JPS6084199A - Method for controlling biological denitrification process - Google Patents

Method for controlling biological denitrification process

Info

Publication number
JPS6084199A
JPS6084199A JP9562383A JP9562383A JPS6084199A JP S6084199 A JPS6084199 A JP S6084199A JP 9562383 A JP9562383 A JP 9562383A JP 9562383 A JP9562383 A JP 9562383A JP S6084199 A JPS6084199 A JP S6084199A
Authority
JP
Japan
Prior art keywords
value
denitrification
oxidation
reduction potential
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9562383A
Other languages
Japanese (ja)
Other versions
JPH0411279B2 (en
Inventor
Shoji Watanabe
昭二 渡辺
Kenji Baba
研二 馬場
Shunsuke Nokita
舜介 野北
Hitoshi Ogasawara
均 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9562383A priority Critical patent/JPS6084199A/en
Publication of JPS6084199A publication Critical patent/JPS6084199A/en
Publication of JPH0411279B2 publication Critical patent/JPH0411279B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To always form a good denitrification state, by regulating the supply amount of org. carbon by correcting the objective redox potential value of an optimum denitrification state at reference pH so as to allow the same to correspond to an actually measured pH value. CONSTITUTION:In such a denitrification process that nitrate form nitrogen or nitrite form nitrogen in waste water is reduced to nitrogen gas in the presence of org. carbon, the redox potential and pH of a liquid mixture are detected. A preset objective redox potential value is corrected on the basis of this pH value. In the next step, the supply amount of the aforementioned org. carbon is regulated on the basis of this corrected objective value. By the above mentioned method, a good denitrification state is always formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は生物学的膜窒素プロセスに係り、特に、良好な
脱♀状態の形成に好適な有機炭素供給開側j方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a biological membrane nitrogen process, and particularly to an open-side method for supplying organic carbon suitable for forming a good deoxidized state.

〔発明の背景〕 ゆ 閉鎖性水域では富栄養化による水質汚濁が著しく、大き
な社会問題となっている。排水中の室累化合物は富栄養
化の一因とされ、その除去がh−g’Jされている。
[Background of the Invention] In closed water areas, water pollution due to eutrophication is significant and has become a major social problem. The organic compounds in wastewater are considered to be a cause of eutrophication, and their removal is being carried out.

下水処理場の窒素除去法として、生物の窒素σμ環を利
用した生物学的脱窒素法が岐も一般的である。この脱躍
累法のプロセス構成は宵埋条件の異なる二つの微生物反
応槽を持つことが%敵である。
Biological denitrification methods that utilize biological nitrogen σμ rings are common as a nitrogen removal method in sewage treatment plants. The disadvantage of the process configuration of this breakthrough method is that it has two microbial reaction tanks with different overnight storage conditions.

一方は硝化槽と称し、排水中のNH,−Nとが・化凶の
異化代謝によシ有機性屋素から転換さ扛るNH3−Nを
硝化菌によりN O3Nに酸化する役割を持つ。
One is called a nitrification tank, and has the role of oxidizing NH3-N, which is converted from organic nitrogen through catabolic metabolism, into NO3N by nitrifying bacteria.

NU−L++ 202−1’JO3−+H20+ 2 
H+ ・・・・・・(1)他方は脱窒槽と称し、硝化槽
で生成されたNo、−Nを脱屋素菌によシN2 ガスに
還元する機能をもつ。
NU-L++ 202-1'JO3-+H20+ 2
H+ (1) The other tank is called a denitrification tank, and has the function of reducing No and -N generated in the nitrification tank to N2 gas by decomposing bacteria.

2NO3−+5 (H2)=Nz+4H20+20H−
・・・・・・(2)式(2)で、汰元剤として必゛故と
なるH2は一般的にメタノールなどの呈系分金言捷ない
有機炭素から供与きれる。したがって、脱窒槽では有様
炭素イ匁「だに必要とする。
2NO3-+5 (H2)=Nz+4H20+20H-
(2) In formula (2), H2, which is necessary as a separator, is generally provided from organic carbon, which is highly compatible with methanol and the like. Therefore, a denitrification tank requires a certain amount of carbon.

