JPH0476759B2 - - Google Patents

Info

Publication number
JPH0476759B2
JPH0476759B2 JP58243767A JP24376783A JPH0476759B2 JP H0476759 B2 JPH0476759 B2 JP H0476759B2 JP 58243767 A JP58243767 A JP 58243767A JP 24376783 A JP24376783 A JP 24376783A JP H0476759 B2 JPH0476759 B2 JP H0476759B2
Authority
JP
Japan
Prior art keywords
amount
hydrogen donor
load
calculate
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58243767A
Other languages
Japanese (ja)
Other versions
JPS60137494A (en
Inventor
Hiroyuki Enami
Hitoshi Ogasawara
Shoji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24376783A priority Critical patent/JPS60137494A/en
Publication of JPS60137494A publication Critical patent/JPS60137494A/en
Publication of JPH0476759B2 publication Critical patent/JPH0476759B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は下水の処理における硝化−脱窒工程
で、脱窒槽内に水素供与体(例えばメタノール、
酢酸、グルコーズなど)を注入する量を制御する
方法に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is a nitrification-denitrification process in sewage treatment, in which a hydrogen donor (for example, methanol,
This relates to a method for controlling the amount of injected substances (acetic acid, glucose, etc.).

〔発明の背景〕[Background of the invention]

下水処理において、下水中のアンモニア性窒素
を生物学的に硝化し、これを脱窒して浄化する方
法が盛んに行なわれるようになつた。
In sewage treatment, methods of biologically nitrifying ammonia nitrogen in sewage and purifying it by denitrification have become popular.

第1図は従来用いられている下水処理装置の系
統図で、流入してくる汚水Aは硝化槽7に注入さ
れ、曝気装置8により気泡を注入されつつ好気性
微生物によつて硝化される。即ち、汚水中のアン
モニア性窒素が NH4+2O2→NO3 -+H2O+2H+ ……(1) 上記の(1)式により硝化されて硝酸イオンNO3 -
となる。この反応はPH7〜9が最適であるため、
PH計12によつてPHを測定し、演算器13で注入ポ
ンプ14を駆動制御して適量のアルカリ剤Gを供
給している。
FIG. 1 is a system diagram of a conventional sewage treatment system. Incoming wastewater A is injected into a nitrification tank 7, and is nitrified by aerobic microorganisms while being injected with air bubbles by an aeration device 8. That is, ammonia nitrogen in wastewater is nitrified according to the above equation (1) as NH 4 +2O 2 →NO 3 - +H 2 O+2H + ...(1) to form nitrate ions NO 3 -
becomes. This reaction is optimal at pH 7-9, so
The PH is measured by a PH meter 12, and the injection pump 14 is driven and controlled by a computing unit 13 to supply an appropriate amount of alkaline agent G.

硝化された汚水は返送汚水矢印Bとして脱窒槽
6に注入され、注入ポンプ5により水素供与体F
を注加され、攪拌フアン11で攪拌されて、 2NO3 -+5H2→N2+2OH-+4H2O ……(2) 上記(2)式により硝酸イオンNO3 -が無害のガス
となる。
The nitrified sewage is injected into the denitrification tank 6 as return sewage arrow B, and is transferred to the hydrogen donor F by the injection pump 5.
is added and stirred by the stirring fan 11 to form 2NO 3 +5H 2 →N 2 +2OH +4H 2 O (2) According to the above equation (2), nitrate ion NO 3 becomes a harmless gas.

上記のように、脱窒槽6、硝化槽7を循環しつ
つ浄化された汚水は終沈9を経て放流水Cとして
放流される。矢印Dは余剰汚泥を示しており、廃
棄もしくは利用(埋立など)される。矢印Eは返
送汚泥を示し、硝化用の微生物など有用物を含ん
だ泥水が返送再利用される。
As described above, the wastewater that has been purified while circulating through the denitrification tank 6 and the nitrification tank 7 is discharged as effluent water C through the final settling 9. Arrow D indicates surplus sludge, which is disposed of or used (landfill, etc.). Arrow E indicates returned sludge, and muddy water containing useful substances such as microorganisms for nitrification is returned and reused.

前記の水素供与体Fの注入量は、脱窒すべき硝
酸イオンNO3 -、及び亜硝酸イオンNO2 -に含ま
れている窒素分の量(以下、NO3 -,NO2 -−N
負荷と呼び、NO3 -,NO2 -負荷と略称する)に
応じて適正量であることを要する。
The injection amount of the hydrogen donor F is determined by the amount of nitrogen contained in the nitrate ions NO 3 - and nitrite ions NO 2 - to be denitrified (hereinafter referred to as NO 3 - , NO 2 - -N
It is necessary to have an appropriate amount according to the load (abbreviated as NO 3 - , NO 2 - load).

