JPS62126296A - Bleeder of axial-flow compressor - Google Patents

Bleeder of axial-flow compressor

Info

Publication number
JPS62126296A
JPS62126296A JP26477085A JP26477085A JPS62126296A JP S62126296 A JPS62126296 A JP S62126296A JP 26477085 A JP26477085 A JP 26477085A JP 26477085 A JP26477085 A JP 26477085A JP S62126296 A JPS62126296 A JP S62126296A
Authority
JP
Japan
Prior art keywords
bleed
compressor
port
flow
movable ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26477085A
Other languages
Japanese (ja)
Inventor
Yutaro Matsuura
松浦 祐太郎
Yasunari Kashiwara
柏原 康成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26477085A priority Critical patent/JPS62126296A/en
Publication of JPS62126296A publication Critical patent/JPS62126296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To remove the possibility of unstable flow through a bleed part by making the sectional area of an open port variable through which bleed air flows into a main current passage when a multi-stage axial-flow compressor is operated. CONSTITUTION:A movable ring 12 which can be slided axially is disposed on the internal face of a bleed chamber 6 located downstream from the bleed port 5 of a compressor. The movable ring 12 is moved by an actuator 13, that is, slided downstream to enlarge the sectional area of the bleed port when a compressor runs at a low speed with a large amount of bleed air and oppositely, slided to reduce the sectional area of the bleed port when the compressor rung at a high speed. Hence, the compressor can operate in a stable state throughout the range from the low speed range to the high speed range, whereby preventing unstable flow through the bleed part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多段軸流圧縮機に係わり、特に起動。[Detailed description of the invention] [Industrial application field] The present invention relates to a multi-stage axial flow compressor, particularly to startup.

停止途中および全負荷運転時の全ての運転範囲にわたり
、安定な運転作動を確保する軸流圧縮機の抽気装置に関
する。
This invention relates to an air bleed system for an axial flow compressor that ensures stable operation over the entire operating range during stoppage and full load operation.

〔従来の技術〕[Conventional technology]

多段軸流圧縮機では低速回転数(起動、停止途中など)
と高速回転時(定格運転時)で、内部流動に著しい差異
を生ずるため、低速回転時の流れが不安定となる。この
ため、低速回転時の流れ安定化策を施さない場合には、
起動時に翼を損傷したり、起動不能となることもある。
For multi-stage axial flow compressors, low rotational speed (starting, stopping, etc.)
There is a significant difference in the internal flow between high-speed rotation and high-speed rotation (rated operation), resulting in unstable flow during low-speed rotation. Therefore, if no flow stabilization measures are taken during low-speed rotation,
When starting up, the wings may be damaged or the aircraft may not be able to start up.

低速時の流れ安定化策として従来から採用されている主
なものは、i)可変静翼、it) 2軸型式、in)抽
気の3種である。従来の上記方法に関しては、牛丼によ
る文献゛′送風機と圧縮機”P230〜231に論じら
れている。第3図に従来の抽気付軸流圧縮機の構造を示
す0図の場合は13段軸流圧縮機の例である。ロータ1
の外周には、動翼2が、ケーシング3の内周には、静翼
4が配してあり、動翼列と静翼列を交互に配した構造と
なっている1本図の例では、6段静翼と7段静翼の間の
ケーシング内壁に抽気口5が設置されている。この場合
の抽気口は周方向に連続したスリツ1−状のものである
が、多数の穴を周方向に断続的に配した多孔型抽気口を
用いる場合もある。抽気5の外周にはドーナツ状の空間
をした抽気室6が設けられており。
The three main methods that have been conventionally adopted as flow stabilization measures at low speeds are i) variable stator vanes, it) two-shaft type, and in) bleed air. The above-mentioned conventional method is discussed in the literature "Blowers and Compressors" by Gyudon, pages 230-231. Figure 3 shows the structure of a conventional axial flow compressor with bleed. In the case of Figure 0, there are 13 stages. This is an example of an axial flow compressor.Rotor 1
The rotor blades 2 are arranged on the outer periphery of the casing 3, and the stator blades 4 are arranged on the inner periphery of the casing 3. , an air bleed port 5 is installed on the inner wall of the casing between the 6th stage stator vane and the 7th stage stator vane. In this case, the air bleed port is in the form of a continuous slit in the circumferential direction, but a multi-hole type air bleed port in which a large number of holes are disposed intermittently in the circumferential direction may be used. An air bleed chamber 6 having a donut-shaped space is provided around the outer periphery of the air bleed 5.

