JPS6086194A - Apparatus for purifying coke oven gas - Google Patents

Apparatus for purifying coke oven gas

Info

Publication number
JPS6086194A
JPS6086194A JP19582683A JP19582683A JPS6086194A JP S6086194 A JPS6086194 A JP S6086194A JP 19582683 A JP19582683 A JP 19582683A JP 19582683 A JP19582683 A JP 19582683A JP S6086194 A JPS6086194 A JP S6086194A
Authority
JP
Japan
Prior art keywords
molecular sieves
adsorption
activated carbon
adsorbent
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19582683A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
浩 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP19582683A priority Critical patent/JPS6086194A/en
Publication of JPS6086194A publication Critical patent/JPS6086194A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a prefilter and remove the necessity for regeneration of an adsorbent, by packing silica gel, molecular sieves having a specific diameter, activated carbon and molecular sieves having a specific diameter in the order mentioned from the upstream side of a gas stream in an adsorption column. CONSTITUTION:Silica gel, molecular sieves having 10Angstrom diameter, activated carbon and molecular sieves having 5Angstrom diameter are packed in the order mentioned from the upstream side of a gas stream of a raw material coke oven gas in an adsorption column of a main purification apparatus operating by changing over the adsorption-regeneration steps with pressure change. EFFECT:Equipment and operating costs can be reduced, and the main purification apparatus itself can be compacted.

Description

【発明の詳細な説明】 この発明は、圧力変化で吸着−再生工程を切替えて運転
する方式のコークス炉ガス(以下、COGという。)の
精製装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coke oven gas (hereinafter referred to as COG) purification apparatus that operates by switching between adsorption and regeneration steps based on pressure changes.

COGからこれに大量に含まれる水素を回収する方法と
して、圧力変化で吸着−再生工程を切替えて運転される
精製装置を用いるものがある。この方法は、まずCOG
をタール除去器に導入してタール分を除去する。ついで
コンプレッサで8〜15Jt/crAに加圧し、ドレン
を除去したのちプレフィルタに導入する。プレフィルタ
には活性炭、半成コークス、などのカーボン系吸着剤が
充填されており、ここでCOG中のタール、ナフタリン
、BTXなどの高沸点炭化水素や硫化水素等の硫黄化合
物を除去する。ついで、プレフィルタを出たCOGを活
性炭、モレキュラーシーブスなどの吸着剤が充填された
複数の吸着筒からなり、圧力変化で加圧吸着〜低圧再生
と切り替えて運転されている主精製装置の一つの吸着筒
に加圧状態で送り込み、ここで、残余の水分、軽質炭化
水素、炭酸ガス、−酸化炭素、窒素等を吸着除去し、水
素を回収するものである。
As a method for recovering hydrogen contained in a large amount from COG, there is a method using a purification device that is operated by switching between adsorption and regeneration steps based on pressure changes. This method first uses COG
is introduced into a tar remover to remove tar. Then, it is pressurized to 8 to 15 Jt/crA with a compressor, and after removing the drain, it is introduced into the pre-filter. The prefilter is filled with carbon-based adsorbents such as activated carbon and semi-formed coke, and removes high-boiling hydrocarbons such as tar, naphthalene, and BTX, and sulfur compounds such as hydrogen sulfide in COG. Next, the COG that has exited the pre-filter is passed through one of the main purifiers, which consists of multiple adsorption cylinders filled with adsorbents such as activated carbon and molecular sieves, and is operated by switching between pressurized adsorption and low-pressure regeneration depending on pressure changes. The hydrogen is fed under pressure into an adsorption column, where residual moisture, light hydrocarbons, carbon dioxide, carbon oxide, nitrogen, etc. are adsorbed and removed to recover hydrogen.

ところで、このような方法でCOGを精製する場合、プ
レフィルタで高沸点炭化水素や硫黄化合物などを除去す
るようにしているので、プレフィルタに大きな負荷がか
かり吸着剤を大量に必要としプレフィルタ自体が非常に
大きくなる。また、吸着剤の消費量も大きく、水素の製
造コストを上昇させる一因となっている。さらに、プレ
フィルタの吸着剤を加熱再生方式で再生する場合には水
゛1 蒸気発生装置などの付帯設備を必要とし、運転操作も面
倒であるなどの問題点を有している。
By the way, when refining COG using this method, high-boiling hydrocarbons and sulfur compounds are removed using a pre-filter, which places a heavy load on the pre-filter, requiring a large amount of adsorbent, and the pre-filter itself. becomes very large. Furthermore, the amount of adsorbent consumed is large, which is a factor in increasing the cost of producing hydrogen. Furthermore, when the adsorbent in the prefilter is regenerated by a heating regeneration method, additional equipment such as a water vapor generator is required, and the operation is troublesome.