このような生吻学的脱蟹累プロセスで、これら二つの微
生物反応机ケ適切にU理することが水質及び経済上極め
てN要である。特に、脱窒槽では南俄炭素供乾量の管理
が大切である。これは、有様炭素供給量が少ないと脱望
素不十分となf) yJ<質を悪化させ、逆に、過剰で
あれば残留物が有も忙1勿源となシ、水外を悪化させる
ばかりでなく不経済となる。したがって、有イ幾炭素の
適正供紬が運転上の課題となっている。
In such an anastomological decolonization process, it is extremely important to properly manage these two microbial reaction mechanisms from the viewpoint of water quality and economy. In particular, in the denitrification tank, it is important to control the amount of dry carbon supplied. This is due to the fact that if the amount of carbon supplied is small, the desorption element is insufficient f) yJ < quality will deteriorate; Not only will it worsen, but it will also be uneconomical. Therefore, the appropriate supply of available carbon has become an operational issue.

この課題を解決するには、脱窒状態を表わす硝酸性窒素
濃度と有位炭素媛度に対応して、新たな有機炭素を供給
する必要がある。し7かし、これらの脱窒槽管理指標を
オンラインで測定する計測器が未開発のため、直接検出
方式による有機炭素制御装置は提案されていない。した
がって、現状では有機炭素を、常時、一定獣供給する示
針注入方式に頼らざるを得ない。一般に下水処理域に流
入する窒素量は人間の生活周期を反映して内々刻々大き
く変化する。このような流入窒素観に対して有機炭素を
定量注入すれば、必然的に不機炭集の追不足が生じ、水
質悪化は免れない。捷た、1疋末法によれば、脱窒反応
で発生するV4ガス鼠や式(i)の硝化反応時に生成す
るH+盆中和するのに要したアルカリ剤イ:を指標とす
る翁)衾炭素制萌1方式が考えられている。しかし、こ
れらの指標から脱窒槽の硝酸性窒素濃度及び有機炭素濃
度を精度よく推定することは困難なため、実用的な制御
方式と言えない。このように、従来提案されている方式
では脱窒状態に対応した適正な有機炭素制卸が不可能で
ある。
In order to solve this problem, it is necessary to supply new organic carbon in accordance with the nitrate nitrogen concentration that represents the denitrification state and the ranked carbon magnification. However, since no measuring instruments have been developed to measure these denitrification tank management indicators online, no organic carbon control device using a direct detection method has been proposed. Therefore, at present, we have no choice but to rely on the needle injection method that constantly supplies organic carbon at a constant rate. Generally, the amount of nitrogen flowing into a sewage treatment area changes significantly from moment to moment, reflecting the life cycle of humans. If a fixed amount of organic carbon is injected in response to this nitrogen inflow, there will inevitably be a shortage of inorganic carbon collection, and water quality will inevitably deteriorate. According to the short-term method, the V4 gas produced in the denitrification reaction and the alkali agent required to neutralize the H+ produced during the nitrification reaction of formula (i) are used as indicators. A carbon-based Moe 1 method is being considered. However, it is difficult to accurately estimate the nitrate nitrogen concentration and organic carbon concentration in the denitrification tank from these indicators, so this cannot be considered a practical control method. As described above, the conventionally proposed methods are unable to control organic carbon appropriately in response to denitrification conditions.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、脱窒状態を精度よく表現でき、1だ、
プロセス構成に制約されない有機炭素注入制#法及びそ
の装置6二を提供するにある。
The purpose of the present invention is to be able to express the denitrification state with high accuracy;
An object of the present invention is to provide an organic carbon injection method and an apparatus for the same that are not restricted by process configurations.

