JPH0411279B2 - - Google Patents

Info

Publication number
JPH0411279B2
JPH0411279B2 JP9562383A JP9562383A JPH0411279B2 JP H0411279 B2 JPH0411279 B2 JP H0411279B2 JP 9562383 A JP9562383 A JP 9562383A JP 9562383 A JP9562383 A JP 9562383A JP H0411279 B2 JPH0411279 B2 JP H0411279B2
Authority
JP
Japan
Prior art keywords
value
oxidation
denitrification
reduction potential
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9562383A
Other languages
Japanese (ja)
Other versions
JPS6084199A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9562383A priority Critical patent/JPS6084199A/en
Publication of JPS6084199A publication Critical patent/JPS6084199A/en
Publication of JPH0411279B2 publication Critical patent/JPH0411279B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は生物学的脱窒素プロセスに係り、特
に、良好な脱窒状態の形式に好適な有機炭素供給
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biological denitrification process, and particularly to a method of controlling organic carbon supply suitable for achieving a good denitrification state.

〔従来の技術〕[Conventional technology]

閉鎖性水域では富栄養化による水質汚濁が著し
く、大きな社会問題となつている。排水中の窒素
化合物は富栄養化の一因とされ、その除去が検討
されている。
In closed water bodies, water pollution due to eutrophication is significant and has become a major social problem. Nitrogen compounds in wastewater are considered to be a contributing factor to eutrophication, and their removal is being considered.

下水処理場の窒素除去法として、生物の窒素循
環を利用した生物学的脱窒素法が最も一般的あ
る。この脱窒素法のプロセス構成は管理条件の異
なる二つの微生物反応槽を持つことが特徴であ
る。一方は硝化槽と称し、排水中のNH3−Nと
酸化菌の異化代謝により有機性窒素から転換され
るNH3−Nを硝化菌によりNO3−Nに酸化する
役割を持つ。
The most common method for removing nitrogen at sewage treatment plants is biological denitrification, which utilizes the biological nitrogen cycle. The process configuration of this denitrification method is characterized by having two microbial reactors with different management conditions. One is called a nitrification tank, and has the role of oxidizing NH 3 -N in wastewater and NH 3 -N, which is converted from organic nitrogen through the catabolic metabolism of oxidizing bacteria, into NO 3 -N by nitrifying bacteria.

NH4 ++2O2→NO3 -+H2O+2H+ ……(1) 他方は脱窒槽と称し、硝化槽で生成された
NO3−Nを脱窒素菌によりN2ガスに還元する機
能をもつ。
NH 4 + +2O 2 →NO 3 - +H 2 O + 2H + ...(1) The other is called the denitrification tank and is the amount of water produced in the nitrification tank.
It has the function of reducing NO 3 -N to N 2 gas using denitrifying bacteria.

2NO3 -+5(H2)→N2+4H2O+2OH- ……(2) 式(2)で、還元剤として必要となるH2は一般的
にメタノールなどの窒素分を含まない有機炭素か
ら供与される。したがつて、脱窒槽では有機炭素
を新たに必要とする。
2NO 3 - +5(H 2 )→N 2 +4H 2 O+2OH - ...(2) In formula (2), H 2 required as a reducing agent is generally donated from nitrogen-free organic carbon such as methanol. be done. Therefore, the denitrification tank requires additional organic carbon.

このような生物学的脱窒素プロセスで、これら
二つの微生物反応槽を適切に管理することが水質
及び経済上極めて重要である。特に、脱窒槽では
有機炭素供給量の管理が大切である。これは、有
機炭素供給量が少ないと脱窒素不十分となり水質
を悪化させ、逆に、過剰であれば残留物が有機物
源となり、水質を悪化させるばかりでなく不経済
となる。したがつて、有機炭素の適正供給が運転
上の課題となつている。
In such a biological denitrification process, proper management of these two microbial reactors is extremely important from the viewpoint of water quality and economy. In particular, in denitrification tanks, it is important to manage the amount of organic carbon supplied. If the amount of organic carbon supplied is small, denitrification will be insufficient and water quality will deteriorate; if it is in excess, the residue will become a source of organic matter, which will not only deteriorate water quality but also become uneconomical. Therefore, adequate supply of organic carbon has become an operational issue.

