、たとえば、蓄熱槽13内の
水温t1は十分に高いが、蓄熱槽15内の水温t2はま
だ低く、さらに加熱する必要がある場合に相当する。こ
の場合、第2利用側熱交換器16は、第1利用側熱交換
器14より低い温度にさらされるため熱交換器14で冷
媒はほとんど凝縮せず熱交換器16で凝縮する。しかし
、冷媒回路内の封入冷媒量が一定量であれば、必然的に
冷媒が第2利用側熱交換器16に溜められることになる
。その結果、熱交換器16は液冷媒領域が多くなり、凝
縮器としての役目が低下するので、圧縮機10の吐出圧
力(凝縮圧力)は上昇する。凝縮圧力に相当する冷媒飽
和温度が水温tl’より高くなると、冷媒は、熱交換器
14でも凝縮をはじめ水温t1が上がり、不必要に給湯
温度を高めることになる。この際、冷媒回路内の冷媒量
を減らせば、熱交換器16が液封されることなく十分に
凝縮器として作動し、−11頁 蓄熱槽15の温度t2を高くできるとともに凝縮圧力が
上らないので、熱交換器14では冷媒が凝縮せず、蓄熱
槽13内の水はほとんど加熱されない。このように冷媒
封入量を調節するためには、第2開閉弁11bを閉じて
、第1開閉弁11aを開き、さらに冷媒タンク19の温
度が凝縮圧力に相当する冷媒飽和温度より低い周囲に設
置されていればよい。このようにすると余剰冷媒は全て
冷媒タンク19に収納される。
Next, an explanation will be given of the operation mode when heating is required and hot water supply is not required. In this case, for example, the water temperature t1 in the heat storage tank 13 is sufficiently high, but the water temperature t2 in the heat storage tank 15 is still low, and corresponds to a case where further heating is required. In this case, since the second usage side heat exchanger 16 is exposed to a lower temperature than the first usage side heat exchanger 14, the refrigerant is hardly condensed in the heat exchanger 14 but is condensed in the heat exchanger 16. However, if the amount of refrigerant sealed in the refrigerant circuit is constant, the refrigerant will inevitably be stored in the second usage-side heat exchanger 16. As a result, the heat exchanger 16 has an increased liquid refrigerant area and its role as a condenser is reduced, so that the discharge pressure (condensation pressure) of the compressor 10 increases. When the refrigerant saturation temperature corresponding to the condensation pressure becomes higher than the water temperature tl', the refrigerant begins to condense in the heat exchanger 14, causing the water temperature t1 to rise, unnecessarily increasing the hot water supply temperature. At this time, if the amount of refrigerant in the refrigerant circuit is reduced, the heat exchanger 16 will be able to function as a condenser without being liquid-sealed, and the temperature t2 of the heat storage tank 15 can be increased, and the condensing pressure can be increased. Therefore, the refrigerant is not condensed in the heat exchanger 14, and the water in the heat storage tank 13 is hardly heated. In order to adjust the amount of refrigerant charged in this way, the second on-off valve 11b is closed, the first on-off valve 11a is opened, and the refrigerant tank 19 is installed in an area where the temperature is lower than the refrigerant saturation temperature corresponding to the condensing pressure. It would be fine if it had been done. In this way, all the surplus refrigerant is stored in the refrigerant tank 19.

次に給湯が必要で暖房が不要な場合の運転モードについ
て説明する。この場合には、第1開閉弁11a’iz閉
じ、第2開閉弁11b’に開き、冷媒タンク19を低圧
にする。冷媒タンク19は低圧側圧力(蒸発圧力)に相
当する冷媒飽和温度よりも高い周囲に設置されることに
よって、冷媒タンク19内冷媒は蒸発し冷媒ガスのみが
冷媒タンク19に存在し、冷媒回路内を循環1−る有効
冷媒量がふえる。
Next, we will explain the operation mode when hot water supply is required but heating is not required. In this case, the first on-off valve 11a'iz is closed, the second on-off valve 11b' is opened, and the refrigerant tank 19 is made to have a low pressure. By installing the refrigerant tank 19 in an environment that is higher than the refrigerant saturation temperature corresponding to the low pressure side pressure (evaporation pressure), the refrigerant in the refrigerant tank 19 evaporates and only refrigerant gas exists in the refrigerant tank 19, and the refrigerant gas in the refrigerant circuit The effective amount of refrigerant that circulates increases.