〔発明の概要〕[Summary of the invention]

不発明は、基$p月における良好な脱窒状態だ形成する
酸化還元電位目標値を予め設定し、pH基準値を一丸測
11yに対応する酸化還元電位笈化量を2くめ、この変
化」“、によりは夕化還元4位目標値忙補正し、補正さ
れた酸化還元電位l:I標1直に基ついて有機炭素供給
槍を調節することを特な(とする。
The non-invention is to preset the target value of the redox potential that forms a good denitrification state in the basic $p month, measure the pH reference value as a whole, set the amount of redox potential corresponding to 11y as 2, and calculate this change. ``In particular, it is necessary to correct the target value of the 4th reduction target value and adjust the organic carbon supply lance based on the corrected redox potential l:I standard.

〔発明の実bm例〕[Example of actual invention]

本発明蓄らは、酸化還元電位が脱窒素処虚の状態全表わ
す指標として有効であり、壕だ、iソ化着元′亀位がp
Hと相関するという結果を天躾的に見出したことにより
、本発明を成すに至った。9下その英仏1に基づく本発
明の基本原理に、説明する。
According to the present invention, the redox potential is effective as an index representing the entire state of denitrification, and the oxidation-reduction potential is
The present invention was accomplished by spontaneously discovering that there is a correlation with H. 9 below, the basic principles of the present invention based on the English and French 1 will be explained.

脱窒槽の処理状態は、処理対象であるN帆−N(NO3
NとNO2Nの総称)と耕たに供給する有機炭素を含め
た有機物の残存セ:で表わすことができる。第1図は、
流入水量、流入窒素濃度や・11機炭素注入量を種々変
化させ、定常状態に達した段階での脱窒状態と酸化還元
電位との関係を徂]ボした結果である。実験はPHを7
. OK設定し、!素源である塩化アンモニウムを硝化
させた後脱望槽に導き、有機炭素源にメタノール分用い
た。この図から、残留有機炭素の増加、すなわち、メタ
ノールが過剰であれば酸化還元電位は低ドし、No、−
Nの増加、すなわち、メタノールが不足すると酸化還元
電位が上昇する傾向にあり、両6間には明確な相関関係
があることがわかる。また、完全脱窒を達成するには、
最小限の不振炭素の存在が条件である。この結果によれ
は、メタノールが過剰とならず、No、−Nが低泉度と
7なる良好な脱窒状態を形成する酸化還元電位の髭囲侘
見出すことができる。この範囲は、はぼ、10QmVか
ら一200mVの間に存在する。第1図の結末は、還元
剤であるメタノールの制御指イ駅としてtt化還元電位
が適用できることを示すものである。
The treatment status of the denitrification tank is as follows:
It can be expressed as: (generic term for N and NO2N) and residual organic matter including organic carbon supplied to the tiller: Figure 1 shows
These are the results of varying the amount of inflowing water, the concentration of nitrogen inflowing, and the amount of carbon injection to vary the relationship between the denitrification state and the redox potential at the stage when a steady state is reached. The experiment was conducted at a pH of 7.
.. Set OK! After the ammonium chloride source was nitrified, it was introduced into a desorption tank, and methanol was used as an organic carbon source. From this figure, it can be seen that if the residual organic carbon increases, that is, methanol is excessive, the redox potential decreases, and No.
As N increases, that is, methanol becomes insufficient, the redox potential tends to increase, and it can be seen that there is a clear correlation between the two. In addition, to achieve complete denitrification,
The condition is the presence of a minimum amount of stale carbon. From these results, it can be seen that methanol is not excessive and No and -N are low and a good denitrification state is formed, which is 7. This range exists between approximately 10 QmV and -200 mV. The result of FIG. 1 shows that the tt reduction potential can be applied as a control indicator for methanol, which is a reducing agent.

