JPS608499A - Surging prevention of multi-stage axial flow compressor - Google Patents

Surging prevention of multi-stage axial flow compressor

Info

Publication number
JPS608499A
JPS608499A JP11591583A JP11591583A JPS608499A JP S608499 A JPS608499 A JP S608499A JP 11591583 A JP11591583 A JP 11591583A JP 11591583 A JP11591583 A JP 11591583A JP S608499 A JPS608499 A JP S608499A
Authority
JP
Japan
Prior art keywords
pressure
compressor
oil
air
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11591583A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kato
泰弘 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11591583A priority Critical patent/JPS608499A/en
Publication of JPS608499A publication Critical patent/JPS608499A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the stable operation range by employing a member to be driven by the differential pressure of the delivery section pressure and the intermediate stage pressure in an extraction/supply air system thereby performing extraction/exhaust automatically through simple structure and preventing stall in both high and low rotary regions. CONSTITUTION:Under high speed rotation of compressor, the delivery pressure will increase to increase the differential pressure between the delivery section 27 pressure and intermediate stage 26 pressure. Said differential pressure is received by a drive member 30 to expand a coil spring 29 thus to move said member 30 toward the suction port 25 as shown by dashed line. Consequently, the flow in an extraction/supply system 18 will pass through the delivery port 27 to the intermediate stage port 26 to perform suction (shown by dashed arrow). When the compressor will stop from high speed rotation, said differential pressure will drop to move the drive member 30 toward the delivery port 27 through recovery force of coil spring 29 thus to perform extraction. In such a manner, extraction/exhaust are performed automatically through quite simple structure to prevent stall in both low and high rotary regions of compressor resulting in enlargement of stable operation range.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多段軸流圧縮機に係るもので、特にガスタービ
ン用など広範囲の運転領域で安定作動が重要な場合に好
適な多段軸流圧縮機のサージング防止法に関するもので
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a multistage axial flow compressor, and is particularly suitable for use in gas turbines and other applications where stable operation is important over a wide range of operating ranges. This relates to a surging prevention method.

〔発明の背景〕[Background of the invention]

近年、ガスタービンの高温化と共に、これに用いられる
軸流圧縮機の高圧力比化が進んでおり、このため段当り
圧力比が1.3〜1.5に達するものも出現している。
In recent years, as the temperature of gas turbines has increased, the pressure ratios of axial flow compressors used therein have been increasing, and as a result, some compressors with per-stage pressure ratios reaching 1.3 to 1.5 have appeared.

これに伴い安定作動域がせばまり、ガスタービンの始動
性や制御性に問題を生ずる場合がある。第1図は通常の
多段軸流圧縮機の一般特性を示す。第1図において曲!
1,2.・・・6は圧縮機の回転数一定の場合の流量−
圧力比特性を示し、点線7,8.9がサージングライン
を示している。通常の多段軸流圧縮機では、点線の右側
領域が安定作動域で、左側領域ではサージング、旋回失
速などを生ずるため、圧縮機の安定作動が出来ない。圧
縮機のサージングは良く知られているように、翼の失速
に起因する。サージングライン7は上流段の失速に基づ
く、サージングライン8は全段の失速に基づく。また、
サージングライン9は下流段の失速に基づく限界線を示
している。曲線10は多段軸流圧縮機をガスタービンに
利用した時のガスタービンの起動ラインを示している。
As a result, the stable operating range becomes narrower, which may cause problems in the startability and controllability of the gas turbine. FIG. 1 shows the general characteristics of a conventional multi-stage axial flow compressor. Song in Figure 1!
1, 2. ...6 is the flow rate when the rotation speed of the compressor is constant -
The pressure ratio characteristics are shown, and dotted lines 7 and 8.9 indicate surging lines. In a normal multi-stage axial flow compressor, the region to the right of the dotted line is the stable operating region, and the region to the left causes surging, rotational stalling, etc., so the compressor cannot operate stably. As is well known, compressor surging is caused by blade stall. The surging line 7 is based on the stall of the upstream stage, and the surging line 8 is based on the stall of all stages. Also,
A surging line 9 indicates a limit line based on stall in the downstream stage. Curve 10 shows the startup line of a gas turbine when a multi-stage axial flow compressor is used in the gas turbine.