次に、給湯・冷房運転時の冷媒の作動を同じく第2図に
より説明する。冷媒の流れは、図中、破線矢印の如くな
る(四方弁12ヲ破線表示のように特開昭GO−8G3
5G(4) 切換える)。即ち、圧縮機10から吐出された高温高圧
冷媒は先ず、給湯用の第1利用側熱交換器14で放熱し
、次に四方弁12ヲ経て熱源用熱交換器17に流入し、
凹部で放熱して凝縮液化する。次に膨張弁18で減圧さ
れ、第2利用側熱交換器16で吸熱して蒸発し圧縮機1
0へ戻る。
Next, the operation of the refrigerant during hot water supply/cooling operation will be explained with reference to FIG. The flow of the refrigerant is as shown by the broken line arrow in the figure (the four-way valve 12 is shown by the broken line).
5G (4) Switch). That is, the high-temperature, high-pressure refrigerant discharged from the compressor 10 first radiates heat in the first user-side heat exchanger 14 for hot water supply, and then flows into the heat source heat exchanger 17 through the four-way valve 12.
It radiates heat in the recess and condenses into liquid. Next, the pressure is reduced by the expansion valve 18, and the second usage side heat exchanger 16 absorbs heat and evaporates, leaving the compressor 1
Return to 0.

上記冷媒回路において、冷房と給湯が同時に必要な場合
の運転モードについて説明する。この場合には、冷媒回
路内の循環冷媒量を多くすることによって熱源側熱交換
器17ヲ液で満たす。このようにすると熱交換器17で
は熱源(例えば空気)と殆んど熱交換を行わない。従っ
て、高温ガス冷媒のエネルギの全てを蓄熱槽13内に放
出できるので、給湯効果が高い。冷媒回路内循環量を多
くするためには第2開閉弁11b’e閉じ、第1開閉弁
11ai開くことにより1.媒タンク19ヲ低圧とする
In the refrigerant circuit described above, an operation mode when cooling and hot water supply are required at the same time will be described. In this case, the heat source side heat exchanger 17 is filled with liquid by increasing the amount of circulating refrigerant in the refrigerant circuit. In this way, the heat exchanger 17 hardly exchanges heat with the heat source (for example, air). Therefore, all of the energy of the high-temperature gas refrigerant can be released into the heat storage tank 13, resulting in a high hot water supply effect. In order to increase the amount of circulation in the refrigerant circuit, the second on-off valve 11b'e is closed and the first on-off valve 11ai is opened. The pressure in the medium tank 19 is set to low.

次に、冷房が不要で給湯のみが必要な場合の運転モード
について説明する。この場合には、上述の作動と同じで
あり、不要の冷房能力は蓄熱槽15に蓄熱しておけばよ
い。
Next, an explanation will be given of the operation mode when air conditioning is not required and only hot water supply is required. In this case, the operation is the same as that described above, and unnecessary cooling capacity may be stored in the heat storage tank 15.

一−13−頁 次に、冷房が必要で給湯が不要な場合の運転モードにつ
いて説明する。この場合には、第2開閉弁11b’i開
き、第1開閉弁11a f閉じると、冷媒タンク19内
に冷媒が溜まり、冷媒回路を循環する冷媒量が減少する
。循環冷媒量が減少すると熱源側熱交換器17が凝縮器
として作動するため、第1利用側熱交換器14ヲ含めて
凝縮器は大きくなる。その結果、凝縮圧力(吐出圧力)
は下がり、その飽和温度が水温1.より低くなると、第
1利用側熱交換器14では熱交換作用がほとんど行われ
なくなり、蓄熱槽13内の温水の温度t1ffi更に高
めることはない。
Page 1-13 Next, an explanation will be given of the operation mode when cooling is required and hot water supply is not required. In this case, when the second on-off valve 11b'i opens and the first on-off valve 11af closes, refrigerant accumulates in the refrigerant tank 19, and the amount of refrigerant circulating in the refrigerant circuit decreases. When the amount of circulating refrigerant decreases, the heat source side heat exchanger 17 operates as a condenser, so the size of the condenser including the first usage side heat exchanger 14 increases. As a result, the condensing pressure (discharge pressure)
decreases, and its saturation temperature is 1. When the temperature becomes lower, the first usage-side heat exchanger 14 hardly performs a heat exchange action, and the temperature t1ffi of the hot water in the heat storage tank 13 does not increase further.