この課題を解決するには、脱窒状態を表わす硝
酸性窒素濃度と有機炭素濃度に対応して、新たな
有機炭素を供給する必要がある。しかし、これら
の脱窒槽管理指標をオンラインで測定する計測器
を未開発のため、直接検出方式による有機炭素制
御装置は提案されていない。したがつて、現状で
は有機炭素を、常時、一定量供給する定量注入方
式に頼らざるを得ない。一般に下水処理場に流入
する窒素量は人間の生活周期を反映して時々刻々
大きく変化する。こような流入窒素量に対して有
機炭素を定量注入すれば、必然的に有機炭素の過
不足が生じ、水質悪化は免れない。また、従来法
によれば、脱窒反応で発生する窒素ガス量や式(1)
の硝化反応時に生成するH+を中和するのに要し
たアルカリ剤量を指標とする有機炭素制御方式が
考えられている。しかし、これらの指標から脱窒
槽の硝酸性窒素濃度及び有機炭素濃度を精度よく
推定することは困難なため、実用的な制御方式と
言えない。このように、従来提案されている方式
では脱窒状態に対応した適正な有機炭素制御が不
可能である。
To solve this problem, it is necessary to supply new organic carbon in accordance with the nitrate nitrogen concentration and organic carbon concentration that represent the denitrification state. However, since no measuring instruments have been developed to measure these denitrification tank management indicators online, no organic carbon control device using a direct detection method has been proposed. Therefore, at present, we have no choice but to rely on a fixed-quantity injection method that constantly supplies a constant amount of organic carbon. In general, the amount of nitrogen flowing into sewage treatment plants changes greatly from moment to moment, reflecting the life cycle of humans. If a fixed amount of organic carbon is injected in response to such an amount of inflowing nitrogen, an excess or deficiency of organic carbon will inevitably occur, and water quality will inevitably deteriorate. In addition, according to the conventional method, the amount of nitrogen gas generated in the denitrification reaction and the formula (1)
An organic carbon control method has been proposed that uses the amount of alkaline agent required to neutralize H + generated during the nitrification reaction as an index. However, it is difficult to accurately estimate the nitrate nitrogen concentration and organic carbon concentration in the denitrification tank from these indicators, so this cannot be considered a practical control method. As described above, it is impossible to appropriately control organic carbon corresponding to the denitrification state with the conventionally proposed methods.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、脱窒状態を精度よく表現で
き、また、プロセス構成に制約されない有機炭素
注入制御法及びその装置を提供するにある。
An object of the present invention is to provide an organic carbon injection control method and apparatus that can accurately represent the denitrification state and is not restricted by process configuration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、排水中の硝酸性窒素あるいは亜硝酸
性窒素を有機炭素の存在の下で窒素ガスに還元す
る生物学的脱窒方法において、良好な脱窒状態を
形成する範囲の酸化還元電位とPHの関係を予め設
定し、脱窒過程での混合液中のPH値と酸化還元電
位を検出し、前記PH値に基づいて、予め設定した
酸化還元電位目標値を補正し、この補正酸化還元
電位目標値と上記酸化還元電位検出値との差に応
じて前記有機炭素の供給量を調節することを特徴
とする生物学的脱窒方法に関する。
The present invention provides a biological denitrification method in which nitrate nitrogen or nitrite nitrogen in wastewater is reduced to nitrogen gas in the presence of organic carbon. The PH relationship is set in advance, the PH value and oxidation-reduction potential in the mixed liquid during the denitrification process are detected, and the preset oxidation-reduction potential target value is corrected based on the PH value. The present invention relates to a biological denitrification method characterized in that the amount of organic carbon supplied is adjusted according to the difference between a potential target value and the detected redox potential value.

