JPS58104698A - Controlling method for biological denitrification - Google Patents

Controlling method for biological denitrification

Info

Publication number
JPS58104698A
JPS58104698A JP20352881A JP20352881A JPS58104698A JP S58104698 A JPS58104698 A JP S58104698A JP 20352881 A JP20352881 A JP 20352881A JP 20352881 A JP20352881 A JP 20352881A JP S58104698 A JPS58104698 A JP S58104698A
Authority
JP
Japan
Prior art keywords
amount
nitrogen
denitrification
carbon
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20352881A
Other languages
Japanese (ja)
Inventor
Shoji Watanabe
昭二 渡辺
Kenji Baba
研二 馬場
Yukio Saito
幸雄 斉藤
Shiyunsuke Nokita
野北 「しゆん」介
Shunji Mori
俊二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20352881A priority Critical patent/JPS58104698A/en
Publication of JPS58104698A publication Critical patent/JPS58104698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To stably make the quality of water excellent, by detecting amounts of nitrogen suboxide and CO2 formed in a reaerating tank from exhaust gas from the tank, and controlling the amount of organic carbon to be supplied on the basis of the detected values in response to residual nitrogen or the like in a denitrified liquid. CONSTITUTION:Exhaust gas 10 from a reaerating tank 2 is gathered by an exhaust gas collector 3, the concentrations of CO2 and Na2O are measured by a carbonic acid gas analyzer 14 and a nitrogen suboxide analyzer 15, respectively, and the resulting signals are inputted to an arithmetric circuit 21. In the arithmetic circuit 21, an amount of aerating gas measured by a flow meter 17 is inputted, amounts of formed Na2O and CO2 are calculated and outputted to a judging circuit 22. In the judging circuit 22, whether an amount of an organic carbon source to be supplied to a denitrifying step 1 is proper or not is judged on the basis of the amount of each of the formed gases and the concentration of sludge in the reaerating tank measured by a densitometer 16 for sludge.

Description

【発明の詳細な説明】 本発明は廃水中に溶解している窒素化合物を生物学的に
除去する生物学的脱窒票決に係わり、特に、脱窃素工程
の有機炭素供給制御方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a biological denitrification method for biologically removing nitrogen compounds dissolved in wastewater, and particularly relates to a method for controlling organic carbon supply in a demineralization process. be.

廃水中の窒素化合物は湖沼や内海における富栄讐化現象
の一因で、窒素化合物を除去する、いわゆる脱窒が重要
である。廃水の脱jaKFi各種の方法があるが、生物
学的に窒素ガス(以下N、と称す)として飛散させる生
物学的硝化脱11:a法が最も一般的に用いられている
。生物学的脱窒素プロセスはアンモニア性窃素を硝酸性
あるい11亜硝酸性窒素(総称してNox Nと以下称
す)に好気条件下で酸化する硝化工程と、N0x−Nt
嫌気条件下でN、ガスに還元する脱窒素工程とから一般
的に構成さnている。脱窒素工程では脱窪素の九めの還
元剤が必要となり、メタノール等の水素供与体である有
機炭素源が供給さnている。この有機炭素源供給は生物
学的脱窒素プロセスにおける重要な操作の1つである。
Nitrogen compounds in wastewater are one of the causes of enrichment in lakes and inland seas, and so-called denitrification, which removes nitrogen compounds, is important. There are various methods for removing nitrification from wastewater, but the most commonly used is the biological nitrification/denitrification 11:a method in which wastewater is biologically dispersed as nitrogen gas (hereinafter referred to as N). The biological denitrification process consists of a nitrification process in which ammoniacal nitrogen is oxidized to nitrate or 11-nitrite nitrogen (hereinafter collectively referred to as NoxN), and a nitrification process in which ammoniacal nitrogen is oxidized to nitrate nitrogen (hereinafter collectively referred to as NoxN), and
It generally consists of a denitrification process in which nitrogen is reduced to gas under anaerobic conditions. In the denitrification step, a reducing agent is required for the desilination, and an organic carbon source such as methanol as a hydrogen donor is supplied. This organic carbon source supply is one of the important operations in the biological denitrification process.