一方、酸化還元電位はNOx Nや有機炭素だけでなく
、数多くの装置に影響されるものと予想される。種々の
要因について実験的検討を行なった結果、第2図に示す
ように、PHの影響は無視できないことが判明した。第
2図で、酸化還元′電位変化量は、p)−(==7.0
時の値を基準とし、その基準値からの偏差量として表わ
した。この図から、酸化還元電位はpHに一次相関し、
相関係数は約−60111J’/PHであった。
On the other hand, the redox potential is expected to be affected not only by NOx N and organic carbon but also by many devices. As a result of experimental studies on various factors, it was found that the influence of pH cannot be ignored, as shown in FIG. In Figure 2, the amount of change in oxidation-reduction potential is p)-(==7.0
The value at the time was used as the standard, and it was expressed as the amount of deviation from the standard value. From this figure, the redox potential is linearly correlated with pH,
The correlation coefficient was approximately -60111 J'/PH.

上記結果は理論的に説明できる。微生物が介在する脱窒
反応は2段階の反応に分けられる。NG 1段階は有7
俵炭素の級化反応で、有機炭素にメタノールを用いた逼
陰、次式となる。
The above results can be explained theoretically. The denitrification reaction mediated by microorganisms can be divided into two stages. NG 1st stage is 7
In the grading reaction of bale carbon, the following formula is obtained when methanol is used as the organic carbon.

0.5 CH2O+0 0.5 CH2O+H”十 e
 ’ 1ぐ+ ””””’(a)0.5 CH2O+0
.5H20= 0.5 CO2+2H”+28 ’に、
2・・・・・・・・・(4) これらの反応の酸化還元電位M求めれば次式ここで、K
1.に2は平衡定数、Fはファラテ一定数、Rは気体定
数、Tは絶対温度である。第2段階はNOよ−Nの還元
で、NO,−Nの大部分はNOs Nであることから、
この反応式は、0.2NOi +1.2 H”+ e”
’ 0.1 N2 +0.6 H20; Kg (6)
この反応の酸化還元電位Eoは次式となる。
0.5 CH2O+0 0.5 CH2O+H”10 e
'1+ ``'''''''(a) 0.5 CH2O+0
.. 5H20=0.5 CO2+2H"+28',
2・・・・・・・・・(4) If we find the redox potential M of these reactions, we get the following formula, where K
1. 2 is the equilibrium constant, F is the Fallate constant, R is the gas constant, and T is the absolute temperature. The second stage is the reduction of NO and -N, and since the majority of NO and -N are NOsN,
This reaction formula is 0.2NOi +1.2H"+ e"
'0.1 N2 +0.6 H20; Kg (6)
The oxidation-reduction potential Eo of this reaction is expressed by the following formula.

・・・・・・・・・・・・(7) 式(5)と式(7)から脱窒反応の酸化還元電位E 1
1を請求めると、 nは反応係数である。(8)から、脱窒反応における酸
化還元電位はNO3Nとメタノールの比に依存し、まだ
、脱窒状態と無関係にpHの」W加に伴す低下すること
がわかる。この関係は、第161及び第2図を理論的に
裏付けるものである。第3図は以上の結果を纏めたもの
である。すなわち、良好な脱窒状態が形成されていると
きの酸化還元電位の・硲囲はpHに相関して変化するこ
とを表わしている。
・・・・・・・・・・・・(7) From equation (5) and equation (7), the redox potential of denitrification reaction E 1
1, where n is the reaction coefficient. From (8), it can be seen that the redox potential in the denitrification reaction depends on the ratio of NO3N and methanol, and still decreases as the pH increases regardless of the denitrification state. This relationship theoretically supports FIGS. 161 and 2. Figure 3 summarizes the above results. In other words, this indicates that the oxidation-reduction potential when a good denitrification state is formed changes in correlation with pH.