水素供与体が不足であれば脱窒反応式(2)が進行
せず、過多であれば水素供与体を浪費して不経済
である上に、該水素供与体によつて水質を悪化さ
せる。
If there is not enough hydrogen donor, the denitrification reaction formula (2) will not proceed, and if there is too much hydrogen donor, the hydrogen donor will be wasted, which is uneconomical, and the water quality will deteriorate due to the hydrogen donor.

ところが、従来技術においては、NO3 -,NO2
の濃度を高精度で即座に測定することができな
いため、第1図に示すように脱窒槽6内に酸化還
元電位計3を設けてその検出出力信号を演算器4
に入力せしめ、この酸化還元電位が最適値となる
ように水素供与体Fの注入ポンプ5を駆動制御し
ている。
However, in the conventional technology, NO 3 - , NO 2
- Since it is not possible to immediately measure the concentration of
is input, and the injection pump 5 for the hydrogen donor F is drive-controlled so that this redox potential becomes the optimum value.

しかし、上に述べたような従来の水素供与体注
入量制御方法では次に述べるような技術的問題が
有る。
However, the conventional hydrogen donor injection amount control method as described above has the following technical problems.

第2図は、浄化処理すべき下水の流量と、該下
水中の窒素濃度との日変動パターンの1例を示す
図表である。上記第2図に基づいて、下水中のア
ンモニア性窒素濃度(以下、NH3−N負荷と略
称する)と流入量との関係を図表化すると第3図
の如くになる。
FIG. 2 is a chart showing an example of a daily variation pattern between the flow rate of sewage to be purified and the nitrogen concentration in the sewage. Based on the above-mentioned Fig. 2, the relationship between the ammonia nitrogen concentration in sewage (hereinafter abbreviated as NH 3 -N load) and the inflow amount is graphed as shown in Fig. 3.

上記のようにNH3−N負荷が変化するので、
これに応じて適正な脱窒処理を行なわねばならな
いのであるが、更に上記のNH3−N負荷が硝化
作用によつてNO3 -,NO2 -負荷に変換される場
合、温度の高低によつて硝化率が変化するという
問題が有る。
As the NH 3 −N load changes as described above,
Appropriate denitrification treatment must be carried out accordingly, but when the above NH 3 -N load is converted into NO 3 - and NO 2 - loads through nitrification, the denitrification process will change depending on the temperature. However, there is a problem in that the nitrification rate changes.

第4図はNH3−N負荷と硝化率との関係を、
t>15℃、10℃<t<15℃、t<10℃の三つの場
合に区分して示した図表である。また、第5図は
NH3−N負荷とNO3 -,NO2 -負荷との関係をt
=15℃、t=7.5℃、T=0℃の三つの場合に区
分して示した図表である。
Figure 4 shows the relationship between NH 3 -N load and nitrification rate.
This is a chart showing three cases: t>15°C, 10°C<t<15°C, and t<10°C. Also, Figure 5 shows
The relationship between NH 3 −N load and NO 3 , NO 2 load is expressed as t
This is a chart showing three cases: T = 15°C, T = 7.5°C, and T = 0°C.

こうした問題が有るため、従来のように酸化還
元電位を測定するだけで温度のフアクターを無視
した制御方法では水素供与体の注入量の過、不足
を生じ、浄化不足、若しくは水素供与体浪費とい
つた不具合を招く。
Due to these problems, the conventional control method that only measures the redox potential and ignores the temperature factor may result in over- or under-injection of hydrogen donor, resulting in insufficient purification or waste of hydrogen donor. This may cause problems.