すなわち、炭素源の過少添加はNot  N量を残留嘔
せるとともにプロセスの下流に設置さnる沈殴沈で脱窒
反応が進むために汚泥浮上を発生はせ、処理水質を悪化
させる。−万、炭素源の過剰添加はNOx  Ntを完
全還元するものの炭素源を残留させ、この残留炭素源が
処理水の有機物濃度を増大させるために処理水質が悪化
するとともに、高価な炭素源を不当に消費し不経済であ
る。このための炭素源の供給は還元すべきNOx  N
量に過不足のないように行わなければなC,dlい。
That is, under-addition of the carbon source will not only result in a residual amount of N, but also cause the denitrification reaction to progress in the sinking system installed downstream of the process, causing sludge to float up and deteriorating the quality of the treated water. - Excessive addition of a carbon source completely reduces NOx Nt, but leaves the carbon source behind, and this residual carbon source increases the organic matter concentration in the treated water, deteriorating the quality of the treated water and making it unnecessary to use an expensive carbon source. It is uneconomical as it consumes a lot of energy. The supply of carbon source for this is NOx N to be reduced.
It must be done so that there is no excess or deficiency in the amount.

従来の炭素源供給法は、、過少添加時の不都合を避ける
ために過剰添加をワ、″・脱窒素工程流出液に残留した
炭素源を再曝、−一で微生物除去するという矛盾した方
法が採られていた。また、その他の方法としては音素分
析計により廃水中の窒素量を測定し、その測定値あるい
は測定値と廃水流電の積に炭素源供給量を比例させる例
がある。しかし、水質分析計は信頼性や保守性が十分で
なく、1九検水の前処理を必要とするなどの欠点があり
制御法を確立できないのが実情である。
Conventional carbon source supply methods involve adding too much to avoid the inconvenience caused by adding too little, and then re-exposing the carbon source remaining in the denitrification process effluent to remove microorganisms. Another method is to measure the amount of nitrogen in wastewater using a phonetic analyzer and make the amount of carbon source supplied proportional to the measured value or the product of the measured value and the wastewater current. The reality is that water quality analyzers do not have sufficient reliability or maintainability, and they require pretreatment before testing water, making it impossible to establish a control method.

本発明は従来の有機炭素源供給制御法の欠点に対処して
考案されたもので、脱窒素工程に流入したNOx  N
量の完全還元に必要な炭素源を適正に供給し、処理水の
良質化とプロセスの安定化を図り、信頼性の高い炭素源
供給制御方法を提供することにある。
The present invention was devised to address the shortcomings of conventional organic carbon source supply control methods, and it
The purpose of this invention is to provide a highly reliable carbon source supply control method that appropriately supplies the carbon source necessary for complete reduction of the amount of carbon, improves the quality of treated water and stabilizes the process.

本発明は、好気性条件下において排水中のN0x−N量
に対応してN、0ガスが、有機物量に対応してCO,ガ
スが発生することを基本とし、再曝気槽排ガス中のN、
O発生量とCO1発生量を検知し、N、0発生量が所定
量以上のときは発生量に基づいて脱窒一工程への有機炭
素を増加させ、CO1発生量が麟・定量以上のときはC
O8発生量に基づいて炭素量を低減させ、脱窒素工程の
脱窃液にN0x−N及び炭素量を残留させないことを特
命とする。
The present invention is based on the fact that under aerobic conditions, N, 0 gas is generated in response to the amount of N0x-N in wastewater, and CO, gas is generated in response to the amount of organic matter, and the N,0 gas in the reaeration tank exhaust gas is generated. ,
The amount of O generated and the amount of CO1 generated are detected, and when the amount of N and 0 generated is above a predetermined amount, the organic carbon to the denitrification process is increased based on the amount generated, and when the amount of CO1 generated is above the specified amount is C
The special mission is to reduce the amount of carbon based on the amount of O8 generated and to prevent the amount of NOx-N and carbon from remaining in the denitrification liquid of the denitrification process.

本発明の基本原理についてまず説明する。First, the basic principle of the present invention will be explained.