ガスタービンを起動する場合、停止状態から設計点に至
る運転は曲gioのライン上を通ってA点から0点へ達
する。第1図の場合ではA点力)らB点の間は不安定作
動域、B点から0点の間は安定作動域である。不安定作
動域では圧縮機の振動や騒音などが大きくなり、はなは
だしい時には翼の破損を生ずる。それ故、不安定作動域
が広く、AB間が長い場合には起動が不可となる場合が
ある。また、第1図のようにAB間が比較的短い場合で
も、出来るだけ短時間でAB間を通過する必要がある。
When starting a gas turbine, the operation from a stopped state to a design point passes along the curve gio line from point A to point 0. In the case of FIG. 1, the area between point A and point B is the unstable operating area, and the area between point B and 0 is the stable operating area. In the unstable operating range, the vibration and noise of the compressor become large, and in severe cases, the blades may be damaged. Therefore, if the unstable operation range is wide and the AB interval is long, startup may not be possible. Furthermore, even when the distance between A and B is relatively short as shown in FIG. 1, it is necessary to pass between A and B in as short a time as possible.

低速時のサージングライン7を右側に寄せ、第2図のよ
うな特性曲線とすれば、起動時に不安定域を通過しない
ようにすることが出来る。
By moving the surging line 7 at low speeds to the right side and creating a characteristic curve as shown in FIG. 2, it is possible to prevent the engine from passing through an unstable region at startup.

また、圧縮機の設計回転数(ライン2)における安定作
動域を拡げるためには、第2図に示すように高回転時に
おけるサージングライン9を左上方に移動させればよい
。このように、サージングを防止し安定作動域を広めれ
ば、多段軸流圧縮機の安定運転が確保できるので、ガス
タービン用の圧縮機などではこのような対策が特に重要
となる。
Furthermore, in order to widen the stable operating range at the design rotational speed (line 2) of the compressor, the surging line 9 at high rotational speeds may be moved to the upper left as shown in FIG. In this way, by preventing surging and widening the stable operating range, stable operation of the multistage axial flow compressor can be ensured, so such measures are particularly important in compressors for gas turbines.

圧縮機の失速を防止し、サージングを遅らせる方法とし
て従来用いられてきた方法は、可変静翼、2軸分割式圧
縮機、抽気、給気などの方法がある。
Conventionally used methods for preventing compressor stall and delaying surging include methods such as variable stator vanes, two-shaft split compressors, air extraction, and air supply.

この内、可変静翼の方法は圧縮機の運転状態に応じ、静
翼の取付角を変化させ翼の失速を防ぐものである。また
、2軸分割圧縮機はロータ軸を上流段と下流段に分け、
それぞれ別の回転数で回転出来るようにしたもので、い
ずれも構造が複雑となり高価で制御がむずかしい欠点が
ある。一方、抽気は圧縮機の低回転時に中間段に設けら
れた抽気孔から、気流の一部を外部へバイパスするもの
である。これにより上流段の流量が下流段に比し増すた
め、上流段の失速が防止され、サージングライン7が左
上方へ移動する。捷だ、給気の方法は圧縮機の高回転時
に中間段に設けられた給気孔より吐出気流の一部を給気
するものである。これにより、下流段の流量が上流段に
比し増すため下流段の失速が防止されサージングライン
9が左上方へ移動する。抽気、給気の方法は構造的に簡
単ガため従来の圧縮機に単独でよく用いられている。
Among these, the variable stator vane method changes the mounting angle of the stator vane depending on the operating condition of the compressor to prevent the vane from stalling. In addition, a two-shaft split compressor divides the rotor shaft into an upstream stage and a downstream stage,
Each type can rotate at a different rotation speed, and both have the drawback of being complex, expensive, and difficult to control. On the other hand, when the compressor rotates at a low speed, a part of the airflow is bypassed to the outside through a bleed hole provided in an intermediate stage. As a result, the flow rate in the upstream stage increases compared to that in the downstream stage, so stalling in the upstream stage is prevented, and the surging line 7 moves to the upper left. The simplest method of supplying air is to supply part of the discharged airflow through the supply hole provided in the intermediate stage when the compressor rotates at high speed. As a result, the flow rate in the downstream stage increases compared to that in the upstream stage, so stalling in the downstream stage is prevented and the surging line 9 moves to the upper left. The air extraction and air supply methods are structurally simple and are often used alone in conventional compressors.