〔実施例〕〔Example〕

本発明者らは、酸化還元電位が脱窒素処理の状
態を表わす指標として有効であり、また、酸化還
元電位がPHと相関するという結果を実験的に見出
したことにより、本発明を成すに至つた。以下そ
の実験に基づく本発明の基本原理を説明する。
The present inventors have experimentally discovered that the redox potential is effective as an indicator of the state of denitrification treatment, and that the redox potential is correlated with PH, which led to the present invention. Ivy. The basic principle of the present invention based on the experiment will be explained below.

脱窒槽の処理状態は、処理対象であるNOX
N(NO3−NとNO2−Nの総称)と新たに供給す
る有機炭素を含めた有機物の残存量で表わすこと
ができる。第1図は、流入水量、流入窒素濃度や
有機炭素注入量を種々変化させ、定常状態に達し
た段階での脱窒状態と酸化還元電位との関係を測
定した結果である。実験はPHを7.0に設定し、窒
素源である塩化アンモニウムを硝化させた後脱窒
槽に導き、有機炭素源にメタノールを用いた。こ
の図から、残留有機炭素の増加、すなわち、メタ
ノールが過剰であれば酸化還元電位は低下し、
NOX−Nの増加、すなわち、メタノールが不足
すると酸化還元電位が上昇する傾向にあり、両者
間には明確な相関関係があることがわかる。ま
た、完全脱窒を達成するには、最小限の有機炭素
の存在が条件である。この結果によれば、メタノ
ールが過剰とならず、NOX−Nが低濃度となる
良好な脱窒状態を形成する酸化還元電位の範囲を
見出すことができる。この範囲は、ほぼ、−100m
Vから−200mVの間に存在する。第1図の結果
は、還元剤であるメタノールの制御指標として酸
化還元電位が適用できることを示すものである。
The treatment status of the denitrification tank is NO
It can be expressed by the remaining amount of organic matter including N (generic term for NO 3 -N and NO 2 -N) and newly supplied organic carbon. FIG. 1 shows the results of measuring the relationship between the denitrification state and the oxidation-reduction potential when a steady state was reached by varying the inflow water amount, inflow nitrogen concentration, and organic carbon injection amount. In the experiment, the pH was set at 7.0, ammonium chloride, the nitrogen source, was nitrified and then led to a denitrification tank, and methanol was used as the organic carbon source. From this figure, it can be seen that if the residual organic carbon increases, that is, methanol is excessive, the redox potential decreases,
It can be seen that when NO x -N increases, that is, methanol becomes insufficient, the redox potential tends to increase, and there is a clear correlation between the two. Furthermore, the presence of a minimum amount of organic carbon is a condition for achieving complete denitrification. According to this result, it is possible to find a range of redox potential that forms a good denitrification state in which methanol is not excessive and NO x -N is at a low concentration. This range is approximately -100m
Exists between V and -200mV. The results shown in FIG. 1 show that the redox potential can be applied as a control index for methanol, which is a reducing agent.

一方、酸化還元電位はNOX−Nや有機炭素だ
けでなく、数多くの要因に影響されるものと予想
される。種々の要因について実験的検討を行なつ
た結果、第2図に示すように、PHの影響は無視で
きないことが判明した。第2図で、酸化還元電位
変化量は、PH=7.0時の値を基準とし、その基準
値からの偏差量として表わした。この図から、酸
化還元電位はPHに一次相関し、相関係数は約−60
mV/PHであつた。
On the other hand, the redox potential is expected to be influenced not only by NO x -N and organic carbon but also by many factors. As a result of experimental studies on various factors, it was found that the influence of PH cannot be ignored, as shown in Figure 2. In FIG. 2, the amount of change in oxidation-reduction potential is expressed as the amount of deviation from the reference value, with the value at PH=7.0 as the reference. From this figure, the redox potential is linearly correlated with PH, and the correlation coefficient is approximately −60
It was mV/PH.