本発明者らは、窒素化合物及び有機化合物を含有する廃
水に微生物を介在させて好気的条件にすると、廃水中の
1素量に対応して亜酸化窒素(以下N、0と略す)ガス
が、有機化合物に対応して炭酸(以下CO3と略す)ガ
スが発生することを実験的に見い出した。一般的にN、
 0ガスは嫌気的条件下で発生するものであるが、好気
的条件下でも検出可能な量を発生することを確聞し友も
のである。曝気排ガス中のN、O及びCO,ガス濃度測
定は赤外分光々度計などによりオンライン計測が容鳥で
ある。第1図はN、0発生量R1oと窒素量TNの関係
を、It!2図Fico、発生量Reedと有機物負荷
量りの関係を示すもので、(1)式、(2)式の関係が
成立する。ここで、S、は汚泥濃度畠、* ”I e 
bl * blはRlwl o =J ” TN+ b
l ” Swa  曲・曲(i)Reol = ”1 
・L + b@ ・8w*  ””聞・・(2)それぞ
れ定数である。一方、排ガス中のN、0発生量及びCO
2発生量は(3)、 (47式で表わされる。
The present inventors found that when wastewater containing nitrogen compounds and organic compounds is brought into aerobic conditions by intervening microorganisms, nitrous oxide (hereinafter abbreviated as N, 0) gas However, it was experimentally discovered that carbonic acid (hereinafter abbreviated as CO3) gas is generated in response to organic compounds. Generally N,
Although zero gas is generated under anaerobic conditions, it has been confirmed that it is also generated in detectable amounts under aerobic conditions. N, O, and CO gas concentrations in aeration exhaust gas can be measured online using an infrared spectrophotometer or the like. Figure 1 shows the relationship between the amount of N, 0 generated R1o and the amount of nitrogen TN. Figure 2 Fico shows the relationship between the generated amount Reed and the organic matter load, and the relationships of equations (1) and (2) hold true. Here, S is the sludge concentration field, * “I e
bl * bl is Rlwl o = J ” TN+ b
l ” Swa song/song (i) Reol = ”1
・L + b@ ・8w* ”” (2) Each is a constant. On the other hand, the amount of N and 0 generated in exhaust gas and the amount of CO
The amount of 2 generation is expressed by equation (3), (47).

ここで ’Flyg o = kt  ’ C−t o @Qg
  ・・””””  (3)Rco鵞= kg  ・C
co、  ・Qg  …・l−… (4)kl * k
lは定数、C1oはN、Oガス濃度、Cc o *  
riCO* ガス濃度、Q、は排ガス流量あるいは曝気
流量である。(3)、 (43式に求めたそれぞれの発
生量を(1)、(2J式に代入すれば、廃水中の窒素量
TNと有機物負荷量りを推定することができる。すなわ
ち、廃水中に書素分が存在していればN、Oガスが発生
し、その窒素量は排ガス中のN、0 ガス発生量で求め
られる。また、有機物が存在していればC01ガスが発
生し、その有機物量は排ガス中のCO3発生量から求め
られる。
Here 'Flyg o = kt ' C-t o @Qg
...”””” (3) Rco = kg ・C
co, ・Qg …・l−… (4) kl * k
l is a constant, C1o is N and O gas concentration, Cco *
The riCO* gas concentration, Q, is the exhaust gas flow rate or aeration flow rate. (3), (By substituting the respective generation amounts obtained in Equations 43 into Equations (1) and (2J), it is possible to estimate the amount of nitrogen in wastewater TN and the organic matter load. If elemental components exist, N and O gases are generated, and the amount of nitrogen is determined by the amount of N and 0 gases generated in the exhaust gas.Also, if organic substances are present, CO1 gas is generated, and the organic substances The amount is determined from the amount of CO3 generated in the exhaust gas.

本発明はこのような基本的な関係を生物学的脱会票決の
脱窒素工程における有機炭素源供給に応用したものであ
る。第3図は本発明の一実施例を説明するもので、脱窃
素工程lの下流に再曝気槽2を併置するシロセス構成を
対象とする。
The present invention applies this basic relationship to the supply of organic carbon sources in the denitrification process of biological withdrawal voting. FIG. 3 explains one embodiment of the present invention, which is directed to a syrocess configuration in which a re-aeration tank 2 is placed downstream of the demineralization step 1.

第3図において、4はNOx −N量を含有する流入れ
、6はNOx Nの還元剤となる有機炭素源、5は滝入
れと炭素源の混合液、7は脱書液、8Fi処理液、9は
一般的に空気が用いられる曝気ガス、11は炭素源供給
装置、12は空気供給装置である。
In Fig. 3, 4 is an inflow containing an amount of NOx -N, 6 is an organic carbon source that serves as a reducing agent for NOx N, 5 is a mixed liquid of Takiiri and carbon sources, 7 is a dewriting liquid, and 8 is a Fi processing liquid. , 9 is an aeration gas in which air is generally used, 11 is a carbon source supply device, and 12 is an air supply device.