この発明は上8己事情に鋪みてなされたもので、プレフ
ィルタを小型化でき、かつその吸着剤の再生操作を不要
とし、装@費、運転費が低減でき、しかも主精製装置自
体もコンパクトとすることのできるCOGの精製装置を
提供することを目的とするものである。
This invention was made in view of the above circumstances, and allows the pre-filter to be made smaller, eliminates the need to regenerate its adsorbent, reduces installation and operating costs, and makes the main purification device itself compact. The object of the present invention is to provide a COG purification device that can perform the following steps.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の特徴は、主精製装置の吸着筒内に4穆の吸着剤
を特定の積層順序で充填したことにある。
The feature of the present invention is that four adsorbents are filled in the adsorption column of the main refining device in a specific stacking order.

第2図はこの吸着筒1内の4種の吸着剤の積層順序を示
すもので符号2はCOGの入口、3は出口を示す。そし
て、この吸着筒1の入口2側から出口3に向けて順々に
、シリカゲルSG、10A径モレキュラーシーブス1O
AMS1活性炭AC。
FIG. 2 shows the stacking order of the four types of adsorbents in the adsorption column 1, where 2 indicates the inlet of the COG and 3 indicates the outlet. Then, from the inlet 2 side to the outlet 3 of this adsorption cylinder 1, silica gel SG, 10A diameter molecular sieves 1O
AMS1 activated carbon AC.

所定の風化で充填されている。上記10A径モレキユラ
ーシーブスおよび5A径モレキユラーシーブスはゼオラ
イト系のモレキュラーシーブスであのものである。そし
て、このように4 utfのII ンR剤が特定の積層
順序に充填された吸着筒1は2基以上設けられて主精製
装置とされ、これら吸着筒1・・・を順次吸着、再生の
各工程を切換え運転するようになっている。
Filled with prescribed weathering. The above-mentioned 10A diameter molecular sieves and 5A diameter molecular sieves are zeolite-based molecular sieves. In this way, two or more adsorption columns 1 filled with 4 utf of II-R agent in a specific stacking order are provided as the main purification device, and these adsorption columns 1 are sequentially used for adsorption and regeneration. Each process is switched and operated.

次に、この主精製装置とプレフィルタを用いてCOGか
ら水素を回収する方法を第2図を参照して説明する。
Next, a method for recovering hydrogen from COG using this main purification device and prefilter will be explained with reference to FIG. 2.

まず、原料COGはタール除去n 4 vc導入され、
タール分が除去されたのち、コンプレッサ5で8〜15
 kgf/cd程度に圧縮され、クーラ6で冷即されて
ドレンが除去される。ついで、ドレンが除去されたCO
Gはプレフィルタ7[導入される。このプレフィルタ7
には、COGの入口側にアルミナゲルまたはシリカゲル
が、出口側には活性炭がそれぞれ充填されている。この
プレフィルタ7では、COG中の水分、アンモニア、ナ
フタリン等の高沸点炭化水素などが吸着除去される。プ
レフィルタ7は、一定期間使用後にその吸着剤が交換さ
れル0フレフィルタ7の役割fd、主にナフタリン、タ
ールなどの除去であって、水、アンモニア等が破過して
も吸着剤を交換する必要がなく、その交換時期は高沸点
炭化水素の破過を検知して行う□したがって、プレフィ
ルタ7のアルミナゲルまたはシリカゲルは活性炭が過度
に水分で)需れるのを防ぐ程度の役割を持つ。欧お、原
料COGの組成によっては、クーラ6を用いなくともよ
い。
First, the raw material COG is introduced with tar removal n 4 vc,
After the tar is removed, compressor 5
It is compressed to about kgf/cd, cooled in a cooler 6, and drained. Then the drained CO
G is introduced into the prefilter 7. This pre-filter 7
The inlet side of the COG is filled with alumina gel or silica gel, and the outlet side is filled with activated carbon. This pre-filter 7 adsorbs and removes moisture, ammonia, high boiling point hydrocarbons such as naphthalene, etc. in the COG. The pre-filter 7 has its adsorbent replaced after a certain period of use.The role of the pre-filter 7 is mainly to remove naphthalene, tar, etc., and even if water, ammonia, etc. break through, the adsorbent is replaced. There is no need to replace the activated carbon, and the time to replace it is determined by detecting the breakthrough of high boiling point hydrocarbons. Therefore, the alumina gel or silica gel in the pre-filter 7 has the role of preventing activated carbon from becoming excessively depleted by moisture. . Alternatively, depending on the composition of the raw material COG, the cooler 6 may not be used.