しかし、抽気、給気の両方を採用しようとすると圧縮機
のケーシング中間段に抽気室、給気室の両者を設ける必
要があるためケーシング構造が複雑となる欠点がある。
However, if an attempt is made to employ both bleed air and air supply, it is necessary to provide both a bleed air chamber and an air supply chamber in the intermediate stage of the casing of the compressor, resulting in a disadvantage that the casing structure becomes complicated.

また、従来抽気、給気は抽気装置あるいは給気装置に電
磁パルプを有し、圧縮機の回転数に応じて、電磁パルプ
の開閉により行われている。したがって、抽気、給気装
置を回転数により制御するための多くの周辺付属部品が
必要となる欠点がある。
Conventionally, air extraction and air supply are performed by having an electromagnetic pulp in an air extraction device or an air supply device, and opening and closing the electromagnetic pulp depending on the rotation speed of the compressor. Therefore, there is a drawback that many peripheral accessories are required to control the air extraction and air supply devices by the rotational speed.

〔発明の目的〕[Purpose of the invention]

本発明は上述の実状にかんがみ成されたもので、安価で
安定作動域の広い多段軸流圧縮機のサージング防止法を
提供することを目的としている。
The present invention was created in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for preventing surging in a multistage axial flow compressor that is inexpensive and has a wide stable operating range.

〔発明の概要〕[Summary of the invention]

本発明の特徴とする所は、多段軸流圧縮機の中間段ケー
シング外周に設けられた油絵気室、流路と油絵気室を連
絡する油絵気部、油絵気室と連なる油絵気装置、油絵気
装置と圧縮機吸込部および吐出部を各々連結する導管、
油絵気装置内に吐出部属と中間段圧の差圧により駆動す
る部材を設けたので、抽気と給気の両者を自動的に実行
することが可能となり、圧縮機の低回転時、高回転時の
二つの領域とも失速が無くなり安定作動域が拡大できる
ことである。
The features of the present invention include an oil-painted air chamber provided on the outer periphery of an intermediate stage casing of a multi-stage axial flow compressor, an oil-painted air chamber that connects the flow path and the oil-painted air chamber, an oil-painted air device connected to the oil-painted air chamber, and a conduit connecting the air device and the compressor suction section and discharge section, respectively;
Since we have installed a member in the oil-painting air system that is driven by the differential pressure between the discharge part and the intermediate stage pressure, it is possible to automatically perform both air extraction and air supply. In both of these areas, there is no stall and the stable operating range can be expanded.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第3図〜第5図を用いて更に詳
しく説明する。
An embodiment of the present invention will be described in more detail below with reference to FIGS. 3 to 5.