このようなプロセスにおiて、再曝気槽2からの排ガス
lOの一部あるいは全部が排ガス捕集器3で捕集され、
炭酸ガス分析計14及び層管化1素分析計15でco、
濃度Ccol、Neo濃度Cw @ o  が糊定され
、その信号が演算回路21に入力する。演算回路21に
は流量計17で測定された曝気ガス量Q1が入力し、(
3)式、(4)式によりN、O発生量RhQ及びCot
発生量Rc o 1 が演算され、判定回路22に出力
される。判定回路22ではそれぞれの発生量と汚泥濃度
計16で測定された再曝気槽の汚泥濃度S1に基づいて
、説脅素工程lにおける有機炭素源の供給量が適切か否
かを判定する。すなわち、脱窒素工程1において流入れ
4のN0x−Ntに対して炭素源供給量が多すぎると過
剰炭素源が脱窒液7に残留し、再曝気槽2で過剰分に対
応したCO,ガスが発生する。また、逆にNOx  N
量に対して炭素源が少なすぎるとNow−Nが残留し、
残留Now−N量に対応したN、Oガスが再曝気槽2か
ら発生する。このこと、から、有機炭電源不足の場合に
はN、0発生量RN @ oが有償となり、(1)式か
ら残留N0x−N量ΔTNが求まり、炭素源過剰の場合
には、CO,発生量1%co@が有償となり(2)式か
ら残留有機物量jLが求まり、出力選定された残留No
t−N量ΔTNToるいは残留有機物量ILが判定回路
22から演算回路23に出力される。なお、(1)式及
び(2)式の右辺!2″tliは微生物自身によるN、
O発生量及びCO1発生量を表わしてお9、残留N0x
−N量及び残留有機物量の算出はこれらの微生物量の影
響を除いた発生量に基づ1て行われる。演算回路23で
は入力信号ΔTN、  ΔLに基づいて炭素源量の変化
量jQcを<5)、 (8)式で演算し、制御回路24
に出力する。ここで、k、。
In such a process i, part or all of the exhaust gas lO from the reaeration tank 2 is collected by the exhaust gas collector 3,
CO with a carbon dioxide gas analyzer 14 and a stratified tube element analyzer 15,
The concentration Ccol and the Neo concentration Cw@o are fixed, and their signals are input to the arithmetic circuit 21. The aeration gas amount Q1 measured by the flow meter 17 is input to the calculation circuit 21, and (
3) and (4), the amount of N and O generation RhQ and Cot
The generated amount Rco 1 is calculated and output to the determination circuit 22. The determination circuit 22 determines whether or not the amount of organic carbon source supplied in the threat element process 1 is appropriate based on the respective generated amounts and the sludge concentration S1 in the reaeration tank measured by the sludge concentration meter 16. That is, in the denitrification step 1, if the amount of carbon source supplied is too large relative to the N0x-Nt in the inflow 4, the excess carbon source remains in the denitrification solution 7, and the CO and gas corresponding to the excess are removed in the re-aeration tank 2. occurs. Also, conversely, NOx N
If the carbon source is too small relative to the amount, Now-N will remain,
N and O gases corresponding to the amount of residual Now-N are generated from the reaeration tank 2. From this, if there is a lack of organic carbon power supply, the amount of N,0 generated RN @ o will be charged, and the residual N0x - N amount ΔTN can be found from equation (1), and if there is an excess of carbon sources, the amount of generated CO, The amount 1% co@ is paid, and the amount of residual organic matter jL is determined from equation (2), and the selected output residual No.
The t-N amount ΔTNTo or the residual organic matter amount IL is output from the determination circuit 22 to the calculation circuit 23. Furthermore, the right-hand sides of equations (1) and (2)! 2″tli is N by the microorganism itself,
9 represents the amount of O generated and the amount of CO1 generated, residual NOx
- The amount of N and the amount of residual organic matter are calculated based on the amount generated excluding the influence of the amount of these microorganisms. The arithmetic circuit 23 calculates the amount of change jQc in the amount of carbon source based on the input signals ΔTN and ΔL using the formula (8), <5), and the control circuit 24
Output to. Here, k.