上記結果は理論的に説明できる。微生物が介在
する脱窒反応は2段階の反応に分けられる。第1
段階は有機炭素の酸化反応で、有機炭素にメタノ
ールを用いた場合、次式となる。
The above results can be explained theoretically. The denitrification reaction mediated by microorganisms can be divided into two stages. 1st
The step is an oxidation reaction of organic carbon, and when methanol is used as the organic carbon, the following equation is obtained.

0.5CH3OH=0.5CH2O+H++e:K1 ……(3) 0.5CH2O+0.5H2O =0.5CO2+2H++2e:K2 ……(4) これらの反応の酸化還元電位EHを求めれば次
式となる。
0.5CH 3 OH=0.5CH 2 O+H + +e:K 1 ...(3) 0.5CH 2 O+0.5H 2 O =0.5CO 2 +2H + +2e:K 2 ...(4) Redox potential E of these reactions Calculating H yields the following formula.

EH=2.303/3FR・T{logK1+logK2 +log(H+3−log(CH3OH)0.5} ……(5) ここで、K1、K2は平衡定数、Fはフアラデー
定数、Rは気体定数、Tは絶対温度である。第2
段階はNOX−Nの還元で、NOX−Nの大部分は
NO3−Nであることから、この反応式は、 0.2NO3 -+1.2H++e =0.1N2+0.6H2O;K3 ……(6) この反応の酸化還元電位EHは次式となる。
E H =2.303/3FR・T {logK 1 +logK 2 +log(H + ) 3 −log(CH 3 OH) 0.5 } ...(5) Here, K 1 and K 2 are equilibrium constants, F is Faraday's constant, R is the gas constant and T is the absolute temperature. Second
The step is the reduction of NO X −N, most of which is
Since NO 3 -N, this reaction formula is: 0.2NO 3 - +1.2H + +e = 0.1N 2 +0.6H 2 O; K 3 ...(6) The redox potential E H of this reaction is as follows. The formula becomes

EH=2.303/1.2FRT{logK3+log(H+1.2 +log(NO3 -0.2} ……(7) 式(5)と式(7)から脱窒反応の酸化還元電位EH
求めると、 EH=2.303/FRT{(logK−PH)+1/nlog (NO3 -)/(CH3OH)} ……(8) ここで、 logK=1/2{1/3logK1+logK2 +1/1.2logK3), nは反応係数である。(8)から、脱窒反応における
酸化還元電位はNO3−Nとメタノールの比に依
存し、PHの増加に伴い低下することがわかる。こ
の関係は、第1図及び第2図を理論的に裏付ける
ものである。第3図は以上の結果を纏めたもので
ある。すなわち、良好な脱窒状態が形成されてい
るときの酸化還元電位の範囲はPHに相関して変化
することを表わしている。
E H = 2.303/1.2FRT {logK 3 + log (H + ) 1.2 + log (NO 3 - ) 0.2 } ...(7) Calculate the redox potential E H of the denitrification reaction from equation (5) and equation (7) And E H = 2.303/FRT {(logK-PH) + 1/nlog (NO 3 - )/(CH 3 OH)} ...(8) Here, logK = 1/2 {1/3 logK 1 + logK 2 + 1 /1.2logK 3 ), n is the reaction coefficient. (8) shows that the redox potential in the denitrification reaction depends on the ratio of NO 3 -N to methanol and decreases as the pH increases. This relationship theoretically supports FIGS. 1 and 2. Figure 3 summarizes the above results. In other words, this indicates that the range of redox potential when a good denitrifying state is formed changes in correlation with pH.