第3図は本発明を実施した場合の多段軸流圧縮機の断面
図を示す。多段軸流圧縮機は動翼11と静翼12を交互
に配して構成される。動翼11はロータ13に取付けら
れており別置のモータやタービンなどにより駆動される
。静翼12はケーシング14に植込まれている。本発明
の多段軸流圧縮機では、ケーシングの中間段外周に、油
絵気室15が設けられ、油絵気呈15と流路はスリット
または孔からなる油絵気部16で連絡されている。
FIG. 3 shows a sectional view of a multi-stage axial flow compressor in which the present invention is implemented. A multistage axial flow compressor is configured by alternately arranging rotor blades 11 and stationary blades 12. The rotor blades 11 are attached to a rotor 13 and are driven by a separate motor, turbine, or the like. The stationary blades 12 are embedded in the casing 14. In the multi-stage axial flow compressor of the present invention, an oil-painted air chamber 15 is provided on the outer periphery of the intermediate stage of the casing, and the oil-painted air chamber 15 and the flow path are communicated by an oil-painted air chamber 16 consisting of a slit or a hole.

前記油絵気室15は油絵気管17′fc介し油絵気装置
18と連結している。また、油絵気装置18と圧縮機の
吸込部19間は抽気管20で連結されている。前記油絵
気装置18と圧縮機の吐出部21間は給気管22で連結
されている。
The oil painting air chamber 15 is connected to an oil painting air device 18 via an oil painting air pipe 17'fc. Further, the oil painting device 18 and the suction section 19 of the compressor are connected through a bleed pipe 20. An air supply pipe 22 connects the oil painting air device 18 and the discharge section 21 of the compressor.

第4図は油絵気装置の拡大図で、第5図は第4図中のA
−A視図である。油絵気装置18は上ケース23と下ケ
ース24の2部材から成り、図示しないボルト等で締結
されている。前記油絵気装置18は吸込部口25、中間
段口26、吐出部口27の3方向に開口しており、各々
は抽気管20、油絵気管17、給気管22と連結してい
る。前記下ケース24内面側には固定部材28が固定さ
れている。前記固定部材28にはコイルバネ29が吸込
部口25側に係合されている。さらにコイ。バネ29の
吸込口25側には、前記コイルバネの伸縮変形により吸
込部口25と吐出部ロ27間を駆動する駆動部材30が
設置されている。また、油絵気装置上ケース23と下ケ
ース24の内面円周上には、上記駆動部材が移動する範
囲以上にラビリンス31が設置されている。
Figure 4 is an enlarged view of the oil painting device, and Figure 5 is A in Figure 4.
-A view. The oil painting device 18 consists of two members, an upper case 23 and a lower case 24, which are fastened together with bolts (not shown) or the like. The oil air device 18 opens in three directions: a suction port 25 , an intermediate stage port 26 , and a discharge port 27 , which are connected to an air bleed pipe 20 , an oil air pipe 17 , and an air supply pipe 22 . A fixing member 28 is fixed to the inner surface of the lower case 24. A coil spring 29 is engaged with the fixing member 28 on the suction port 25 side. More carp. A driving member 30 is installed on the suction port 25 side of the spring 29 to drive between the suction port 25 and the discharge port 27 by expansion and contraction of the coil spring. Further, a labyrinth 31 is installed on the inner circumferences of the upper case 23 and the lower case 24 of the oil painting apparatus, extending beyond the range in which the driving member moves.

本実施例は以上述べたような構成となっている。This embodiment has the configuration described above.

次に本実施例の動作について第3図に基づいて述べる。Next, the operation of this embodiment will be described based on FIG.

圧縮機の低回転時には、吐出部圧は設計圧に比し低いた
め、吐出圧と中間段圧の差圧は小さい。したがって、駆
動部材30が差圧により受ける力は小さく、実線で示し
た如くコイルバネ力により初期の位置に停まるか、ある
いは僅かな距離だけ吸込部口25側へ移動するだけであ
る。その結果、中間段目、26と吸込部口25間は導通
状態となる。一方、吐出部口からの流れはラビリンス3
1でシールされてる。したがって、中間段口25の流れ
は吸込部口25に向い、抽気が行われる(実線矢印32
)。この時、駆動部材3oとラビリンス31の間隙より
吐出部口25がら若干の洩れ流れは発生するが、性能低
下を及ぼす程影響があるとは考えられない。
When the compressor rotates at low speed, the discharge pressure is lower than the design pressure, so the differential pressure between the discharge pressure and the intermediate stage pressure is small. Therefore, the force that the drive member 30 receives due to the differential pressure is small, and as shown by the solid line, it stops at the initial position due to the force of the coil spring or moves only a small distance toward the suction port 25 side. As a result, conduction occurs between the intermediate stage 26 and the suction port 25. On the other hand, the flow from the discharge port is Labyrinth 3.
It is sealed with 1. Therefore, the flow of the intermediate stage port 25 is directed toward the suction port 25, and air is extracted (solid line arrow 32
). At this time, some leakage flow occurs from the discharge port 25 through the gap between the drive member 3o and the labyrinth 31, but it is not considered to have a sufficient influence to degrade performance.