尚、上記実施例において、第1開閉弁11aの径路は第
2利用側熱交換器16と四方弁との間の管路16mに接
続されているが第2利用側熱交換器16と膨張弁18と
の間の管路16bに接続されても、また・第2開閉弁1
1bの径路も、破線で示すように、熱源側熱交換器17
と膨張弁18との間の管路17mに接続されても上記実
施例と同様な作用効果を奏する。
In the above embodiment, the path of the first on-off valve 11a is connected to the pipe line 16m between the second usage-side heat exchanger 16 and the four-way valve; 18, the second on-off valve 1
The path 1b also connects to the heat source side heat exchanger 17, as shown by the broken line.
Even if it is connected to the pipe line 17m between the expansion valve 18 and the expansion valve 18, the same effects as in the above embodiment can be obtained.

第3図は本発明の他の実施例を示す。FIG. 3 shows another embodiment of the invention.

−14頁 この実施例が第2図の実施例と相異するところは、膨張
弁18に並列に第1バイパス開閉弁21ヲ配管接続し、
熱源側熱交換器17と四方弁12との間に、第2の膨張
弁nと第2バイパス開閉弁23ヲ並列接続した経路が設
けられ、第2開閉弁11bの経路は四方弁12と上記並
列経路の集合点部との間の管路5に接続され、また、第
1開閉弁11aの経路は、第2利用側熱交換器16から
膨張弁18と第1バイパス開閉弁21との集合点部に至
る管路nに接続されている。
-Page 14 This embodiment is different from the embodiment shown in FIG.
Between the heat source side heat exchanger 17 and the four-way valve 12, a path is provided in which the second expansion valve n and the second bypass on-off valve 23 are connected in parallel, and the path of the second on-off valve 11b is connected to the four-way valve 12 and the above-mentioned The path of the first on-off valve 11a is connected to the conduit 5 between the gathering point of the parallel path, and the path of the first on-off valve 11a connects from the second usage-side heat exchanger 16 to the gathering point of the expansion valve 18 and the first bypass on-off valve 21. It is connected to a conduit n leading to the point.

その他の部分は第2図の実施例と同様であるから同符号
を付しその構造説明を省略する。図中、実線矢印は暖房
時の冷媒の流通方向、破線矢印は冷房時の冷媒の流通方
向を示す。
Since the other parts are the same as those in the embodiment shown in FIG. 2, the same reference numerals are given and the structural description thereof will be omitted. In the figure, solid arrows indicate the direction of refrigerant flow during heating, and dashed arrows indicate the direction of refrigerant flow during cooling.

上記冷媒回路の作動は、暖房と給湯が同時に必要な場合
、暖房は必要で給湯は不要な場合、暖房は不要で給湯の
みが必要な場合及び冷房と給湯が同時に必要な場合、冷
房は必要で給湯は不要な場合の各運転モードについては
第2図の実施例と同様な作用を行なう。尚この場合、第
1バイパス開閉弁2】は閉じ、第2バイパス開閉弁nは
開いてぃ15頁 る。
The above refrigerant circuit operates when heating and hot water supply are required at the same time, when heating is required but hot water supply is not required, when heating is not required and only hot water supply is required, and when cooling and hot water supply are required at the same time, and when cooling is not required. Regarding each operation mode when hot water supply is not required, the same operation as in the embodiment shown in FIG. 2 is performed. In this case, the first bypass on-off valve 2] is closed, and the second bypass on-off valve n is open.