ところで排水の流量及び水質は一日の間でも大
きく変化することが知られている。第4図はその
一例を示したものである。この流入窒素濃度の変
化は式(1)及び式(2)におけるH+及びOH-生成の影
響因子となり、硝化槽及び脱窒槽のPHを変化させ
る。そこで、第4図と同様の流入水条件とし、硝
化槽のPHを7.0に調整し、完全脱窒が可能なメタ
ノールを脱窒槽に供給する実験を試みた。その結
果、脱窒槽のPHは脱窒素量の変化に影響されたも
のと予想される変動が認められた。
By the way, it is known that the flow rate and water quality of wastewater vary greatly even during a day. FIG. 4 shows an example. This change in the inflow nitrogen concentration becomes an influencing factor for H + and OH production in equations (1) and (2), and changes the pH of the nitrification tank and denitrification tank. Therefore, we attempted an experiment where the inflow water conditions were the same as in Figure 4, the pH of the nitrification tank was adjusted to 7.0, and methanol, which was capable of complete denitrification, was supplied to the denitrification tank. As a result, the pH of the denitrification tank was found to fluctuate, which is expected to be affected by changes in the amount of denitrification.

このような脱窒槽で、良好な脱窒状態を維持す
るには、式(8)より、PHを一定値に調整し、その上
で酸化還元電位を一定値に維持するように有機炭
素供給量を制御する方式が考えられる。
In order to maintain good denitrification conditions in such a denitrification tank, according to equation (8), the pH should be adjusted to a constant value, and then the amount of organic carbon supplied should be adjusted to maintain the redox potential at a constant value. One possible method is to control the

この問題を解決する従来方法に、PHを一定値に
調整した上で、酸化還元電位を一定値に維持する
ように有機炭素供給量を調節する方式がある。と
ころで、排水中のNH3−N及び有機性窒素濃度
は時間的に変動するため、生成されるNO3−N
濃度も連動して変化することが知られている。こ
のことは、脱窒時の副生物であるOH-量が変化
し、それに伴いPH値が変化することを意味する。
したがつて、このような脱窒槽で、PHを一定値に
維持するには、脱窒反応の状態に応じてアルカリ
剤あるいは酸を注入する必要がある。これは、1
つの指標で二つの操作量を調節するという複雑な
制御法となり、実用的でない。また、硝化槽で
は、(1)式に示すようにH+生成によるPH低下を防
止するために、アルカリ剤を注入してPH調整を行
なうことが普通である。これに加えて脱窒槽でも
PH調整を行うことは運転コストの高騰になり、得
策と言えない。さらに、脱窒反応時に生成する
OH-を硝化反応時に生成するH+の中和剤として
利用する脱窒槽−硝化槽方式では、脱窒槽での
OH-生成量が抑制され、硝化槽でのアルカリ剤
が増大する事態が生じ、運転コストの高騰につな
がる。
A conventional method for solving this problem is to adjust the pH to a constant value and then adjust the amount of organic carbon supplied so as to maintain the redox potential at a constant value. By the way, since the concentration of NH 3 -N and organic nitrogen in wastewater fluctuates over time, the NO 3 -N produced
It is known that the concentration also changes in conjunction. This means that the amount of OH -, a by-product during denitrification, changes, and the PH value changes accordingly.
Therefore, in order to maintain the pH at a constant value in such a denitrification tank, it is necessary to inject an alkaline agent or acid depending on the state of the denitrification reaction. This is 1
This is a complicated control method in which two manipulated variables are adjusted using one index, which is not practical. Furthermore, in the nitrification tank, in order to prevent the pH from decreasing due to H + production, as shown in equation (1), an alkaline agent is usually injected to adjust the pH. In addition to this, a denitrification tank
Adjusting the pH will increase operating costs and is not a good idea. Furthermore, it is produced during the denitrification reaction.
In the denitrification tank-nitrification tank method, which uses OH - as a neutralizing agent for H + generated during the nitrification reaction, the
The amount of OH - produced is suppressed and the amount of alkaline agent in the nitrification tank increases, leading to a rise in operating costs.