ところで排水の流量及び水質は一日の間でも大きく変化
することが知られている。第4図はその一例を示したも
のでちる。この流入望素濃度の変化は武(1)及び式(
2)におけるH+及びOH−生成の影響因子となシ、硝
化槽及び脱室槽のpI−Iを変化さぜる。そこで、第4
図と同様の流入水条件とし、硝化槽のp Hif 7.
0にA整し、完全脱窒が可能なメタノールを脱窒槽に供
給する災!朕を試みた。その結果、脱室槽のpHは脱窒
素、緬の変化に影響されたものと予想される変動が認め
られた。
By the way, it is known that the flow rate and water quality of wastewater vary greatly even during a day. Figure 4 shows an example of this. This change in the concentration of inflowing elements is expressed by Takeshi (1) and the formula (
In 2), the factors influencing H+ and OH- production are changed by changing the pI-I of the nitrification tank and the ventrifying tank. Therefore, the fourth
The inflow water conditions are similar to those shown in the figure, and the pH of the nitrification tank is set to 7.
Disaster of supplying methanol to the denitrification tank, which is adjusted to 0 and capable of complete denitrification! tried me. As a result, it was found that the pH of the dechambering tank fluctuated, which was expected to be affected by denitrification and changes in the grains.

このような脱窒槽で、良好な脱窒状態を維持するには、
式(8)より、PHを一定値に調整し、その上で酸化還
元電位を一定値に維持するように有機炭素供給ψを制佃
1する方式が考えられる。
To maintain good denitrification conditions in such a denitrification tank,
From equation (8), a method can be considered in which the PH is adjusted to a constant value, and then the organic carbon supply ψ is controlled by 1 so as to maintain the redox potential at a constant value.

この問題を解決する従来方法に、PHを一定値に調整し
た上で、酸化還元電位を一定値に維持するように有機炭
素供給量を印、・4節する方式がある。
A conventional method for solving this problem is to adjust the pH to a constant value and then set the amount of organic carbon supplied so as to maintain the redox potential at a constant value.

ところで、排水中のNH3−N及び有機炭素供給は時間
的に変摩1するだめ、生成されるN O3−N濃度も連
動して変化することが知られている。
By the way, it is known that as the supply of NH3-N and organic carbon in wastewater changes over time, the concentration of generated NO3-N also changes accordingly.

このことは、脱窒時の副生物で花】る0H−1f7tが
裳化し、それに伴いPト1値が変化すること全−味する
。したがって、このような脱窒槽で、pHを一定1直に
維持するには、脱窒反応の状態に応じてアルカリ剤ある
いは酸を注入する必要がある。これは、1つの指標で二
つの操作量を調節するという複離な制呻法とな)、実用
的でない。捷ンz1硝化槽では、(1)式に示すように
H+生成による1) H低下を防止するために、アルカ
リ剤を圧入してl〕H調がりを行なうことが普通である
。これに加えて脱窒槽でもpH調整を行なうことは運転
コストの高騰になシ、得策と言えない。さらに、脱鼠反
応時に生成するOH−を硝化反応時に生成りる11+の
中本1】剤とし−ご利用する脱M槽−0「J化槽方式て
+r、I1、脱窒槽でのOH−生成量が抑制され、硝化
槽でのアルカリ剤が増大する事態が生じ% MA転ココ
スト高騰につながる。
This means that 0H-1f7t, which is a by-product during denitrification, is dissolved and the Pt1 value changes accordingly. Therefore, in order to maintain a constant pH in such a denitrification tank, it is necessary to inject an alkaline agent or an acid depending on the state of the denitrification reaction. This is a complex control method in which two manipulated variables are adjusted with one index), and is not practical. In the nitrification tank z1, as shown in equation (1), in order to prevent 1) H from decreasing due to H+ production, an alkaline agent is usually injected under pressure to perform 1]H control. In addition to this, it is not a good idea to adjust the pH in the denitrification tank as it would increase the operating cost. Furthermore, the OH- produced during the denitrification reaction is used as an agent for the 11+ Nakamoto 1] produced during the nitrification reaction. The production amount is suppressed, and the amount of alkaline agent in the nitrification tank increases, leading to a rise in % MA conversion cost.