次に、冷房は不要で給湯のみが必要な場合の運転モード
について説明する。先ず第1開閉弁11mを開き、第2
開閉弁11bk閉じる。冷(暖)房用第2利用熱交換器
16で発生する冷房能力を蓄熱できない場合、又は、蓄
熱槽15内に水が満たされており、凍結により蓄熱槽や
配管の破損を防止したい場合には、第2バイパス開閉弁
23を閉じて、第1バイノIPス開閉弁21ヲ開ける。
Next, an explanation will be given of an operation mode in which cooling is not required and only hot water supply is required. First, open the first on-off valve 11m, and then open the second on-off valve 11m.
Close the on-off valve 11bk. When the cooling capacity generated by the second cooling (heating) heat exchanger 16 cannot be stored, or when the heat storage tank 15 is filled with water and it is desired to prevent damage to the heat storage tank or piping due to freezing. Then, the second bypass on-off valve 23 is closed and the first Bino-IP on-off valve 21 is opened.

この時の冷媒の流れを破線で示す。すなわち、圧縮機1
0ヲ出た高温冷媒は、給湯用第1利用側熱交換器14で
放熱し、凝縮液化し、第2の膨張弁nで減圧され、熱源
用熱交換器17で熱源(例えば空気)から熱を得て蒸発
しガス冷媒となって、第1バイパス開閉弁21を通り、
冷(暖)房用の第2利用側熱交換器16で若干過熱され
四方弁12ヲ通って圧縮機10へ吸入される。
The flow of refrigerant at this time is shown by a broken line. That is, compressor 1
The high-temperature refrigerant that has exited the water radiates heat in the first user-side heat exchanger 14 for hot water supply, condenses and liquefies, is depressurized in the second expansion valve n, and is transferred to the heat source heat exchanger 17 from the heat source (for example, air). It evaporates and becomes a gas refrigerant, which passes through the first bypass on-off valve 21.
It is slightly overheated in the second user-side heat exchanger 16 for cooling (heating), and is sucked into the compressor 10 through the four-way valve 12.

このように作動するため、第2利用側熱交換器16では
、はとんど冷房作用を行わず、蓄熱槽13の冷水が凍結
することなく機器の破損を引き起こすことはない。
Because it operates in this manner, the second usage-side heat exchanger 16 hardly performs a cooling action, and the cold water in the heat storage tank 13 does not freeze, thereby preventing damage to the equipment.

尚、上記実施例において、第1開閉弁11aの経路は管
路nに接続しているが、破線で示すように、管路16a
に接続されても同様な作用効果を奏する。
In the above embodiment, the path of the first on-off valve 11a is connected to the pipe line n, but as shown by the broken line, the path of the first on-off valve 11a is connected to the pipe line 16a.
Similar effects can be achieved even when connected to.