抽気口からの流入気流を集合する。抽気室の外周には、
更に複数個の排出管7が設けられており、抽気気流を抽
気弁8を介して外部へ排出するように構成されている。
Collects incoming airflow from the bleed port. Around the periphery of the bleed chamber,
Furthermore, a plurality of exhaust pipes 7 are provided and configured to discharge the bleed air flow to the outside via a bleed valve 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来例では主流に対する抽気口からの排出気流割合
は低速回転時(例えば、定格回転の80%回転数以下)
には大(例えば、20%程度)であるが、高速回転時に
はゼロ又は、微少(冷却用又はシール用として数%)と
なる。低速回転時には、後段は圧力が上らないので、容
積流量が過大となり、チョーク状態となる。このため、
上流段は流量不足となり、翼列の失速を引起こす。それ
故、中間段に設けた抽気口から、気流を排出すれば、上
流段に大流量を送り込むことが出来、失速回避が可能と
なる。抽気の効果に対する更に詳細な説明は前述の牛丼
による文献″送風機と圧縮機″に述べられている。
In the conventional example above, the ratio of the exhaust airflow from the bleed port to the main flow is at low speed rotation (for example, below 80% of the rated rotation speed)
It is large (for example, about 20%), but it becomes zero or very small (several % for cooling or sealing) during high-speed rotation. During low-speed rotation, pressure does not rise in the rear stage, so the volumetric flow rate becomes excessive and a choke condition occurs. For this reason,
The upstream stage suffers from insufficient flow, causing the blade row to stall. Therefore, by discharging the airflow from the air bleed port provided at the intermediate stage, a large flow rate can be sent to the upstream stage, making it possible to avoid stalling. A more detailed explanation of the effect of bleed air is given in the above-mentioned article by Gyudon entitled "Blowers and Compressors".

近年、圧縮機の高圧力比化が進められているが、高圧力
比化をはかると、低速時と高速時の流れの相違が増々、
著しくなる。それ故、高圧力比圧縮機になるに従がい、
抽気量が増大する傾向にある。
In recent years, the pressure ratio of compressors has been increased, but as the pressure ratio is increased, the difference between the flow at low speed and high speed increases.
It becomes noticeable. Therefore, as high pressure ratio compressors become
The amount of extracted air tends to increase.

抽気量を増大するためには、抽気口面積を増大させるこ
とになる。それ故、近年の高圧力比圧縮機では従来に比
し、抽気口面積が著しく大きなものが採用される様にな
った。この様な抽気面積の大きい多段軸流圧縮機におい
て、最近、定格回転皿、転時に、抽気部子安定流れに基
因した翼の破損事故を生じた例がある。この原因として
は2つの現象が考えられている。1つは主流流量が大と
なる定格運転時に抽気室の気柱共鳴による大きな圧力変
動を生じ、翼に過大な振動応力を与える場合である。第
2の現象については第4図を用いて説明する。第4図は
、第3図のに−に断面を示したものである。前述のごと
く、定格運転時には、抽気流量はほとんどゼロとなるが
、抽気口面積や抽気室容積が大きいため、抽気室内を気
流が周方向に隈回する流れ9や、主流へ流入する流れ1
0や、逆に主流から抽気口へ流入する流れ11を生ずる
In order to increase the amount of bleed air, the area of the bleed port must be increased. Therefore, in recent years, high pressure ratio compressors have come to have a significantly larger bleed port area than conventional compressors. In such a multi-stage axial flow compressor with a large bleed area, there has recently been an accident in which a blade was damaged due to stable flow in the bleed section during rotation of the rated rotary plate. Two phenomena are thought to be the cause of this. One is the case where large pressure fluctuations occur due to air column resonance in the bleed chamber during rated operation when the mainstream flow rate is large, giving excessive vibration stress to the blades. The second phenomenon will be explained using FIG. 4. FIG. 4 shows a cross section taken along the line - in FIG. 3. As mentioned above, during rated operation, the bleed air flow rate is almost zero, but because the bleed port area and the bleed chamber volume are large, there is a flow 9 in which the air flows around the bleed chamber in the circumferential direction, and a flow 1 flowing into the main stream.
0 or, conversely, a flow 11 flowing from the mainstream to the bleed port.

この様な流れがあると動翼が1回転する間に数回の励振
力を受け、著しい時には翼の損傷を起こす。
When there is such a flow, the rotor blade is subjected to several excitation forces during one rotation, and in severe cases, the blade may be damaged.