一方、圧縮機の高回転時には吐出圧が上昇するに伴い、
吐出部圧と中間段圧の差圧は大きくなる。
On the other hand, when the compressor rotates at high speed, as the discharge pressure increases,
The differential pressure between the discharge part pressure and the intermediate stage pressure increases.

この大きな差圧を駆動部材30が受けると、コイルバネ
29はその差圧で伸び、駆動部材3oは破線で示す如く
吸込部口25へと移動する。この結果、油絵気装置内の
流れは吐出部口27から中間段口26と向い給気が行わ
れる(破線矢印33)。
When the drive member 30 receives this large pressure difference, the coil spring 29 expands due to the pressure difference, and the drive member 3o moves toward the suction port 25 as shown by the broken line. As a result, the flow inside the oil painting air device is directed from the discharge port 27 to the intermediate stage port 26, and air is supplied (dashed line arrow 33).

また、圧縮機が、高回転時から停止に至る場合は、吐出
部圧と中間段圧の差圧の減少に伴い、コイルバネ29の
復元力で駆動部材30は吐出部口27の方向へ移動し前
述した如く抽気が行われる。
Furthermore, when the compressor stops from high rotation, the drive member 30 moves toward the discharge port 27 due to the restoring force of the coil spring 29 as the differential pressure between the discharge portion pressure and the intermediate stage pressure decreases. Bleeding is performed as described above.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば多段軸流圧縮機におい
て、油絵気装置に吐出部圧と中間段圧の差圧により駆動
する駆動部材を用いたことにより、外部の周辺部品を必
要とせずに非常に単純な構造で抽気、給気が自動的に行
うことが可能となり、安定作動範囲の広い多段軸流圧縮
機のサージング防止法を提供できる効果がある。−また
外部の周辺部品を必要としないことから、部品の点数が
減じ機器の信頼性の向上に寄与できる。
As described above, in a multi-stage axial flow compressor according to the present invention, by using a driving member that is driven by the differential pressure between the discharge part pressure and the intermediate stage pressure in the oil painting device, there is no need for external peripheral parts. With a very simple structure, air extraction and air supply can be performed automatically, and it has the effect of providing a surging prevention method for multistage axial flow compressors with a wide stable operation range. - Also, since no external peripheral parts are required, the number of parts can be reduced and the reliability of the equipment can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は多段軸流圧縮機の空力特性を示す説明
図、第3図は本発明の一実施例の多段軸流圧縮機の断面
図、第4図、第5図は油絵気室の断面図である。 15・・・油絵気室、16・・・油絵気部、17・・・
油絵気管、18・・・油絵気装置、20・・・抽気管、
22・・・給第 1図 ”′°名7,7 −−−◆711シ里 垢30
Figures 1 and 2 are explanatory diagrams showing the aerodynamic characteristics of a multistage axial compressor, Figure 3 is a sectional view of a multistage axial compressor according to an embodiment of the present invention, and Figures 4 and 5 are oil paintings. It is a sectional view of an air chamber. 15...Oil painting air chamber, 16...Oil painting air chamber, 17...
Oil painting trachea, 18... Oil painting air device, 20... Air bleed pipe,
22... Figure 1"'° Name 7, 7 ---◆711 Shiri 30

Claims (1)