k、は演算係数で炭−源濃度、反応モル比や換算ΔQ、
=に、 ・ΔTN  ・・・・・・・・・・・・ (5
)ΔQ、=−に、・、IfL  ・・・・・・・・・・
・・(6J率等を考慮する。制御回路24には流量計1
8から現在の炭素源Q、が入力さn1演算回路23から
の炭素源変化量ΔQ、と加算され新たな操作量Q、′″
に対応して炭素源供給装置11の調節が行われる。炭素
源操作量Q g ” は有機炭素源が不足である場合に
は(5)式によって増加され、過剰の場合には(6)式
によって低減される。このように再曝気榴排ガス中のN
、0発生量及びCO8発生量から算出され九炭素源変化
量に基づいて炭素源供給操作が行われることによって、
脱窒反応に必要な炭素源が適正に維持される。
k is a calculation coefficient, which is the coal source concentration, reaction molar ratio, conversion ΔQ,
= to, ・ΔTN ・・・・・・・・・・・・ (5
)ΔQ,=−,・,IfL・・・・・・・・・・
...(Considering the 6J rate, etc.) The control circuit 24 includes a flowmeter 1.
8, the current carbon source Q, is input, and is added to the carbon source change amount ΔQ from the n1 calculation circuit 23 to create a new manipulated variable Q,''
The carbon source supply device 11 is adjusted accordingly. The carbon source operation amount Q g '' is increased by equation (5) when the organic carbon source is insufficient, and reduced by equation (6) when it is in excess.
, by performing carbon source supply operation based on the amount of change in nine carbon sources calculated from the amount of 0 emissions and the amount of CO8 emissions,
The carbon source necessary for the denitrification reaction is maintained appropriately.

なお、本発明における脱窒素工程の形状を限定するもの
ではないが、制御精度及び信頼性向上の良めには完全混
合型脱窒素工程が良好である。
Although the shape of the denitrification process in the present invention is not limited, a complete mixed type denitrification process is preferable for improving control accuracy and reliability.

本発明によれば、脱窒液の残留窒素量及び残留炭素源量
をゼロに維持する運転管理を実施できるので、処理水質
の向上及び炭素源の節約が図れる。
According to the present invention, it is possible to implement operational management that maintains the amount of residual nitrogen and the amount of residual carbon sources in the denitrification solution at zero, thereby improving the quality of treated water and saving carbon sources.

また、高精度で信頼性の高いガス計測により不足あるい
は過剰炭素源量を正確に予測することができ、信頼性の
高い炭素源供給制御法が実現できる。
In addition, the amount of insufficient or excess carbon source can be accurately predicted by highly accurate and reliable gas measurement, and a highly reliable carbon source supply control method can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は好気条件下におけるN0x−N量とN、O発生
量の特i図、第2図は有機物負荷量とCO寥発生量の特
性図、第3図は本発明の一実施例を示す構成図である。
Figure 1 is a characteristic diagram of the amount of NOx-N and the amount of N and O generated under aerobic conditions, Figure 2 is a characteristic diagram of the amount of organic matter load and amount of CO generated, and Figure 3 is an example of the present invention. FIG.

Claims (1)