以上述べたごとく、高圧力比で抽気口面積、抽気室容積
の大きい従来の抽気構造では、定格M@などの高速回転
時に抽気部流れに不安定を生じ、はなはだしい時には翼
の破損竪故を発生さぜる欠点があった。
As mentioned above, in the conventional bleed structure with a high pressure ratio, large bleed port area, and large bleed chamber volume, the flow in the bleed section becomes unstable when rotating at high speeds such as the rated M@, and when the rotation becomes extreme, the blades may be damaged. It had some flaws.

本発明の目的は、抽気口面積や抽気室容積の大きな高圧
力比軸流圧縮機において、定格運転時などの高速運転時
に発生する抽気部流れの不安定を除去し、低回転域から
高回転域の全ての運転域で安定作動を確保できる抽気付
軸流圧縮機の抽気構造を提供することにある。
The purpose of the present invention is to eliminate the instability of the flow in the bleed section that occurs during high-speed operation such as rated operation in a high pressure ratio axial flow compressor with a large bleed port area and bleed chamber volume, and to An object of the present invention is to provide a bleed structure for an axial flow compressor that can ensure stable operation in all operating ranges.

〔問題点を解決するための手段〕[Means for solving problems]

先に述べたごとく、抽気部子安定流れの原因は2種類(
気柱共鳴と抽気口を出入する流れ)あるが、この両者と
も、抽気口面積や抽気室容積が過大なことに基因してい
る。大きな抽気口面積や容積は低速運転時に必要なもの
で、高速運転時には不用であるばかりでなく有害である
As mentioned earlier, there are two reasons for stable flow in the bleed section (
There is air column resonance and flow flowing in and out of the bleed port), but both of these are caused by the bleed port area and bleed chamber volume being too large. A large bleed port area and volume are necessary during low-speed operation, but are not only unnecessary but harmful during high-speed operation.

本発明は上述の考察に基づき成されたもので、軸気口面
積を低速時と高速時で変化させ抽気部不安定流れを除去
しようとするものである。
The present invention was developed based on the above considerations, and aims to eliminate unstable flow in the bleed section by changing the area of the axial air port between low speed and high speed.

〔作用〕[Effect]

低速時には抽気口面積が充分確保されるように。 Sufficient air bleed port area is ensured at low speeds.

全開状態に保つが、抽気の不要な高速運転時には抽気口
面積を閉じる6抽気口が全開又は小さい場合には、先に
述べた不安定流れの原因と目される2つの現象(気柱共
鳴と抽気口を出入する流れ)とも無くなるので全運転範
囲で安定な運転作動が確保される。
It is kept fully open, but the area of the bleed port is closed during high-speed operation when no bleed air is required.6 If the bleed port is fully open or small, two phenomena (air column resonance and Since there is no flow in and out of the air bleed port, stable operation is ensured over the entire operating range.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図に従って説明する。抽
気口5の下流位置における抽気室6の内面に軸方向に摺
動可能な可動リング12を設ける。
An embodiment of the present invention will be described below with reference to FIG. A movable ring 12 that is slidable in the axial direction is provided on the inner surface of the bleed chamber 6 at a position downstream of the bleed port 5.

可動リング12は往復運動駆動装置13(アクチユエー
タなど)に連結されている。以上の構成によれば、抽気
量大の低速回転時には、可動リング12を下流側へ摺動
させ抽気口面積を拡げることが出来る。また、抽気の不
要な高速運転時には、可動リング12を上流側へ摺動さ
せ、抽気口を閉止または閉止に近い状態に保つことが出
来、抽気部子安定流れの原因が除去され、安定な運転が
可能となる。
The movable ring 12 is connected to a reciprocating drive 13 (such as an actuator). According to the above configuration, during low speed rotation with a large amount of bleed air, the movable ring 12 can be slid downstream to expand the bleed port area. In addition, during high-speed operation when air bleed is not required, the movable ring 12 can be slid upstream to keep the bleed port closed or close to closed, eliminating the cause of stable flow in the bleed part and ensuring stable operation. becomes possible.

次に、本発明の他の実施例を第2図に従って説明する。Next, another embodiment of the present invention will be described with reference to FIG.

抽気口5の下流位置における抽気室6の内面に、軸方向
に摺動可能なツバ付可動リング14を設ける。ツバ付可
動リング14の内面には円板状のツバ15が設けられて
おり、ケーシング3との間に高圧室16と低圧室17の
空間を有す。
A movable ring 14 with a collar that is slidable in the axial direction is provided on the inner surface of the bleed chamber 6 at a position downstream of the bleed port 5. A disc-shaped collar 15 is provided on the inner surface of the movable collar 14, and has a space between it and the casing 3 for a high pressure chamber 16 and a low pressure chamber 17.