第5図から理解できるように、t>15℃の場合
は、NO3 -,NO2 -負荷がNH3−N負荷に比例す
るものと考えて水素供与体の注入を行えばよい
が、低温領域においては硝化の進行が遅いので水
素供与体の過剰注入を生じ易い。
As can be understood from Fig. 5, when t > 15°C, hydrogen donor injection can be performed assuming that NO 3 - and NO 2 - loads are proportional to NH 3 -N loads; Since nitrification progresses slowly in this region, excessive injection of hydrogen donor is likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、全温度域
において、特に15℃未満の低温域において適正量
の注入を行ない得る、水素供与体の注入量制御方
法を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a method for controlling the injection amount of a hydrogen donor, which allows injection of an appropriate amount in the entire temperature range, particularly in the low temperature range below 15°C.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明の制御方法
は、汚水中のアンモニアを硝化し、脱窒して浄化
する工程の内の脱窒工程において、水温と、酸化
還元電位と、汚水流入量とを測定し、上記酸化還
元電位の測定値に基づいて水素供与体の必要量を
算出し、 前記汚水流入量に基づいてNH3−N負荷量を
算出し、 上記NH3−N負荷量の算出値、および前記水
温の測定値に基づいてNO3 -,NO2 -負荷量を算
出し、 上記NO3 -,NO2 -負荷量の算出値に基づいて
前記水素供与体の必要量の補正量を算出して、水
素供与体の適正量を算出し、 前記脱窒工程における水素供与体の添加量を上
記水素供与体の適正量ならしめるように制御する
ことを特徴とする。
In order to achieve the above object, the control method of the present invention is designed to control water temperature, oxidation-reduction potential, and wastewater inflow rate in the denitrification process of the process of nitrifying ammonia in wastewater and denitrifying it to purify it. , calculate the required amount of hydrogen donor based on the measured value of the oxidation-reduction potential, calculate the NH 3 -N load amount based on the sewage inflow amount, and calculate the NH 3 -N load amount above. and the measured value of the water temperature to calculate the NO 3 - and NO 2 - loading amounts, and based on the calculated values of the NO 3 - and NO 2 - loading amounts, correct the required amount of the hydrogen donor. An appropriate amount of the hydrogen donor is calculated by calculating the amount of the hydrogen donor, and the amount of the hydrogen donor added in the denitrification step is controlled to be the appropriate amount of the hydrogen donor.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の1実施例について、第6図を参
照しつつ説明する。
Next, one embodiment of the present invention will be described with reference to FIG.

第6図は、本発明の制御方法を実施するために
第1図の従来装置を改良した1例を示し、第1図
と異なるところは次記の3点である。
FIG. 6 shows an example in which the conventional device shown in FIG. 1 is improved in order to carry out the control method of the present invention, and is different from FIG. 1 in the following three points.

(1) 汚水の流入路矢印Aに流量計1を設けたこ
と。
(1) Flowmeter 1 was installed at the wastewater inflow path arrow A.

(2) 脱窒槽6内に温度計2を設けたこと。(2) A thermometer 2 was installed inside the denitrification tank 6.

(3) 酸化還元電位計3の検出信号を入力されて水
素供与体注入ポンプ5を駆動制御する演算器4
を次に詳述する演算器4′のごとく改良し、酸
化還元電位計3と、流量計1と、温度計2と、
それぞれの検出信号出力を入力されて演算を行
なうように構成したこと。
(3) A computing unit 4 that receives the detection signal of the redox potentiometer 3 and controls the operation of the hydrogen donor injection pump 5.
is improved as shown in the computing unit 4' which will be detailed next, and includes an oxidation-reduction potentiometer 3, a flowmeter 1, a thermometer 2,
The configuration is such that the respective detection signal outputs are input and calculations are performed.

上記の改良形演算器4′は、図示のごとく、流
量−NH3−N負荷予測回路15と、温度−NO2
,NO3 -−N予測回路16と、水素供与体注入
量補正回路17と、擬似水素供与体設定回路18
とからなる。
As shown in the figure, the above-mentioned improved computing unit 4' includes a flow rate -NH 3 -N load prediction circuit 15 and a temperature -NO 2
- , NO 3 - -N prediction circuit 16, hydrogen donor injection amount correction circuit 17, and pseudo hydrogen donor setting circuit 18
It consists of

上記の流量−NH3−N負荷予測回路15には、
第3図に示したような流量に対するNH3−N負
荷のデータを記憶させておき、流量計1から流量
信号を入力されてNH3−N負荷を算出せしめ、
これを次段の温度−NO2 -,NO3 -−N予測回路
16に入力せしめる。
The above flow rate-NH 3 -N load prediction circuit 15 includes:
The data of the NH 3 -N load with respect to the flow rate as shown in FIG. 3 is stored, and the flow rate signal is inputted from the flow meter 1 to calculate the NH 3 -N load.
This is input to the temperature -NO 2 - , NO 3 - -N prediction circuit 16 at the next stage.

温度−NO2 -,NO3 -−N予測回路16には、
第5図に示したような各温度におけるNH3−N
負荷とNO2 -,NO3 -−N負荷のデータを記憶さ
せておき、温度計2の信号出力と、負荷予測回路
15から入力されたNH3−N負荷信号とに基づ
いてNO2 -,NO3 -−N負荷を算出せしめ、これ
を水素供与体注入量補正回路17に入力せしめ
る。
The temperature -NO 2 - , NO 3 - -N prediction circuit 16 includes:
NH 3 −N at each temperature as shown in Figure 5
The data of the load and the NO 2 - , NO 3 - -N load are stored, and NO 2 -, NO 2 -, NO 2 - , based on the signal output of the thermometer 2 and the NH 3 -N load signal input from the load prediction circuit 15 are stored. The NO 3 - -N load is calculated and input into the hydrogen donor injection amount correction circuit 17.