また、第2開閉弁11bの経路は管路5に接続されてい
るが、この経路も、破線で示すように熱源側熱交換器1
7かな膨張弁18と第1バイパス開閉弁21との集合点
列に至る管路穴に接続されても前記実施例と同様な作用
効果を奏する。
Further, the path of the second on-off valve 11b is connected to the pipe line 5, but this path is also connected to the heat source side heat exchanger 1 as shown by the broken line.
Even if it is connected to the conduit hole leading to the assembly point row of the 7-kana expansion valve 18 and the first bypass on-off valve 21, the same effects as in the embodiment described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説、明したように本発明によれば、冬期の給湯、暖
房同時運転、給湯のみの運転および暖房のみの運転、夏
期の給湯、冷房同時運転、給湯のみの運転および冷房の
みの運転が選択的に行えるので、常時安定した使い勝手
のよい冷暖房給湯運転が行え、また、負荷に応じてこれ
らの運転を選択できるため、省エネルギの面でも効果が
あるとともに、安価な深夜電力を利用することにより運
転費を安くできるという効果もある。また第2の発明に
よれば、夏期の給湯のみの運転において、積極的に蓄熱
槽及び配管の凍結破損を防止する効果−17頁 を有する。
As explained and explained above, according to the present invention, hot water supply, simultaneous heating operation, hot water supply only operation, and heating only operation in winter, hot water supply, simultaneous cooling operation, hot water supply only operation, and cooling only operation in summer are selected. This allows stable and easy-to-use heating, cooling, and hot water supply operation at all times.Also, since these operations can be selected according to the load, it is effective in terms of energy conservation, and it is possible to use cheap late-night electricity. It also has the effect of reducing operating costs. Further, according to the second invention, there is an effect of actively preventing freeze damage of the heat storage tank and piping during operation only for hot water supply in summer - page 17.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷暖房給湯装置の冷媒回路図、第2図は
本発明の一実施例を示す冷暖房給湯装置の冷媒回路図、
第3図は他の実施例を示す冷媒回路図である。 10・・・圧縮機、lla・・・第1開閉弁、llb・
・・第2開閉弁、12・・・四方弁、13・・・給湯用
蓄熱槽、14・・・第1利用側熱交換器、15・・・冷
暖房用蓄熱槽、16・・・冷暖房用第2利用側熱交換器
、17・・・熱源側熱交換器、】8・・・冷暖房用膨張
弁、19・・・冷媒封入量調節用タンク、2】・・・第
1バイパス開閉弁、22 用第2膨張弁、n・・・第2
バイパス開閉弁。 代理人弁理士 秋 本 正 尖 筆 1図 第3図
FIG. 1 is a refrigerant circuit diagram of a conventional air-conditioning, heating, and hot-water supply system; FIG. 2 is a refrigerant circuit diagram of a heating, cooling, and hot-water supply system showing an embodiment of the present invention;
FIG. 3 is a refrigerant circuit diagram showing another embodiment. 10... Compressor, lla... First on-off valve, llb.
... Second on-off valve, 12... Four-way valve, 13... Heat storage tank for hot water supply, 14... First user side heat exchanger, 15... Heat storage tank for air conditioning, 16... For heating and cooling 2nd usage side heat exchanger, 17... Heat source side heat exchanger, ]8... Expansion valve for air conditioning, 19... Tank for adjusting the amount of refrigerant charged, 2]... First bypass opening/closing valve, 22 Second expansion valve for n...second
Bypass on/off valve. Representative Patent Attorney Tadashi Akimoto Pencil Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、圧縮機の吐出側に給湯用蓄熱槽内の第1利用側熱交
換機ヲ配管接続し、この熱交換の他側と圧縮機の吸入側
を四方弁を介し冷暖房用蓄熱槽内の第2利用側熱交換器
と熱源側熱交換器に互に切換えるように配管接続し、上
記第2利用側熱交換器の他側と熱源側熱交換器の他側と
の間に膨張弁を配管接続し、冷媒封入量調節用タンクの
出入口側に夫々開閉弁を設け、第1開閉弁の他側を膨張
弁より第2利用側熱交換器を経て四方弁に至る経路に配
管接続し、第2開閉弁の他側を膨張弁より熱源側熱交換
器を経て四方弁に至る経路に配管接続してなることを特
徴とする冷暖房給湯装置。 2、第1開閉弁の経路が、第2利用側熱交換器から四方
弁に至る管路に接続されている特許請求の範囲第1項記
載の冷暖房給湯装置。 3、第2開閉弁の経路が、熱源側熱交換器から四方弁に
至る管路に接続されている特許請求の範−2頁 囲第1項記載の冷暖房給湯装置。 4、暖房と給湯を必要とする場合、冬期給湯のみを必要
とする場合及び冷房のみを必要とする場合は第1開閉弁
を閉じ、第2開閉弁を開く特許請求の範囲第1項記載の
冷暖房給湯装置。 5、 暖房のみを必要とする場合、冷房と給湯を必要と
する場合及び冷房時に給湯のみを必要とする場合は第1
開閉弁を開き、第2開閉弁を閉じる特許請求の範囲第1
項記載の冷暖房給湯装置。 6、圧縮機の吐出側に給湯用蓄熱槽内の第1利用側熱交
換器を配管接続し、この熱交換器の他側と圧縮機の吸入
側を四万弁全脅し冷暖房用蓄熱槽内の第2利用側熱交換
器と熱源側熱交換器に至る経路に互に切換えるように配
管接続し、上記第2利用側熱交換器の他側と熱源側熱交
換器の他側との間に主膨張弁と第1バイパス開閉弁を並
列に配管接続し、上記の四方弁より熱源側熱交換器に至
る経路の途中に第2の膨張弁と第2バイパス開閉弁を並
列に接続して設け、冷媒封入量調節用タンクの出入口側
に夫々開閉弁を設け、第1開閉弁の311頁 他側を主膨張弁から第2利用側熱交換器を経て四方弁に
至る経路に配管接続し、第2開閉弁の他側を主膨張弁か
ら利用側熱交換器、第2膨張弁と第2バイパス開閉弁の
並列経路を経て四方弁に至る経路に配管接続してなるこ
とを特徴とする冷暖房給湯装置。 7、第1開閉弁の経路が、主膨張弁から第2利用側熱交
換器に至る管路に接続されている特許請求の範囲第6項
記載の冷暖房給湯装置。 8、第2開閉弁の経路が、第2膨張弁と第2バイパス開
閉弁の並列経路より四方弁に至る管路に接続されている
特許請求の範囲第6項記載の冷暖房給湯装置。 9、暖房と給湯を必要とする場合、冬期給湯のみを必要
とする場合及び冷房のみ全必要とする場合は、第1開閉
弁全閉じ、第2開閉弁を開き、第1バイノソス開閉弁を
閉じ、第2バイパス開閉弁を開く特許請求の範囲第6項
記載の冷暖房給湯装置。 10、暖房のみを必要とする場合、及び冷房と給湯全必
要とする場合は、第1開閉弁を開き、第2開閉弁を閉じ
、第1パイ・ヤス開閉弁を閉じ、第2バイノヤス開閉弁
を開く特許請求の範囲第6項記載の冷暖房給湯装置。 1】、冷房時に給湯のみを必要とする場合は、第1開閉
弁を開き第2開閉弁全閉じ、第1バイパス開閉弁を開き
、第2バイパス開閉弁を閉じる特許請求の範囲第6項記
載の冷暖房給湯装置。