低圧室17の内部には、バネ18が設けられている。抽
気口後段の静翼下流の流路外壁には1通気孔19を設け
、前記高圧室16と連通させである。
A spring 18 is provided inside the low pressure chamber 17. A vent hole 19 is provided in the outer wall of the flow path downstream of the stationary blade after the air bleed port, and is communicated with the high pressure chamber 16 .

この様な構成の場合、低回転時には、バネ18の作用に
より、ツバ付可動リング17は下流側へ押され、抽気口
面積は大となる。圧力の上がる高回転時には、静翼下流
の圧力と抽気室圧力の差圧が。
In the case of such a configuration, when the rotation speed is low, the movable collared ring 17 is pushed downstream by the action of the spring 18, and the area of the air bleed port becomes large. At high speeds where pressure increases, there is a pressure difference between the pressure downstream of the stator blade and the bleed chamber pressure.

ツバ15に作用し、バネ力に打勝って、ツバ付可動リン
グ17を上流側へ摺動させる。このため、高回転時に抽
気口面積が閉止又は閉止に近い状態となり、圧縮機の安
定作動が確保される。
It acts on the collar 15, overcomes the spring force, and slides the movable collar 17 toward the upstream side. Therefore, the bleed port area is closed or nearly closed during high rotation, and stable operation of the compressor is ensured.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、圧縮機の低回転
時と高回転時で抽気口面積を変化させることが出来るの
で、高回転時に抽気口を閉止、もしくは閉止に近い状態
にすることが出来る。したがって、高回転時に発生する
抽気部子安定流れの原因を取除くことが出来、低回転域
から高回転域の全ての範囲で安定作動できる抽気付軸流
圧縮機の抽気装置を提供することができる効果がある。
As explained above, according to the present invention, the bleed port area can be changed between low rotation and high rotation of the compressor, so the bleed port can be closed or close to closed during high rotation. I can do it. Therefore, it is possible to eliminate the cause of the stable flow in the bleed part that occurs at high rotation speeds, and to provide a bleed device for an axial flow compressor with bleed air that can operate stably over the entire range from low rotation speeds to high rotation speeds. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例の抽気部縦断面図、第
3図は従来の抽気付軸流圧縮機の縦断面図、第4図は第
3図のに−に断面図である。 5・・・抽気口、6・・・抽出室、12・・・可動リン
グ。 13・・・往復運動駆動装置、14・・・ツバ付可動リ
ング、18・・・バネ、19・・・通気孔。 〕 ′f、1   図 ↑ VJ Z 図 ↑ 不 3 図
Figures 1 and 2 are longitudinal sectional views of the bleed section of an embodiment of the present invention, Figure 3 is a longitudinal sectional view of a conventional axial flow compressor with bleed, and Figure 4 is a cross-sectional view of Figure 3. It is. 5... Air extraction port, 6... Extraction chamber, 12... Movable ring. 13... Reciprocating motion drive device, 14... Movable ring with collar, 18... Spring, 19... Ventilation hole. ] 'f, 1 Figure ↑ VJ Z Figure ↑ Not 3 Figure

Claims (1)

【特許請求の範囲】 1、動翼列と静翼列を交互に配して成り、中間段に抽気
口を持つ多段軸流圧縮機において、圧縮機運転時に主流
流路への抽気開口面積を可変とした軸流圧縮機の抽気装
置。 2、特許請求の範囲第1項の可変抽気装置において、可
動リングおよび往復運動駆動装置を用いたことを特徴と
する軸流圧縮機の抽気装置。 3、特許請求の範囲第1項の可変抽気装置において、抽
気口位置下流の抽気室内面外周部に、前後に高圧室、低
圧室を配したツバ付可動リングを設けると共に、抽気口
後段に設けた静翼下流の流路外壁に通気孔を設け、前記
高圧室と連通させると共に、低圧室内にバネを設けたこ
とを特徴とする軸流圧縮機の抽気装置。
[Scope of Claims] 1. In a multi-stage axial flow compressor in which rows of moving blades and rows of stationary blades are arranged alternately and a bleed port is provided in an intermediate stage, the area of the bleed opening to the main flow path is reduced during compressor operation. Variable axial flow compressor extraction device. 2. An axial flow compressor bleed device characterized in that the variable bleed device according to claim 1 uses a movable ring and a reciprocating drive device. 3. In the variable air bleed device according to claim 1, a movable ring with a collar is provided on the outer periphery of the bleed chamber downstream of the bleed port position, with a high pressure chamber and a low pressure chamber arranged in the front and rear, and a movable ring with a collar is provided at the rear stage of the bleed port. An air bleed device for an axial flow compressor, characterized in that a vent hole is provided in the outer wall of the flow path downstream of the stator blade, communicating with the high pressure chamber, and a spring is provided in the low pressure chamber.
JP26477085A 1985-11-27 1985-11-27 Bleeder of axial-flow compressor Pending JPS62126296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26477085A JPS62126296A (en) 1985-11-27 1985-11-27 Bleeder of axial-flow compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26477085A JPS62126296A (en) 1985-11-27 1985-11-27 Bleeder of axial-flow compressor