したがって、新たな薬剤を使用せずに、また、プロセス
構成に左右されない有機炭素供給制御法が下水処」」場
において重要である。本発明の一実施例ff:第5図に
示す。第5図で、脱窒槽lではNo、−N及び脱蟹素l
狗を含む流入水6が導ひかれ、攪拌装置4によシ流励状
態が維持される。
Therefore, methods for controlling organic carbon supply that do not require new chemicals and are independent of process configuration are important in sewage treatment plants. An embodiment ff of the present invention is shown in FIG. In Figure 5, in denitrification tank l, No, -N and denitrification tank l
The inflowing water 6 containing the dog is guided and the stirring device 4 maintains the flow excited state.

一方、嶽元剤である有機炭素8は貯留槽2から供給装置
3を介して脱窒槽lに注入される。脱窒反応を終えた流
出水7は、No、−Nが除かれた形の混合液となシ、次
工程へ導びかれる。このような脱窒槽lで、酸化還元電
位計11とpH計12を設置itシ、各々酸化還元電位
とp H音検出する。このうち、PH検検出値上演算回
路14に入力され、pに対応した酸化還元電位目標値e
7が設定される。この設定方法は、まず、PHH準値1
)oにおける良好な脱窒状態を形成する酸化還元電位基
準値e。を予め設定しておくとともに、pH偏差とぼ化
還元電位変化ぜΔeの関係式金与えておく。式(9)で
、 Δe=f 1p−po ) (9) p>poであればΔeは負となり・、pくpoであれば
Δeは正の値をとる。演算されたΔeを用いて、次式に
よシ酸化還元電位目標値e”が設定される。
On the other hand, organic carbon 8, which is a source agent, is injected from the storage tank 2 through the supply device 3 into the denitrification tank 1. The effluent water 7 that has completed the denitrification reaction becomes a mixed liquid in which No and -N are removed and is led to the next step. In such a denitrification tank 1, an oxidation-reduction potential meter 11 and a pH meter 12 are installed to detect the oxidation-reduction potential and pH sound, respectively. Among these, the oxidation-reduction potential target value e corresponding to p is input to the pH detection value upper calculation circuit 14.
7 is set. This setting method begins with PHH quasi-value 1
) Redox potential reference value e that forms a good denitrification state at o. is set in advance, and a relational expression between the pH deviation and the reduction potential change Δe is given. In equation (9), Δe=f 1p−po ) (9) If p>po, Δe becomes negative, and if p×po, Δe takes a positive value. Using the calculated Δe, the redox potential target value e'' is set according to the following equation.

e”=eo+Δe (10) したがって、e”はり>I)o であればe。より商い
値と4v、p<p。であれば低い値をと9、良好な脱窒
状態を形成する酸化還元電位の値が常時設定されること
になる。演算回路14から出力された酸化還元電位目標
値e 4は比較回路15に入力される。比較回路15で
は、実測されたf硬化還元電位検出値eと目標値e″と
を比較し、その偏差ε ε= e −e” を調節回路16に出力する。調節回路16は偏差εに応
じて供給装置3を操作し、有機炭素供給量を調節する。
e"=eo+Δe (10) Therefore, if e"beam>I)o, then e. The quotient value and 4v, p<p. If the value is low, the value of the oxidation-reduction potential that forms a good denitrification state is always set. The oxidation-reduction potential target value e 4 output from the arithmetic circuit 14 is input to the comparison circuit 15 . The comparison circuit 15 compares the actually measured f-curing reduction potential detection value e and the target value e'', and outputs the deviation ε ε=e −e'' to the adjustment circuit 16. The adjustment circuit 16 operates the supply device 3 according to the deviation ε to adjust the amount of organic carbon supplied.