[Claims] 1. The discharge side of the compressor is connected to the first user side heat exchanger in the heat storage tank for hot water supply, and the other side of the heat exchanger and the suction side of the compressor are connected via a four-way valve for cooling and heating. Piping is connected to the second usage side heat exchanger and the heat source side heat exchanger in the heat storage tank so as to switch each other, and between the other side of the second usage side heat exchanger and the other side of the heat source side heat exchanger. An expansion valve is connected to the piping, and on-off valves are provided on the inlet and outlet sides of the tank for regulating the amount of refrigerant filled, and the other side of the first on-off valve is connected to the expansion valve through the second user-side heat exchanger and then to the four-way valve. An air conditioning/heating/water supply device characterized in that the other side of the second on-off valve is connected to a path from the expansion valve to the four-way valve via the heat exchanger on the heat source side. 2. The air-conditioning/heating and hot water supply apparatus according to claim 1, wherein the path of the first on-off valve is connected to a pipe line from the second usage-side heat exchanger to the four-way valve. 3. The air-conditioning/heating/water supply device according to claim 1, page 2, wherein the path of the second on-off valve is connected to a pipe line from the heat source side heat exchanger to the four-way valve. 4. When heating and hot water supply are required, when only winter hot water supply is required, and when only cooling is required, the first on-off valve is closed and the second on-off valve is opened. Air conditioning, heating, and hot water equipment. 5. If only heating is required, if cooling and hot water supply are required, or if only hot water supply is required during cooling, please use the first
Claim 1: Opening the on-off valve and closing the second on-off valve
Air-conditioning, heating, and hot water supply equipment as described in Section 1. 6. Connect the first user-side heat exchanger in the heat storage tank for hot water supply to the discharge side of the compressor, and connect the other side of this heat exchanger and the suction side of the compressor with 40,000 valves to the heat storage tank for heating and cooling. The piping is connected to the second user-side heat exchanger and the heat source-side heat exchanger so as to switch each other, and between the other side of the second user-side heat exchanger and the other side of the heat source-side heat exchanger. The main expansion valve and the first bypass on-off valve are connected in parallel via piping, and the second expansion valve and the second bypass on-off valve are connected in parallel in the middle of the path from the four-way valve to the heat source side heat exchanger. An on-off valve is provided on each inlet and exit side of the tank for adjusting the amount of refrigerant filled, and the other side of the first on-off valve is connected via piping to the path from the main expansion valve to the four-way valve via the second user-side heat exchanger. , the other side of the second on-off valve is connected via piping to a path from the main expansion valve to the four-way valve via a parallel path of the utilization-side heat exchanger, the second expansion valve and the second bypass on-off valve. Air conditioning, heating, and hot water equipment. 7. The air-conditioning/heating and hot water supply device according to claim 6, wherein the path of the first on-off valve is connected to a pipe line from the main expansion valve to the second usage-side heat exchanger. 8. The air conditioning/heating and hot water supply system according to claim 6, wherein the path of the second on-off valve is connected to a conduit extending from the parallel path of the second expansion valve and the second bypass on-off valve to the four-way valve. 9. When heating and hot water supply are required, when only hot water supply is required in winter, or when only cooling is required, fully close the first on-off valve, open the second on-off valve, and close the first Vinosos on-off valve. 7. The air-conditioning, heating, and hot-water supply apparatus according to claim 6, which opens the second bypass on-off valve. 10. When only heating is required, or when both air conditioning and hot water supply are required, open the first on-off valve, close the second on-off valve, close the first pay-yasu on-off valve, and close the second Bino-yasu on-off valve. An air-conditioning, heating, and hot-water supply apparatus according to claim 6. 1] When only hot water supply is required during cooling, the first on-off valve is opened, the second on-off valve is fully closed, the first bypass on-off valve is opened, and the second bypass on-off valve is closed. Air conditioning, heating and water heating equipment.
JP19405583A 1983-08-10 1983-10-19 Air-conditioning hot-water supply device Pending JPS6086356A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP19405583A JPS6086356A (en) 1983-10-19 1983-10-19 Air-conditioning hot-water supply device
DE8484109370T DE3476577D1 (en) 1983-08-10 1984-08-07 Space cooling and heating and hot water supplying apparatus
EP19840109370 EP0134015B1 (en) 1983-08-10 1984-08-07 Space cooling and heating and hot water supplying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19405583A JPS6086356A (en) 1983-10-19 1983-10-19 Air-conditioning hot-water supply device