プレフィルタ7を出たCOGは生籾1w装置8の吸着工
程にある投着筒1に導入される。吸着筒1に導入された
COGは、まず入口2側のシリカゲルS Qicヨッテ
、高1に度の水分、アンモニアおよびBTX@の炭化水
素がIf&着除去される。BTXは一般には活性炭、1
0A径モレキユラーシーブスによって吸着除去されるこ
とが多いが、圧力変化による吸着〜再生方式のような非
加熱再生方式では十分に再生できない。これに対し・シ
リカゲル5GIill&着容徂が活性炭に比べて小さい
ものの圧力変化による再生方式でも十分に再生でき、結
果的VCは吸着量は大きくなる。
The COG that has come out of the pre-filter 7 is introduced into the charging tube 1 in the adsorption process of the raw rice 1w device 8. The COG introduced into the adsorption column 1 is first subjected to removal of silica gel S Qic water on the inlet 2 side, moisture, ammonia, and BTX@ hydrocarbons. BTX is generally activated carbon, 1
Although it is often adsorbed and removed by 0A diameter molecular sieves, it cannot be regenerated sufficiently by a non-thermal regeneration method such as an adsorption-regeneration method using pressure changes. On the other hand, although silica gel has a smaller capacity than activated carbon, it can be sufficiently regenerated by a regeneration method using pressure changes, and as a result, the amount of VC adsorbed becomes large.

XMSで、硫化水素、硫化カルボニルおよびシリカゲル
SGで除去し入れなかった水分やBTXなどが除去され
る。硫化水素は、活性炭または5A径モレキユラーシー
ブスに接触すると、COG中の酵素や水分等と反応して
固体の硫黄を生成し、圧力変化による再生方式では古手
が困鍾となるが、のような反応が生じず、圧力変化によ
る再生方式で容易に再生できる。また、炭酸ガスは、1
oX径モレキユラーシーブス10A1’vlSを触媒と
して硫化水素と反応し、硫化カルボニルを生成するが、
この硫化カルボニルは10A径モレキユラ一ンープス1
1]AMSまたは次の活性炭ACで除去される。したが
って、この10A径モレキユラ一シーブス10AMSの
役割は、硫化水素が次の活性炭層に流入しないように除
去するか、硫化カルボニルに転換させることにある。
Hydrogen sulfide, carbonyl sulfide, and water and BTX that were not removed by silica gel SG are removed by XMS. When hydrogen sulfide comes into contact with activated carbon or 5A diameter molecular sieves, it reacts with the enzymes and moisture in COG to produce solid sulfur, which poses a problem with old methods of regeneration using pressure changes. This type of reaction does not occur, and it can be easily regenerated using a regeneration method that uses pressure changes. Also, carbon dioxide gas is 1
It reacts with hydrogen sulfide using oX diameter molecular sieves 10A1'vlS as a catalyst to produce carbonyl sulfide, but
This carbonyl sulfide has a diameter of 10A.
1] Removed with AMS or next activated carbon AC. Therefore, the role of this 10A diameter molecular sieve is to remove hydrogen sulfide so that it does not flow into the next activated carbon layer, or to convert it into carbonyl sulfide.