一方、擬似水素供与体設定回路18は、酸化還
元電位計3の出力信号に基づいて、温度要素を加
味していない仮の水素供与体必要量を算出させ、
これを前記の補正回路17に入力せしめる。
On the other hand, the pseudo hydrogen donor setting circuit 18 calculates a provisional required amount of hydrogen donor that does not take into account the temperature factor, based on the output signal of the redox electrometer 3,
This is input to the correction circuit 17 mentioned above.

補正回路17は、この仮の水素供与体必要量に
対し、NO2 -,NO3 -−N負荷信号に基づく補正
を加え、補正計算結果により注入ポンプ5を駆動
制御して水素供与体Fの流量制御を行なう。
The correction circuit 17 applies a correction based on the NO 2 , NO 3 −N load signal to this provisional required amount of hydrogen donor, and drives and controls the injection pump 5 based on the correction calculation result to adjust the amount of hydrogen donor F. Perform flow control.

以上のようにして、汚水流入量と、水温と、酸
化還元電位との三つのデータに基づく水素供与体
注入量制御を行なうと、具体的に次のような作
用、効果が得られる。第5図より、温度15℃以上
では、NO2 -,NO3 -−N負荷は、NH3−N負荷
つまり流入量と比例関係にあるのだから、酸化還
元電位と、流入量だけにて、水素供与体注入量
は、決定しているが、温度が低い場合(15℃以下
の場合)には、第5図に表わされた如く、比例関
係を失う。これは、硝化反応(1)式が100%行なわ
れず、NH3−Nがそのまま、脱窒槽6に送り込
まれるものがあるからである。よつて、温度によ
る補正が行なわれなければならず、NH3−N負
荷と温度によつてNO2 -,NO3 -負荷量を決定す
るように構成した温度−NO2 -,NO3 -−N予測
回路16の機能が生きてきて、低温域においても
循環汚水中のNO2 -,NO3 -濃度が正確に把握で
き、これに基づいて水素供与体の適正注入量が算
出される。
When the amount of hydrogen donor injection is controlled based on the three data of the inflow of wastewater, water temperature, and redox potential in the manner described above, the following specific actions and effects can be obtained. From Figure 5, at temperatures above 15°C, the NO 2 - , NO 3 - -N loads are in a proportional relationship with the NH 3 -N load, that is, the inflow amount, so only the oxidation-reduction potential and inflow amount, Although the amount of hydrogen donor injection is determined, when the temperature is low (below 15° C.), the proportional relationship is lost as shown in FIG. This is because in some cases, the nitrification reaction (1) is not carried out 100%, and NH 3 --N is directly sent to the denitrification tank 6. Therefore , temperature - based correction must be performed , and the temperature- NO 2 - , NO 3 - The function of the N prediction circuit 16 is activated, and the NO 2 - and NO 3 - concentrations in the circulating wastewater can be accurately grasped even in the low temperature range, and the appropriate injection amount of the hydrogen donor can be calculated based on this.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の水素供与体注入
量制御方法は、汚水中のアンモニアを硝化し、脱
窒して浄化する工程の内の脱窒工程において、水
温と、酸化還元電位と、汚水流入量とを測定し、
上記酸化還元電位の測定値に基づいて水素供与体
の必要量を算出し、 前記汚水流入量に基づいてNH3−N負荷量を
算出し、 上記NH3−N負荷量の算出値、および前記水
温の測定値に基づいてNO3 -,NO2 -負荷量を算
出し、 上記NO3 -,NO2 -負荷量の算出値に基づいて
前記水素供与体の必要量の補正量を算出して、水
素供与体の適正量を算出し、 前記脱窒工程における水素供与体の添加量を上
記水素供与体の適正量ならしめるように制御する
ことにより、全温度領域において、特に15℃未満
の低温域において適正量の水素供与体を注入する
ことができるという優れた実用的効果を奏し、汚
水処理装置における放流水の水質保証、及び該装
置の経済性向上に貢献するところ多大である。
As described above in detail, the method for controlling the amount of hydrogen donor injection of the present invention is performed by controlling the water temperature, the redox potential, and Measure the amount of sewage inflow,
Calculate the required amount of hydrogen donor based on the measured value of the oxidation-reduction potential, calculate the NH 3 -N load amount based on the sewage inflow amount, calculate the calculated value of the NH 3 -N load amount, and the Calculate the NO 3 - , NO 2 - loading amount based on the measured value of water temperature, and calculate the correction amount for the required amount of the hydrogen donor based on the calculated value of the NO 3 - , NO 2 - loading amount. By calculating the appropriate amount of the hydrogen donor and controlling the amount of the hydrogen donor added in the denitrification step to be the appropriate amount of the hydrogen donor, in the entire temperature range, especially at low temperatures below 15 ° C. It has an excellent practical effect of being able to inject an appropriate amount of hydrogen donor in the area, and greatly contributes to guaranteeing the quality of effluent water in sewage treatment equipment and improving the economic efficiency of the equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の制御装置を備えた汚水処理装置
の1例の系統図である。第2図は下水の窒素濃度
及び流量の時間的変化を示す図表、第3図は流量
とNH3−N負荷との関係を示す図表、第4図及
び第5図はそれぞれ温度の影響を示す図表、第6
図は本発明の脱窒槽の水素供与体流入制御方法を
実施するために構成した制御装置の系統図であ
る。 1……流量計、2……温度計、3……酸化還元
電位計、4,4′……演算器、5……注入ポンプ、
6……脱窒槽、7……硝化槽、8……曝気装置、
9……終沈、10……攪拌モータ、11……攪拌
用フアン、12……PH計、13……演算器、14
……注入ポンプ。
FIG. 1 is a system diagram of an example of a sewage treatment apparatus equipped with a conventional control device. Figure 2 is a chart showing temporal changes in sewage nitrogen concentration and flow rate, Figure 3 is a chart showing the relationship between flow rate and NH 3 -N load, and Figures 4 and 5 each show the influence of temperature. Diagram, 6th
The figure is a system diagram of a control device configured to carry out the method for controlling the inflow of hydrogen donors into a denitrification tank according to the present invention. 1... Flow meter, 2... Thermometer, 3... Redox potential meter, 4, 4'... Arithmetic unit, 5... Infusion pump,
6... denitrification tank, 7... nitrification tank, 8... aeration device,
9... Final settling, 10... Stirring motor, 11... Stirring fan, 12... PH meter, 13... Arithmetic unit, 14
...Infusion pump.