Publications (1)

Publication Number Publication Date
JPS6086356A true JPS6086356A (en) 1985-05-15

Family

ID=16318192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19405583A Pending JPS6086356A (en) 1983-08-10 1983-10-19 Air-conditioning hot-water supply device

Country Status (1)

Country Link
JP (1) JPS6086356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530370A (en) * 2010-05-28 2013-07-25 キュンドン ナビエン シーオー.,エルティーディー. Compact heat combined power generation system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530370A (en) * 2010-05-28 2013-07-25 キュンドン ナビエン シーオー.,エルティーディー. Compact heat combined power generation system and control method thereof

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
KR101270615B1 (en) Co-generation and Control method of the same
KR101270616B1 (en) Co-generation
US4688396A (en) Air-conditioning hot-water supply device
US20100038441A1 (en) Energy system with a heat pump
US20090139255A1 (en) Device for increasing the heat output and energy storage in a heat pump
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
KR100563899B1 (en) Waste heat recoverable air conditioner
KR101188258B1 (en) Heat-pump system
JPH0432669A (en) Heat pump system controlling method therefor
KR100779555B1 (en) Heat pump system having curcuit for compensating temperature of heat source or sink
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JPH03294754A (en) Air conditioner
CN116379633A (en) Thermal management system of household energy storage equipment
JPS6086356A (en) Air-conditioning hot-water supply device
KR101649447B1 (en) Geothermal heat pump system using gas
CN113883599A (en) Air conditioner
KR102128497B1 (en) Data center indoor cooling system
CN112484304A (en) Air energy water heater
KR102574817B1 (en) Heat pump system with variable heat supply source
CN219283681U (en) Air conditioner and water heater all-in-one
KR100419480B1 (en) Multi heat pump system with advanced heating and cooling performance
CN111998430B (en) Self-defrosting air source heat pump unit and operation method thereof
JPS62294872A (en) Engine drive type heat pump device
CN214841695U (en) Air energy water heater