つづいて、活性炭ACでは軽質炭化水素、−酸化炭素、
炭酸ガス等が除去され、また前段で除去しきれなかった
BT)lども除去される。活性炭ACで除去しきれない
メタン、−酸化炭素は次段で、軽質炭化水素、−酸化炭
素、炭酸ガス等を吸着除去するようにすると、活性炭に
比べて、低圧再生の際のパージ用の水素ガス量が多くな
り、不経済となる。よって、この活性炭ACの役割はこ
に代って、軽質炭化水素、−Cツ化炭素、炭酸ガス等を
吸着し、再生コストの低減を計り、前段の各吸着剤で吸
着しきれなかったBTXや硫化カルボニルを吸着除去す
ることにある。
Next, in activated carbon AC, light hydrocarbons, -carbon oxide,
Carbon dioxide gas etc. are removed, and BT) which could not be removed in the previous stage is also removed. Methane and carbon oxides that cannot be removed by activated carbon AC are adsorbed and removed in the next stage to remove light hydrocarbons, carbon oxides, carbon dioxide gas, etc. Compared to activated carbon, hydrogen for purging during low-pressure regeneration can be removed. The amount of gas increases, making it uneconomical. Therefore, the role of this activated carbon AC is to adsorb light hydrocarbons, carbon dioxide, carbon dioxide, etc., to reduce regeneration costs, and to absorb BTX that could not be adsorbed by the previous adsorbents. and carbonyl sulfide by adsorption and removal.

で主に窒素、酸素の吸着除去を行い、同時に前段の活性
炭で除去しきれなかったメタンや一酸化炭素なども除去
する。
It mainly adsorbs and removes nitrogen and oxygen, and at the same time removes methane and carbon monoxide that could not be removed by the activated carbon in the previous stage.

かくして、吸着filの出口3からは高純度の水素が製
品として導出される。
In this way, highly pure hydrogen is led out as a product from the outlet 3 of the adsorption fil.

このように、主精製装置8の吸着筒1の吸着剤El(r
 OGの入口2側から順にシリカゲルSG、10填する
ことによって、COG中の水素以外の成分(不純物)の
大半をこの吸着筒1で吸着除去することができ、このた
めプレフィルタ7ばCOG中のタール、ナフタリンなど
の高沸点炭化水素を除去するだけでよくなるので、吸着
剤量を少なくでき、かつ安価なアルミナゲル、シリカゲ
ル、活性炭で十分であり、交換廃棄の費用もさほど嵩む
こともない。また、再生使用を行わないので、再生に必
要々付帯設備が不要となり、運転操作も容易となる。さ
らに、プレフィルタ7の吸着剤の交換時、主精製装置8
の吸N筒1にプレフィルタ7の吸着剤と同種の吸着剤が
充填されているので、短時間であれば別のプレフィルタ
を用いる必要がない。
In this way, the adsorbent El(r
By filling silica gel SG 10 in order from the inlet 2 side of the OG, most of the components (impurities) other than hydrogen in the COG can be adsorbed and removed by the adsorption cylinder 1. Therefore, the prefilter 7 Since it is only necessary to remove high-boiling hydrocarbons such as tar and naphthalene, the amount of adsorbent can be reduced, and inexpensive alumina gel, silica gel, and activated carbon are sufficient, and the cost of replacement and disposal is not very high. In addition, since reuse is not performed, additional equipment necessary for regeneration is not required, and operation becomes easy. Furthermore, when replacing the adsorbent in the pre-filter 7, the main purifier 8
Since the N suction cylinder 1 is filled with the same kind of adsorbent as the adsorbent of the prefilter 7, there is no need to use another prefilter for a short time.

また、吸着筒1の吸着剤の積R41111:i序を上述
のようにしたことによって、各々の吸着剤が特有の性能
を示すとともに相互にその性能を補いあい、これによっ
て、吸着剤の充填量の安全率は5八′径と1OA径のモ
レキュラーシーブスにだけかければよく、活性炭は逆に
ある程度ならば、計算上必要な量以下に削減してもよく
、筒1全体の容積を減少できる。したがって、全体の総
合的な安全率を高くとりながらも筒1自体は小型化でき
る。
In addition, by setting the product R41111:i of the adsorbent in the adsorption column 1 as described above, each adsorbent exhibits unique performance and complements each other's performance. The safety factor only needs to be applied to the molecular sieves with a diameter of 58' and 1OA.On the other hand, if the activated carbon is to a certain extent, it can be reduced to less than the amount required by calculation, and the volume of the entire cylinder 1 can be reduced. Therefore, the cylinder 1 itself can be made smaller while maintaining a high overall safety factor.

ざらに、低圧再生による再生の際、パージ再生用の水素
ガス量も少なくて済む。しかも、使用するUgt着剤は
一般に汎用されているものであるので、4M頼性が高く
、コスト的にも有利となる。
In general, during regeneration by low-pressure regeneration, the amount of hydrogen gas for purge regeneration can be reduced. Furthermore, since the Ugt adhesive used is commonly used, it has high 4M reliability and is advantageous in terms of cost.