【特許請求の範囲】 1、流入廃水中の硝酸性窒素あるいは亜硝酸性窒素を有
機炭素の存在下で還元し窒素性ガスとして除去する脱窒
素工程と、核脱窒素工程から流出する脱窒液中の残留有
機炭素を空気曝気により酸化分雫する再曝気槽とを有す
る生物学的脱窒素ブ・ロセスにおいて、核外曝気槽で発
生する亜酸化窒素量、及び二酸化炭素量を前記再曝気槽
の排ガス力為ら検知し、該亜酸化窒素量あるいけ二酸化
炭素量に基づいて前記脱窒液中の残留窒素量あるいは残
留有機炭素量を求め残留窒素量あるいは残留有機炭素量
に応じて前記脱窒素工程への有機考案供給量を制御する
ようにしたことを特徴とする生物学的脱窒票決の制御方
法。 2.4I許請求範囲第11iの方法において、亜酸化窒
素量及び二酸化炭素量が所定範囲内であれば脱窒素工福
の有棲炭素供給童を前回操作量に維持し、前記亜酸化窒
素量が前記所定範囲を超えた場合に亜酸化窒素量から算
出した必要有機炭素量を優先して増加させるように前記
脱窒素工程への有機炭素量を調節することを特徴とし友
生物学的脱窒票決)の制御方法。
[Claims] 1. A denitrification process in which nitrate nitrogen or nitrite nitrogen in inflow wastewater is reduced in the presence of organic carbon and removed as nitrogen gas, and a denitrification liquid flowing out from the nuclear denitrification process. In a biological denitrification process that has a re-aeration tank in which residual organic carbon is oxidized and fractionated by air aeration, the amount of nitrous oxide and carbon dioxide generated in the extra-nuclear aeration tank is transferred to the re-aeration tank. The amount of residual nitrogen or residual organic carbon in the denitrifying solution is determined based on the amount of nitrous oxide or the amount of carbon dioxide. A method for controlling biological denitrification, characterized in that the amount of organic material supplied to a nitrogen process is controlled. 2.4I In the method of claim 11i, if the amount of nitrous oxide and the amount of carbon dioxide are within a predetermined range, the amount of carbon supplied by the denitrification technique is maintained at the previously operated amount, and the amount of nitrous oxide is The amount of organic carbon to be fed to the denitrification process is adjusted so as to prioritize and increase the required amount of organic carbon calculated from the amount of nitrous oxide when the amount of nitrous oxide exceeds the predetermined range. (voting) control method.
JP20352881A 1981-12-18 1981-12-18 Controlling method for biological denitrification Pending JPS58104698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20352881A JPS58104698A (en) 1981-12-18 1981-12-18 Controlling method for biological denitrification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20352881A JPS58104698A (en) 1981-12-18 1981-12-18 Controlling method for biological denitrification

Publications (1)

Publication Number Publication Date
JPS58104698A true JPS58104698A (en) 1983-06-22

Family

ID=16475642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20352881A Pending JPS58104698A (en) 1981-12-18 1981-12-18 Controlling method for biological denitrification

Country Status (1)

Country Link
JP (1) JPS58104698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2015044197A (en) * 2014-10-31 2015-03-12 メタウォーター株式会社 Sewage treatment system
CN105585129A (en) * 2016-01-12 2016-05-18 南京大学 Device and method for simulating fate of nitrogen in in-situ river channel ecosystem

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110501A (en) * 2009-11-27 2011-06-09 Hitachi Ltd Water treatment equipment
JP2015044197A (en) * 2014-10-31 2015-03-12 メタウォーター株式会社 Sewage treatment system
CN105585129A (en) * 2016-01-12 2016-05-18 南京大学 Device and method for simulating fate of nitrogen in in-situ river channel ecosystem
CN105585129B (en) * 2016-01-12 2018-12-21 南京大学 A kind of simulation original position river channel ecology system nitrogen returns the device and method to become

Similar Documents

Publication Publication Date Title
Bollon et al. N2O emissions from full-scale nitrifying biofilters
JP5143003B2 (en) Denitrification process and denitrification device
JPS6221600B2 (en)
Murray et al. Inter-relationships between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste
US3760829A (en) Automatic control system for the safe and economical removal of nh3 by breakpoint chlorination
Massone et al. Biosensors for nitrogen control in wastewaters
Petersen et al. Anoxic activated sludge monitoring with combined nitrate and titrimetric measurements
Hellinga et al. The potential of off-gas analyses for monitoring wastewater treatment plants
JPS58104698A (en) Controlling method for biological denitrification
McLean Implications for Control Strategies
Spérandio et al. Online estimation of wastewater nitrifiable nitrogen, nitrification and denitrification rates, using ORP and DO dynamics
CN212476266U (en) Anaerobic ammonia oxidation sewage autotrophic denitrification device based on pulse aeration
JPS6120357B2 (en)
JPH0133236B2 (en)
Gameson et al. Oxidation, reaeration, and mixing in the Thames estuary
JPS6084199A (en) Method for controlling biological denitrification process
JPS5814997A (en) Control method for biological denitrification process
JPH0938682A (en) Biological water treatment
JP4248043B2 (en) Biological phosphorus removal equipment
Gut et al. Partial nitritation process assessment
JPS58104697A (en) Controlling method for biological denitrification
JP3072650B2 (en) Activated sludge treatment control device
JPH0362480B2 (en)
Srna A modular nitrification filter design based on a study of the kinetics of nitrification of marine bacteria
Nicholls Application of the Marais-Ekama activated sludge model to large plants