Publications (1)

Publication Number Publication Date
JPS62126296A true JPS62126296A (en) 1987-06-08

Family

ID=17407943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26477085A Pending JPS62126296A (en) 1985-11-27 1985-11-27 Bleeder of axial-flow compressor

Country Status (1)

Country Link
JP (1) JPS62126296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255440A (en) * 2011-06-08 2012-12-27 Siemens Ag Axial turbo compressor
US20140298788A1 (en) * 2013-04-08 2014-10-09 United Technologies Corporation Gas turbine engine including pneumatic actuator system
US20150176499A1 (en) * 2013-12-23 2015-06-25 Ge Energy Products France Snc Process for Preventing Rotating Stall and Surge in a Turbomachine
WO2017077921A1 (en) * 2015-11-04 2017-05-11 三菱日立パワーシステムズ株式会社 Gas turbine startup method and device
EP3059457A4 (en) * 2013-10-17 2017-06-21 Mitsubishi Heavy Industries, Ltd. Compressor and gas turbine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255440A (en) * 2011-06-08 2012-12-27 Siemens Ag Axial turbo compressor
US20140298788A1 (en) * 2013-04-08 2014-10-09 United Technologies Corporation Gas turbine engine including pneumatic actuator system
EP3059457A4 (en) * 2013-10-17 2017-06-21 Mitsubishi Heavy Industries, Ltd. Compressor and gas turbine
US20150176499A1 (en) * 2013-12-23 2015-06-25 Ge Energy Products France Snc Process for Preventing Rotating Stall and Surge in a Turbomachine
US9759134B2 (en) * 2013-12-23 2017-09-12 General Electric Company Process for preventing rotating stall and surge in a turbomachine
WO2017077921A1 (en) * 2015-11-04 2017-05-11 三菱日立パワーシステムズ株式会社 Gas turbine startup method and device
JP2017089414A (en) * 2015-11-04 2017-05-25 三菱日立パワーシステムズ株式会社 Method and apparatus for starting gas turbine
US10858996B2 (en) 2015-11-04 2020-12-08 Mitsubishi Power, Ltd. Gas turbine startup method and device

Similar Documents

Publication Publication Date Title
EP3441618B1 (en) Turbocharger with a centrifugal compressor, having synergistic ported shroud and inlet-adjustment mechanism
EP1252424B1 (en) Method of operating a variable cycle gas turbine engine
EP0497574B1 (en) Fan case treatment
US4086022A (en) Gas turbine engine with improved compressor casing for permitting higher air flow and pressure ratios before surge
US2720356A (en) Continuous boundary layer control in compressors
US7575412B2 (en) Anti-stall casing treatment for turbo compressors
US3101926A (en) Variable area nozzle device
JP4035059B2 (en) Diffuser for ground or aviation gas turbine
US3694102A (en) Guide blades of axial compressors
US20050081530A1 (en) Arrangement for bleeding the boundary layer from an aircraft engine
US8192148B2 (en) Fluid return in the splitter of turbomachines with bypass-flow configuration
KR20120115973A (en) Method for cooling turbine stators and cooling system for implementing said method
KR20090007771A (en) Centrifugal compressor
EP3231997A1 (en) Gas turbine engine airfoil bleed
WO2015072256A1 (en) Vane structure for axial flow turbomachine and gas turbine engine
JPS62168999A (en) Extraction device for axial compressor
JPS62126296A (en) Bleeder of axial-flow compressor
KR20150082223A (en) Compression assembly for a turbine engine
JPS58202399A (en) Surging preventing apparatus for multistage axial-flow compressor
Gui et al. Influences of splitter blades on the centrifugal fan performances
JPS6385299A (en) Bleeding structure of axial flow compressor
JPH0738641Y2 (en) Multi-stage axial turbine
JPS59168296A (en) Surging preventive device of multistage axial-flow compressor
JPH08159097A (en) Fan and casing of compressor
EP3059455B1 (en) Compressor and gas turbine