以下、実施例を示して具体的に説明する。Hereinafter, a specific explanation will be given by showing examples.

〔実施例〕〔Example〕

原料COG 30 Nm3/hrをタール除去器4を経
てコンプレッサ5に送り込み、’?atmまで圧縮する
。ついで、この圧縮されたCOGはクーラ6で冷却され
て、水その他のドレンが分離されたのち、プレフィルタ
7に入る。
Raw material COG 30 Nm3/hr is sent to the compressor 5 through the tar remover 4, and '? Compress to atm. This compressed COG is then cooled by a cooler 6 and enters a pre-filter 7 after water and other condensate are separated.

プレフィルタ7Klli5e〆のシリカゲルと10eの
活性炭が充填されておりく・im常の使用条件で1年間
の使用に耐える。プレフィルタ7を導出されたCOGは
主精製装置81C導入される。
The pre-filter is filled with 7Klli5E silica gel and 10E activated carbon and can withstand one year of use under normal usage conditions. The COG extracted from the prefilter 7 is introduced into the main purifier 81C.

主精製装置8は、吸着筒1を4基有する4筒切換方式で
運転されるもので、1筒[15075の内容積を持ち、
シリカゲルSG、10A径モレキュレキュラーシーブス
5 A M Sを入口2からjllliに容積比で1:
3:20:15の割合で充填しである。
The main purification device 8 is operated by a four-cylinder switching system having four adsorption cylinders 1, and has an internal volume of one cylinder [15075 mm].
Silica gel SG, 10A diameter molecular sieves 5 A M S from inlet 2 to the socket at a volume ratio of 1:
It was filled at a ratio of 3:20:15.

そして、この生籾製装に8から製品水繁が純度99.9
99〜99.9%で、13 Nm1/hr得られた。
The purity of this raw paddy is 8 to 99.9.
13 Nm1/hr was obtained at 99-99.9%.

プレフィルタ7の出口では、)3TX、硫化水素、硫化
カルボニル、アンモニア等は検出されたが、製品水素中
には全く検出されず、製品水素中の不純物はそのほとん
どが酸素または窒素であった。
At the outlet of the prefilter 7, )3TX, hydrogen sulfide, carbonyl sulfide, ammonia, etc. were detected, but they were not detected at all in the product hydrogen, and most of the impurities in the product hydrogen were oxygen or nitrogen.

撞た、製品水素の純度および製造量は長期(約3ケ月)
vcわたり安定しており、性能劣化は認められなかった
As a result, the purity and production amount of product hydrogen are long-term (approximately 3 months)
It was stable across vc, and no performance deterioration was observed.

以上説明したように、この発明のCOGの精製装置は、
主精製装置の吸着筒に充填する吸着剤を、吸着筒のCO
Gの流れの上流側からシリカゲル、モレキュラーシーブ
スの順に充填したものなので、プレフィルタはCOG中
のタール、ナフタリン等の高沸点炭化水素を除去するだ
けでよくなり、吸着剤充填量を極めて少なくでき、装置
費およびj!F転費が大幅に低減できる。また、主情g
装置の吸着筒自体も、高い安全率をとりながらも小型化
を計ることができる。さらに、吸着剤は汎用品を用いて
いるので信頼性が高く、コスト的にも有利となる。また
、プレフィルタの交換時のための予備のプレフィルタを
用意する必要がないなどの利点を有するものとなる。
As explained above, the COG refining device of the present invention is
The adsorbent filled in the adsorption cylinder of the main purification equipment is
Silica gel and molecular sieves are filled in this order from the upstream side of the G flow, so the pre-filter only needs to remove high-boiling hydrocarbons such as tar and naphthalene from the COG, and the amount of adsorbent packed can be extremely reduced. Equipment costs and j! F expenses can be significantly reduced. Also, main emotion g
The adsorption tube itself of the device can also be made smaller while maintaining a high safety factor. Furthermore, since a general-purpose adsorbent is used, reliability is high and it is advantageous in terms of cost. Further, there is an advantage that there is no need to prepare a spare pre-filter for replacing the pre-filter.

【図面の簡単な説明】[Brief explanation of drawings]

81!1図は本発明の精製装置の吸着筒内の吸着剤の充
填様態の一例を示す説明図、第2図は本発明の精製装置
の例を示す概略構成図である。
FIG. 81!1 is an explanatory diagram showing an example of the manner in which adsorbent is filled in the adsorption column of the purification apparatus of the present invention, and FIG. 2 is a schematic configuration diagram showing an example of the purification apparatus of the present invention.

