JPS6086229A - Highly conductive spring material - Google Patents

Highly conductive spring material

Info

Publication number
JPS6086229A
JPS6086229A JP19343483A JP19343483A JPS6086229A JP S6086229 A JPS6086229 A JP S6086229A JP 19343483 A JP19343483 A JP 19343483A JP 19343483 A JP19343483 A JP 19343483A JP S6086229 A JPS6086229 A JP S6086229A
Authority
JP
Japan
Prior art keywords
copper
highly conductive
conductivity
conductive spring
spring material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19343483A
Other languages
Japanese (ja)
Inventor
Tetsuo Takano
高野 鉄雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19343483A priority Critical patent/JPS6086229A/en
Publication of JPS6086229A publication Critical patent/JPS6086229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To prepare a spring grade copper alloy having conductivity not inferior to that of Be-Cu in low cost, by applying precipitation hardening treatment to deoxidized phosphate copper to which a specific amount of Fe and Cr are added. CONSTITUTION:0.05-0.15% of Fe, 0.02-0.04% of P and 0.10-0.20% of Cr are added to oxygen free copper of which the oxygen content is reduced to 10ppm or less through deoxidizing treatment and alloyed with copper to simultaneously precipitate iron phosphate and Cr in copper. By this method, a highly conductive spring grade copper alloy material not inferior to Be-Cu in practicality is obtained.

Description

【発明の詳細な説明】 この発明は尚伝導性ばね月利に関するものである。[Detailed description of the invention] This invention still relates to conductive springs.

スイッチ駅をはじめとして電気機器の2!4電路にはね
を用いる事が少くない。その場合、電気、熱伝導性のよ
いはね用材を用いることは電気機器の面谷賞化、小型化
の必須女性となる。しかし、現在、尚伝導性はね用材と
して具に適切なものを児出すことは困離々状態でめる8
現在便われている代衣的電気用ばね材としてはベリリュ
ーム矩、燐青銅かめる。ベリリューム銅は優れたばね性
を有するが、その電気、熱伝導性は銀の1.0、銅の0
.93に対し0.15〜0.55程贋と低い。燐′1r
銅はばね性、伝導性ともにベリリューム銅よシ劣るが、
安価なため現在、最も多く使用されている。
It is not uncommon to use springs for 2 or 4 electrical circuits in electrical equipment, including switch stations. In that case, using a splashing material with good electrical and thermal conductivity is essential for making electrical equipment more compact and smaller. However, at present, it is still difficult to create conductive splash materials suitable for fillings8.
Currently used alternative electrical spring materials include beryllium square and phosphor bronze. Beryllium copper has excellent spring properties, but its electrical and thermal conductivity is 1.0 for silver and 0 for copper.
.. Compared to 93, it is about 0.15 to 0.55 lower. Phosphorus'1r
Copper is inferior to beryllium copper in both spring properties and conductivity, but
Currently, it is the most commonly used because it is inexpensive.

この発明は高価なベリリュームを使わずに、ベリリュー
ム銅以上の伝導性をもち、強度は燐青銅の60〜70K
g/−を下らないばね用材の開発を目的とする。
This invention does not use expensive beryllium, has higher conductivity than beryllium copper, and has a strength of 60 to 70K compared to phosphor bronze.
The purpose is to develop spring materials that do not fall below g/-.

高伝4性ばね用材として銅をベースにすることは動かな
い。従って開発目標はべりリュームよシ安価な元素で銅
を強めるが、その伝導性はさほど洛さないものを探し出
すことであった。
The use of copper as a base material for high conductivity springs does not work. Therefore, the goal of development was to find an element that would strengthen copper with a cheaper element than beryllium, but whose conductivity would not be so great.

しかし、どの元素も、銅を燐Y!銅以上に強めると1そ
の篭尋性は恩赦に落ち、ベリリューム銅以上の伝24注
を得るという目的は到底達し得ないことが分った。
However, any element, copper or phosphorus! It turned out that if you strengthen it to a level higher than Beryllium Copper, 1 its obscurity will fall into pardon, and you will never be able to achieve the goal of obtaining the 24 Notes of Legend that is higher than Beryllium Copper.

そこで銅を通常の合金として強めるのでなく、微量の元
素を加えるだけで強められる析出硬化処理を利用する挙
にした。また銅の良導性を高めるため脱酸を徹底的に行
って、通常の無酸木調の酸系含量100〜200 PP
Mを110PP以下にする事全考えた。
Therefore, instead of strengthening the copper as a normal alloy, we decided to use a precipitation hardening process that strengthens the copper by simply adding a trace amount of an element. In addition, in order to improve the conductivity of copper, we thoroughly deoxidize it to create a normal acid-free wood-like acid content of 100 to 200 PP.
I thought about keeping M below 110PP.