したがつて、新たな薬剤を使用せずに、また、
プロセス構成に左右されない有機炭素供給制御法
が下水処理場において重要である。本発明の一実
施例を第5図に示す。第5図で、脱窒槽1では
NOX−N及び脱窒素菌を含む流入水6が導びか
れ、撹拌装置4により流動状態が維持される。
Therefore, without using new drugs, and
Organic carbon supply control methods that are independent of process configuration are important in wastewater treatment plants. An embodiment of the present invention is shown in FIG. In Figure 5, in denitrification tank 1
Inflow water 6 containing NO x -N and denitrifying bacteria is introduced, and a fluid state is maintained by a stirring device 4 .

一方、還元剤である有機炭素8は貯留槽2から
供給装置3を介して脱窒槽1に注入される。脱窒
反応を終えた流出水7は、NOX−Nが除かれた
形の混合液となり、次工程へ導びかれる。このよ
うな脱窒槽1で、酸化還元電位計11とPH計12
を設置し、各々酸化還元電位とPHを検出する。こ
のうち、PH検出値pは演算回路14に入力され、
pに対応した酸化還元電位目標値e*が設定され
る。この設定方法は、まず、PH基準値p0における
良好な脱窒状態を形成する酸化還元電位基準値e0
を予め設定しておくとともに、PH偏差と酸化還元
電位変化量Δeの関係式を与えておく。式(9)で、 Δe=f(p−p0) ……(9) p>p0であればΔeは負となり、p<p0であれ
ばΔeは正の値をとる。演算されたΔeを用いて、
次式により酸化還元電位基準値e*が設定される。
On the other hand, organic carbon 8, which is a reducing agent, is injected from the storage tank 2 into the denitrification tank 1 via the supply device 3. The effluent water 7 that has completed the denitrification reaction becomes a mixed liquid from which NO x -N has been removed, and is led to the next step. In such a denitrification tank 1, an oxidation-reduction potential meter 11 and a PH meter 12 are installed.
are installed to detect the redox potential and PH. Among these, the PH detection value p is input to the arithmetic circuit 14,
A redox potential target value e * corresponding to p is set. This setting method first sets the oxidation-reduction potential reference value e 0 that forms a good denitrification state at the PH reference value p 0 .
is set in advance, and a relational expression between the PH deviation and the amount of change in redox potential Δe is given. In equation (9), Δe=f(p−p 0 ) (9) If p>p 0 , Δe becomes negative, and if p<p 0 , Δe takes a positive value. Using the calculated Δe,
The oxidation-reduction potential reference value e * is set by the following formula.

e*=e0+Δe ……(10) したがつて、e*はp>p0であればe0より高い値
となり、p<p0であれば低い値をとり、良好な脱
窒状態を形成する酸化還元電位の値が常時設定さ
れることになる。演算回路14から出力された酸
化還元電位目標値e*は比較回路15に入力され
る。比較回路15では、実測された酸化還元電位
検出値eと目標値e*とを比較し、その偏差ε ε=e−e* を調節回路16に出力する。調節回路16は偏差
εに応じて供給装置3を操作し、有機炭素供給量
を調節する。有機炭素供給量は偏差εが負、すな
わち、目標値e*が検出値eより低ければ減少方向
に、逆であれば増加方向となる。
e * = e 0 + Δe ...(10) Therefore, e * takes a value higher than e 0 if p>p 0 , and takes a lower value if p<p 0 , ensuring a good denitrification state. The value of the oxidation-reduction potential to be formed is always set. The oxidation-reduction potential target value e * output from the arithmetic circuit 14 is input to the comparison circuit 15. The comparison circuit 15 compares the actually measured oxidation-reduction potential detection value e and the target value e * , and outputs the deviation ε ε=ee−e * to the adjustment circuit 16. The adjustment circuit 16 operates the supply device 3 according to the deviation ε to adjust the amount of organic carbon supplied. The organic carbon supply amount decreases if the deviation ε is negative, that is, the target value e * is lower than the detected value e, and increases if the deviation is negative.