【特許請求の範囲】[Claims] 1、動翼列と静翼列を交互に配して成る多段軸流圧縮機
において、中間段のケーシング外周に設けられた油絵気
室と、流路と油絵気室を連絡するスリットまたは孔から
成る油絵気部と、前記油絵気室と導管を介し連結する油
絵気装置と、前記油絵気装置と圧縮機吸込部および吐出
間部を各々連結する導管と、前記油絵気装置内部に吐出
部圧力と中間段圧力の差圧により駆動する駆動部材を配
し、抽気および給気を自動制御することを特徴とする多
段軸流圧縮機のサージング防止法。
1. In a multi-stage axial flow compressor consisting of alternating rows of rotor blades and stator blades, from the oil-painted air chamber provided on the outer periphery of the casing of the intermediate stage, and the slit or hole that connects the flow path and the oil-painted air chamber. an oil-painting air section, an oil-painting air device connected to the oil-painting air chamber via a conduit, a conduit connecting the oil-painting air device to a compressor suction section and a discharge section, respectively, and a discharge section pressure inside the oil-painting air device. A surging prevention method for a multi-stage axial flow compressor, which is characterized by disposing a drive member driven by the differential pressure between the intermediate stage pressure and the intermediate stage pressure, and automatically controlling air extraction and air supply.
JP11591583A 1983-06-29 1983-06-29 Surging prevention of multi-stage axial flow compressor Pending JPS608499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11591583A JPS608499A (en) 1983-06-29 1983-06-29 Surging prevention of multi-stage axial flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11591583A JPS608499A (en) 1983-06-29 1983-06-29 Surging prevention of multi-stage axial flow compressor

Publications (1)

Publication Number Publication Date
JPS608499A true JPS608499A (en) 1985-01-17

Family

ID=14674359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11591583A Pending JPS608499A (en) 1983-06-29 1983-06-29 Surging prevention of multi-stage axial flow compressor

Country Status (1)

Country Link
JP (1) JPS608499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692452B2 (en) 2016-01-25 2023-07-04 Nuovo Pignone Tecnologie—S.R.L. Compressor train start-up using variable inlet guide vanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692452B2 (en) 2016-01-25 2023-07-04 Nuovo Pignone Tecnologie—S.R.L. Compressor train start-up using variable inlet guide vanes

Similar Documents

Publication Publication Date Title
EP1128070B1 (en) Compressor
EP1252424B1 (en) Method of operating a variable cycle gas turbine engine
US3101926A (en) Variable area nozzle device
JP3686300B2 (en) Centrifugal compressor
US5417547A (en) Vaned diffuser for centrifugal and mixed flow pumps
US8122724B2 (en) Compressor including an aerodynamically variable diffuser
JPS5810600B2 (en) Axial compressor casing
EP0425651A1 (en) Compressor shroud air bleed passages
WO2008035465A1 (en) Centrifugal compressor
EP3489521B1 (en) Inlet-adjustment mechanism for turbocharger compressor, having sealing means preventing recirculation and/or oil migration into the mechanism
JPS62168999A (en) Extraction device for axial compressor
US2958456A (en) Multi-stage aerofoil-bladed compressors
WO2016071712A1 (en) Compressor and turbocharger
EP3667100B1 (en) Turbocharger compressor with adjustable-trim mechanism and noise-attenuator
JPS58202399A (en) Surging preventing apparatus for multistage axial-flow compressor
JP5148425B2 (en) Centrifugal compressor
JPS608499A (en) Surging prevention of multi-stage axial flow compressor
JP2007177737A (en) Centrifugal compressor
JPH08254127A (en) Supercharger
JPS59168296A (en) Surging preventive device of multistage axial-flow compressor
RU2192564C2 (en) Turbomachine overrotor device
US3779666A (en) Fluid flow compressors
JPS6118161Y2 (en)
JPS6134400A (en) Capacity controlling device for turbo-compressor and the like
JP3380897B2 (en) Compressor