この新しい方針にや\近い合金が最近、囲発され、市販
されていることが分った。それは従来の唐脱酸朔に微量
の妖を祭加し、燐化鉄を析出さゼることにより軟銅程度
まで強めたものでおる。この合金は鍜にも勝る1、04
という高い熱伝4屁をもっている。従来の純銅は0.9
4である。
It has recently been discovered that an alloy that closely follows this new policy has been discovered and is now commercially available. It is made by adding a small amount of magic to the traditional Tang deoxidation, and by precipitating iron phosphide, it is strengthened to the same level as annealed copper. This alloy is superior to the 1.04
It has a high heat conduction 4 fart. Conventional pure copper is 0.9
It is 4.

ベースである燐脱酸鋼は1.06でめったのが、鉄會0
.1%加え炉出処理する茶により1.04まで下つだも
のである。しかし強さは鉄0.1%を力lえる事によシ
、35 I’4/+−から45 kyg/−へ増大して
いる。つま9@出硬化金利用すれば、僅かな伝導性低下
で、比戟的犬さな強朋増大を得られるのである。
The base phosphorus deoxidized steel was 1.06, but the steel was 0.
.. It is lowered to 1.04 by adding 1% to the tea and processing it. However, the strength increases from 35 I'4/+- to 45 kyg/- by adding 0.1% iron. If you use hardened gold, you can achieve an incredible increase in strength with a slight decrease in conductivity.

さて、この発明は上記燭脱眩銅に鉄を刃口えて析出硬化
させるだけでなく、さらにクロム0.1〜0.2%を加
えて析出させる。内省とも析出温度は400℃付近でお
るから、同時析出が可能である。
Now, in this invention, not only iron is applied to the above-mentioned candle-deglaring copper and precipitated and hardened, but also 0.1 to 0.2% of chromium is added and precipitated. Since the precipitation temperature is around 400°C, simultaneous precipitation is possible.

イ 燐脱ば銅への妖とクロムの象加、溶体化処理、析出処理
は従来技術で足りる。銅とクロム3〜6%の合金が従来
から作られているので、技術的な面倒はない。
If the phosphorus is removed, conventional techniques are sufficient for adding chromium to the copper, solution treatment, and precipitation treatment. Since alloys of copper and 3-6% chromium are conventionally made, there are no technical complications.

突験によシ、この発明の目的を満たした合金の成分、性
質は次のようなものである。
By chance, the ingredients and properties of an alloy that satisfies the purpose of this invention are as follows.

化学成分(重量%) Fg 0.05〜0.15、P 0.02〜0.04、
Cr O,10〜0.20、Cw残部。
Chemical components (wt%) Fg 0.05-0.15, P 0.02-0.04,
CrO, 10-0.20, balance Cw.

なおベースに用いた燐脱酸銅は嘔素含有量110PP以
下のものである。そして上述のように400℃で燐化鉄
、クロムを析出させた。
The phosphorus-deoxidized copper used as the base has a pyrolyte content of 110 PP or less. Then, as described above, iron phosphide and chromium were precipitated at 400°C.

こうして得た合金のS*率(% lAC3、20℃)は
46〜81、熱伝導度(d/cnr 、 sec、 ℃
) は0.65〜0.84、引張強さく i(f/mA
 )は51〜75という試験成植を得た。や\はらつき
が太きいが、これは今後、その高い方の値に安定式せる
ことが可能な見沁みである。従って、当初の目的どおシ
、ベリリューム銅以上の伝導性と、燐1を銅に劣らぬ強
度をもつ高伝導性ばね材の要件を満たしている。
The S* rate (% lAC3, 20 °C) of the alloy thus obtained was 46-81, and the thermal conductivity (d/cnr, sec, °C
) is 0.65 to 0.84, tensile strength i(f/mA
) obtained test plantings of 51-75. Although there is considerable fluctuation, this is an indication that it will be possible to stabilize the value at the higher value in the future. Therefore, in spite of the original purpose, it satisfies the requirements for a highly conductive spring material that has a conductivity higher than that of beryllium copper and a strength comparable to that of copper.

なお析出処理は燐化鉄、クロムを一挙に析出させるとは
限らず、別々に析出させても構わない。析出温度は一応
400℃付近となっているが、析出処理は笑施に当たる
冶金技術者に任せ最小のFg 、 Crによシ最犬の強
度を得る析出硬化処理を行うのである。
Note that the precipitation treatment does not necessarily precipitate iron phosphide and chromium all at once; they may be precipitated separately. Although the precipitation temperature is around 400°C, the precipitation hardening process is left to the metallurgical engineers who carry out the precipitation hardening process to obtain the highest strength with the minimum amount of Fg and Cr.