有機炭素供給量は偏差εが負、すなわち、目標値e”が
検出値eより低けば減少方間に、逆であれば増加方向と
なる。
The organic carbon supply amount decreases if the deviation ε is negative, that is, the target value e'' is lower than the detected value e, and increases if the deviation is negative.

このように、PHH出値に基づいて酸化還元電位目標値
の設定操作を行なうことによシ、常時良好な脱窒状態が
形成される。
In this way, by performing the setting operation of the oxidation-reduction potential target value based on the PHH output value, a good denitrification state is always established.

〔発明の効果〕〔Effect of the invention〕

本発明によれば脱窒状態を精度よく表現でき、才だ、プ
ロセス構成に制約されない有機炭素注入制御が可能とな
る。
According to the present invention, the denitrification state can be expressed with high precision, and organic carbon injection control that is not restricted by the process configuration becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は脱窒槽における酸化還元電位と脱窒状態の関係
を示す図、第2図はpHに対する嘔化還元電位の変化を
実験的にめだ特性図、n↓3図←」良好な脱窒状態を形
成する酸化還元電位とp Hの関係を示す特性図、第4
図は流入水流量と窒素一度の日変動パターンを示す図、
第5図は本発明の一実施例のブロック図である。 l・・・脱窒槽、3・・・有機炭素供給装置、6・・・
脱窒槽流入水、11・・・酸化還元電位計、12・・・
pH計、14・・・演算回路、15・・・比較回路、1
6・・・調節回路。 2.ζ7 第1区 d口斐イと■緊町=電佐 (7L”F )第20 pHc−)
Figure 1 shows the relationship between the oxidation-reduction potential and the denitrification state in the denitrification tank. Characteristic diagram showing the relationship between the oxidation-reduction potential and pH that forms the nitrogen state, No. 4
The figure shows the daily fluctuation pattern of inflow water flow rate and nitrogen,
FIG. 5 is a block diagram of one embodiment of the present invention. l...Denitrification tank, 3...Organic carbon supply device, 6...
Denitrification tank inflow water, 11...oxidation-reduction potential meter, 12...
pH meter, 14... Arithmetic circuit, 15... Comparison circuit, 1
6...Adjustment circuit. 2. ζ7 1st ward d Kuchii and ■Kimachi = Densa (7L”F) 20th pHc-)

Claims (1)

【特許請求の範囲】 1、排水中の硝酸性室索あるいは亜硝酸性窒素を有機炭
素の存在の下で窒素ガスに還:元する生物学的膜窒素プ
ロセスの脱窒方法において、脱蟹過程での混合液中のP
H1ばと酸化還元電位を炊出し、前記PH値に基づいて
、予め設定した酸化還元電位目標値を補正し、この補正
酸化還元電位目標値により fmJm右記炭素の供給量
を調節することを特徴とする生物学的膜窒素プロセスの
制御方法。 2、前記ン化還元電位目標値に対するp H基4値を定
め、このpH基準値と前記PI]値の偏差から酸化還元
電位変化量をめ、この厳化還元電位変化−市で前記酸化
還元電位目標値を補正すること金%徴とする特許請求の
範囲第1項記載の生物孝的脱蟹素プロセスの制御方法。 3 前記pH丞準1直に対するp Hの許容範囲を設定
し、この許容範囲から前記pH値が逸脱した鴨合に、前
記酸化還元電位目標値を補正することを特徴とする特許
請求の範囲第1項記載の生物学的膜窒素プロセスの制御
方法。
[Claims] 1. In the denitrification method of the biological membrane nitrogen process, the denitrification process is based on: 1. Reducing nitrate or nitrite nitrogen in wastewater to nitrogen gas in the presence of organic carbon. P in the mixture at
The method is characterized in that the oxidation-reduction potential of H1 is determined, a preset oxidation-reduction potential target value is corrected based on the PH value, and the supply amount of the fmJm carbon shown on the right is adjusted by this corrected oxidation-reduction potential target value. Methods for controlling biological membrane nitrogen processes. 2. Determine the pH group 4 value for the target value of the oxidation-reduction potential, calculate the amount of change in the oxidation-reduction potential from the deviation between this pH standard value and the PI value, and calculate the amount of change in the oxidation-reduction potential at this severe reduction potential change - city 2. A method for controlling a biological decarboxylation process according to claim 1, wherein the potential target value is corrected. 3. A permissible pH range for the pH standard 1 shift is set, and the redox potential target value is corrected when the pH value deviates from the permissible range. The method for controlling a biological membrane nitrogen process according to item 1.
JP9562383A 1983-06-01 1983-06-01 Method for controlling biological denitrification process Granted JPS6084199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9562383A JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9562383A JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Publications (2)