Claims (1)

【特許請求の範囲】 プレフィルタと、吸着剤が充填された複数の吸着筒を圧
力変化で吸着−再生工程を切替えて運転する主精製装置
からなるコークス炉ガスの精製装置において、 主精製装置の吸着筒内の吸着剤を原料コークス炉ガスの
流れの上流側から順にシリカゲル、10A径モレキユラ
ーシーブス、活性炭、5A径モレキユラーシーブスの順
に充填したことを特徴とするコークス炉ガスの精製装置
[Scope of Claims] A coke oven gas purification device comprising a pre-filter and a main purification device that operates a plurality of adsorption cylinders filled with adsorbent by switching between adsorption and regeneration steps based on pressure changes, the main purification device comprising: A coke oven gas purification device characterized in that the adsorbents in the adsorption cylinder are filled in the order of silica gel, 10A diameter molecular sieves, activated carbon, and 5A diameter molecular sieves from the upstream side of the flow of raw coke oven gas. .
JP19582683A 1983-10-19 1983-10-19 Apparatus for purifying coke oven gas Pending JPS6086194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19582683A JPS6086194A (en) 1983-10-19 1983-10-19 Apparatus for purifying coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19582683A JPS6086194A (en) 1983-10-19 1983-10-19 Apparatus for purifying coke oven gas

Publications (1)

Publication Number Publication Date
JPS6086194A true JPS6086194A (en) 1985-05-15

Family

ID=16347643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19582683A Pending JPS6086194A (en) 1983-10-19 1983-10-19 Apparatus for purifying coke oven gas

Country Status (1)

Country Link
JP (1) JPS6086194A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807902A (en) * 2012-08-22 2012-12-05 株洲南方燃气轮机成套制造安装有限公司 Secondary purification method of coke oven gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575902A (en) * 1978-11-29 1980-06-07 Hitachi Ltd Recovering method for hydrogen from coke oven gas
JPS58141290A (en) * 1982-02-17 1983-08-22 Sumikin Coke Co Ltd Method of obtaining high-calorie gas from coke oven gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575902A (en) * 1978-11-29 1980-06-07 Hitachi Ltd Recovering method for hydrogen from coke oven gas
JPS58141290A (en) * 1982-02-17 1983-08-22 Sumikin Coke Co Ltd Method of obtaining high-calorie gas from coke oven gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807902A (en) * 2012-08-22 2012-12-05 株洲南方燃气轮机成套制造安装有限公司 Secondary purification method of coke oven gas

Similar Documents

Publication Publication Date Title
CA1050901A (en) Adsorption process
US5486227A (en) Integrated process for purifying and liquefying a feed gas mixture with respect to its less strongly adsorbed component of lower volatility
US3594983A (en) Gas-treating process and system
CA2332704C (en) Very large-scale pressure swing adsorption processes
JP4315666B2 (en) Syngas purification method
EP0767349B1 (en) The use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process
JP2833595B2 (en) Pressure swing adsorption method
KR20070028264A (en) Process for gas purification
US4627856A (en) Process for the adsorptive separation of steam and a less readily adsorbable component from a gaseous stream
WO2002085496A1 (en) Method and system for separating gas
KR19990077911A (en) Method and apparatus for producing clean dry air having application to air separation
KR102035870B1 (en) Purifying method and purifying apparatus for argon gas
US6814787B2 (en) Layered adsorption zone for hydrogen production swing adsorption
JPH10273307A (en) Recovery of noble gas from chamber
US4812147A (en) Multicomponent adsorption process
JP2001062238A (en) Method and device for cleaning air
KR940004626B1 (en) Process for helium purification
US5505764A (en) Process for restarting a receptacle for purifying hydrogen by adsorption, and its use in the treatment of certain gases containing hydrogen
US5669959A (en) Process for safe membrane operation
JP4719598B2 (en) Pretreatment method and apparatus in air liquefaction separation
JPS6086194A (en) Apparatus for purifying coke oven gas
JPS59116115A (en) Method for recovering carbon monoxide
US4711646A (en) Single component adsorption process
JPS62279823A (en) Purification and recovery of methane from reclaimed garbage gas
JPH039392B2 (en)