このように、PH検出値に基づいて酸化還元電位
目標値の設定操作を行なうことにより、常時良好
な脱窒状態が形成される。
In this way, by performing the setting operation of the oxidation-reduction potential target value based on the PH detection value, a good denitrification state is always established.

〔発明の効果〕〔Effect of the invention〕

本発明によれば脱窒状態を精度よく表現でき、
また、プロセス構成に制約されない有機炭素注入
制御が可能となる。
According to the present invention, the denitrification state can be accurately expressed,
In addition, it becomes possible to control organic carbon injection without being restricted by the process configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱窒槽における酸化還元電位と脱窒状
態の関係を示す図、第2図はPHに対する酸化還元
電位の変化を実験的に求めた特性図、第3図は良
好な脱窒状態を形成する酸化還元電位とPHの関係
を示す特性図、第4図は流入水流量と窒素濃度の
日変動パターンを示す図、第5図は本発明の一実
施例のブロツク図である。 1……脱窒槽、3……有機炭素供給装置、6…
…脱窒槽流入水、11……酸化還元電位計、12
……PH計、14……演算回路、15……比較回
路、16……調節回路。
Figure 1 is a diagram showing the relationship between the redox potential and the denitrification state in the denitrification tank, Figure 2 is a characteristic diagram that experimentally determined the change in redox potential with respect to PH, and Figure 3 is a diagram showing the relationship between the redox potential and the denitrification state in the denitrification tank. FIG. 4 is a characteristic diagram showing the relationship between the oxidation-reduction potential and PH, FIG. 4 is a diagram showing the daily fluctuation pattern of the inflow water flow rate and nitrogen concentration, and FIG. 5 is a block diagram of an embodiment of the present invention. 1...Denitrification tank, 3...Organic carbon supply device, 6...
... Denitrification tank inflow water, 11 ... Oxidation-reduction potentiometer, 12
...PH meter, 14...Arithmetic circuit, 15...Comparison circuit, 16...Adjustment circuit.

Claims (1)

【特許請求の範囲】 1 排水中の硝酸性窒素あるいは亜硝酸性窒素を
有機炭素の存在の下で窒素ガスに還元する生物学
的脱窒方法において、 良好な脱窒状態を形成する範囲の酸化還元電位
とPHの関係を予め設定し、 脱窒過程での混合液中のPH値と酸化還元電位を
検出し、前記PH値に基づいて、予め設定した酸化
還元電位目標値を補正し、この補正酸化還元電位
目標値と上記酸化還元電位検出値との差に応じて
前記有機炭素の供給量を調節することを特徴とす
る生物学的脱窒方法。 2 前記酸化還元電位目標値に対するPH基準値を
予め定め、このPH基準値と前記PH値の偏差から酸
化還元電位変化量を求め、この酸化還元電位変化
量で前記酸化還元電位目標値を補正することを特
徴とする特許請求の範囲第1項記載の生物学的脱
窒方法。 3 前記PH基準値に対するPHの許容範囲を設定
し、上記検出PH値がPH許容範囲内にあるか否か判
断し、この許容範囲から前記検出PH値が逸脱した
場合に、前記酸化還元電位目標値を補正すること
を特徴とする特許請求の範囲第1項記載の生物学
的脱窒方法。
[Claims] 1. In a biological denitrification method in which nitrate nitrogen or nitrite nitrogen in wastewater is reduced to nitrogen gas in the presence of organic carbon, oxidation within a range that forms a good denitrification state The relationship between reduction potential and PH is set in advance, the PH value and oxidation-reduction potential in the mixed liquid during the denitrification process are detected, and the preset oxidation-reduction potential target value is corrected based on the PH value. A biological denitrification method, characterized in that the amount of organic carbon supplied is adjusted according to the difference between a corrected redox potential target value and the detected redox potential value. 2. Predetermining a PH reference value for the oxidation-reduction potential target value, determining the oxidation-reduction potential change amount from the deviation between this PH reference value and the PH value, and correcting the oxidation-reduction potential target value using this oxidation-reduction potential change amount. The biological denitrification method according to claim 1, characterized in that: 3 Set an allowable PH range with respect to the PH reference value, determine whether the detected PH value is within the PH allowable range, and if the detected PH value deviates from this allowable range, set the oxidation-reduction potential target. The biological denitrification method according to claim 1, characterized in that the value is corrected.
JP9562383A 1983-06-01 1983-06-01 Method for controlling biological denitrification process Granted JPS6084199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9562383A JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9562383A JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Publications (2)