Publication Number Publication Date
JPS6084199A true JPS6084199A (en) 1985-05-13
JPH0411279B2 JPH0411279B2 (en) 1992-02-27

Family

ID=14142653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9562383A Granted JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Country Status (1)

Country Link
JP (1) JPS6084199A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water
US7208090B2 (en) * 2003-12-23 2007-04-24 Usfilter Corporation Wastewater treatment control
US7413654B2 (en) 2003-12-23 2008-08-19 Siemens Water Technologies Holding Corp. Wastewater treatment control
US8894855B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
US10131550B2 (en) 2013-05-06 2018-11-20 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water
JPH0575478B2 (en) * 1986-11-17 1993-10-20 Nippon Steel Corp
US7208090B2 (en) * 2003-12-23 2007-04-24 Usfilter Corporation Wastewater treatment control
US7413654B2 (en) 2003-12-23 2008-08-19 Siemens Water Technologies Holding Corp. Wastewater treatment control
US8894855B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359239B2 (en) 2008-03-28 2016-06-07 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359238B2 (en) 2008-03-28 2016-06-07 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
US9783440B2 (en) 2010-08-18 2017-10-10 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
US10131550B2 (en) 2013-05-06 2018-11-20 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle

Also Published As

Publication number Publication date
JPH0411279B2 (en) 1992-02-27

Similar Documents

Publication Publication Date Title
CA2620824C (en) Denitrification process and system
CN101654299B (en) Aeration air quantity controller for sewage treatment plant
KR101237447B1 (en) A Rule-based realtime control technology for wastewater treatment process and system
JP4334317B2 (en) Sewage treatment system
JPS6084199A (en) Method for controlling biological denitrification process
Vangsgaard et al. Development of novel control strategies for single-stage autotrophic nitrogen removal: A process oriented approach
KR20180104413A (en) Oxygen control system for activated sludge process using harmony search algorithm
CN107720975B (en) Sewage treatment optimization simulation method using ethanol substances as external carbon source
WO2020170364A1 (en) Water treatment apparatus and water treatment method
Spérandio et al. Online estimation of wastewater nitrifiable nitrogen, nitrification and denitrification rates, using ORP and DO dynamics
Flores-Alsina et al. Modelling the impacts of operational conditions on the performance of a full-scale membrane aerated biofilm reactor
JPH08267089A (en) Method for controlling supplied waste water amount in denitrification reaction
US20230202889A1 (en) Systems and methods for controlling nitrous oxide production in wastewater treatment facilities
JPH0938682A (en) Biological water treatment
Haimi et al. Process automation in wastewater treatment plants: The Finnish experience
JPS646839B2 (en)
JPH11253990A (en) Treatment of nitrogen-containing waste water
JPS59132999A (en) Controlling method for process of biological denitrification
JPS58124596A (en) Apparatus for controlling active sludge process
JPH0475079B2 (en)
Kim et al. Comparison between model-and pH/ORP-based process control for an AAA system
JPS58104698A (en) Controlling method for biological denitrification
JPS5814997A (en) Control method for biological denitrification process
JPS58104697A (en) Controlling method for biological denitrification
Mauricio-Iglesias Development of novel control strategies for single-stage