この発明は燐脱酸銅に微量の鉄、クロムを加える事、酸
素含有量を徹底的に減らす挙、析出硬化処理を行う事に
よシ、安価で、実用性はぺIJ IJニーム銅にまさる
高伝導性はね用材を得た。
This invention is made by adding trace amounts of iron and chromium to phosphorus-deoxidized copper, thoroughly reducing the oxygen content, and performing a precipitation hardening treatment, making it cheaper and more practical than Pe-IJ-IJ-Neem copper. A highly conductive splashing material was obtained.

v蓄舎有量を最低限まで減らしたからベースである銅の
伝導性を最大限に保持し得た。合金成分は鉄、燐、クロ
ムを合わせて0.2〜0.3%であるため上韻銅の伝導
性の低下を最小限にとyめた。そして、その微量元系を
鋼中に析出させる挙により最大限に硬化させ、ばね用材
として必蛍な強度を侍だのである。
By reducing the amount of v-storage to the minimum, we were able to maintain the conductivity of the base copper to the maximum. Since the alloy components are 0.2 to 0.3% in total of iron, phosphorus, and chromium, the decrease in the conductivity of the copper was minimized. Then, by precipitating a small amount of these elements into the steel, it is hardened to the maximum extent possible, giving it the strength it deserves as a spring material.

この尚伝2s性はね用材の出現によシ、すべての寛気戦
器の4竃はねの小型化又は容量増大が可能になる。
With the advent of this Shoden 2S spring material, it becomes possible to downsize or increase the capacity of the four-barrel springs of all Kanki weapons.

Claims (1)

【特許請求の範囲】[Claims] 鉄0.05〜0.15 、燐0.02〜0.04 、ク
ロム0.10〜0.20 、残部は酸系含有量10 P
PM以下の無は素鋼であり、燐化鉄及びクロムを鋼中に
析出させた事を!値とする筒伝纒性はね用材。
Iron: 0.05-0.15, Phosphorus: 0.02-0.04, Chromium: 0.10-0.20, remaining acid content: 10 P
Anything less than PM is raw steel, and iron phosphide and chromium are precipitated into the steel! Material for pipe conductive spatter.
JP19343483A 1983-10-18 1983-10-18 Highly conductive spring material Pending JPS6086229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19343483A JPS6086229A (en) 1983-10-18 1983-10-18 Highly conductive spring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19343483A JPS6086229A (en) 1983-10-18 1983-10-18 Highly conductive spring material

Publications (1)

Publication Number Publication Date
JPS6086229A true JPS6086229A (en) 1985-05-15

Family

ID=16307914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19343483A Pending JPS6086229A (en) 1983-10-18 1983-10-18 Highly conductive spring material

Country Status (1)

Country Link
JP (1) JPS6086229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087973A1 (en) * 2003-04-03 2004-10-14 Outokumpu Oyj Copper alloy containing phosphides and having a low oxygen content
JP2009102165A (en) * 2007-10-05 2009-05-14 Hajime Nakada Electric cable reeling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087973A1 (en) * 2003-04-03 2004-10-14 Outokumpu Oyj Copper alloy containing phosphides and having a low oxygen content
JP2009102165A (en) * 2007-10-05 2009-05-14 Hajime Nakada Electric cable reeling device

Similar Documents

Publication Publication Date Title
JPS5853057B2 (en) Highly conductive copper-based alloy
JPS6086229A (en) Highly conductive spring material
US2123628A (en) Copper base alloys
US2142672A (en) Copper base alloy
JPS63286544A (en) Copper alloy for multipolar connector
JPS609845A (en) Highly conductive spring material
JPS62107040A (en) Titanium alloy excellent in crevice corrosion resistance
JPS6338547A (en) High strength conductive copper alloy
US1887500A (en) Welding-rod, etc.
JPH0219433A (en) Copper alloy for electronic equipment
US2635044A (en) Hardenable stainless steel alloy
JPH02263942A (en) Special spinodal copper alloy
US1674438A (en) Process of producing nickel alloys
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
GB514257A (en) Improvements relating to welding and to welding-rods therefor
JPS619549A (en) Connecting material for waterworks
US2818336A (en) Titanium alloys
US2230237A (en) Manganese alloys
SU380740A1 (en) ALLOYS FOR PERMANENT L1AGNITES
JPS6148545A (en) High strength copper alloy for electrically conductive material
Norwitz et al. Determination of Tin in Manganese Bronzes
JPH0356634A (en) High strength copper alloy
SU912766A1 (en) Steel composition
Hoyt Metallography
JPS56105645A (en) Copper alloy for lead and lead frame of semiconductor apparatus