Publication Number Publication Date
JPS6084199A JPS6084199A (en) 1985-05-13
JPH0411279B2 true JPH0411279B2 (en) 1992-02-27

Family

ID=14142653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9562383A Granted JPS6084199A (en) 1983-06-01 1983-06-01 Method for controlling biological denitrification process

Country Status (1)

Country Link
JP (1) JPS6084199A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water
US7413654B2 (en) 2003-12-23 2008-08-19 Siemens Water Technologies Holding Corp. Wastewater treatment control
US7208090B2 (en) * 2003-12-23 2007-04-24 Usfilter Corporation Wastewater treatment control
US8894856B2 (en) 2008-03-28 2014-11-25 Evoqua Water Technologies Llc Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
KR20100136989A (en) 2008-03-28 2010-12-29 지멘스 워터 테크놀로지스 코포레이션 Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
US9359236B2 (en) 2010-08-18 2016-06-07 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle
US10131550B2 (en) 2013-05-06 2018-11-20 Evoqua Water Technologies Llc Enhanced biosorption of wastewater organics using dissolved air flotation with solids recycle

Also Published As

Publication number Publication date
JPS6084199A (en) 1985-05-13

Similar Documents

Publication Publication Date Title
US8034243B2 (en) Denitrification process
US7329352B2 (en) Nitrifying method of treating water containing ammonium-nitrogen
CN101654299A (en) Aeration air quantity controller for sewage treatment plant
KR101237447B1 (en) A Rule-based realtime control technology for wastewater treatment process and system
JP3691650B2 (en) Water treatment method and control device
JPH0411279B2 (en)
Spérandio et al. Online estimation of wastewater nitrifiable nitrogen, nitrification and denitrification rates, using ORP and DO dynamics
JPH08267089A (en) Method for controlling supplied waste water amount in denitrification reaction
JPS646839B2 (en)
US20230202889A1 (en) Systems and methods for controlling nitrous oxide production in wastewater treatment facilities
JPH0475079B2 (en)
JP2870906B2 (en) Nitrification activity measurement method
JPH11253990A (en) Treatment of nitrogen-containing waste water
JP3677811B2 (en) Biological denitrification method
JPS58196891A (en) Controlling method for biological denitrification process
JPS6320033A (en) Oxidation and reduction treatment device
JP2003080281A (en) Method and program for estimating microorganism activity, biological treatment method using the same, and computer readable recording medium
JPS59132999A (en) Controlling method for process of biological denitrification
JPS58104697A (en) Controlling method for biological denitrification
Kim Temporal activated sludge systems: modeling approach and process control
CN118771606A (en) Biological denitrification accurate regulation and control method based on front-end feedback
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
KR20030062612A (en) Auto-control system for external carbon source consumption in wastewater treatment plant biological nutrient removal process
JPS61100658A (en) Apparatus for biological measurement of nitration speed
JPH0137993B2 (en)