Claims (1)

【特許請求の範囲】 1 汚水中のアンモニアを硝化し、脱窒して浄化
する工程の内の脱窒工程において、水温と、酸化
還元電位と、汚水流入量とを測定し、 上記酸化還元電位の測定値に基づいて水素供与
体の必要量を算出し、 前記汚水流入量に基づいてNH3−N負荷量を
算出し、 上記NH3−N負荷量の算出値、および前記水
温の測定値に基づいてNO3 -,NO2 -負荷量を算
出し、 上記NO3 -,NO2 -負荷量の算出値に基づいて
前記水素供与体の必要量の補正量を算出して、水
素供与体の適正量を算出し、 前記脱窒工程における水素供与体の添加量を上
記水素供与体の適正量ならしめるように制御する
ことを特徴とする、脱窒槽の水素供与体注入量制
御方法。
[Scope of Claims] 1. In the denitrification process of the process of nitrifying ammonia in wastewater and denitrifying it to purify it, the water temperature, redox potential, and amount of wastewater inflow are measured, and the said redox potential is measured. Calculate the required amount of hydrogen donor based on the measured value of , calculate the NH 3 -N load amount based on the amount of wastewater inflow, and calculate the calculated value of the NH 3 -N load amount and the measured value of the water temperature. The amount of NO 3 - , NO 2 - loaded is calculated based on the amount of NO 3 - , NO 2 - loaded, and the amount of correction for the required amount of the hydrogen donor is calculated based on the calculated value of the amount of NO 3 -, NO 2 - loaded. A method for controlling the amount of hydrogen donor injected into a denitrification tank, comprising: calculating an appropriate amount of the hydrogen donor, and controlling the amount of the hydrogen donor added in the denitrification step to be the appropriate amount of the hydrogen donor.
JP24376783A 1983-12-26 1983-12-26 Method for controlling amount of hydrogen donor to be injected into denitrification vessel Granted JPS60137494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24376783A JPS60137494A (en) 1983-12-26 1983-12-26 Method for controlling amount of hydrogen donor to be injected into denitrification vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24376783A JPS60137494A (en) 1983-12-26 1983-12-26 Method for controlling amount of hydrogen donor to be injected into denitrification vessel

Publications (2)

Publication Number Publication Date
JPS60137494A JPS60137494A (en) 1985-07-22
JPH0476759B2 true JPH0476759B2 (en) 1992-12-04

Family

ID=17108670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24376783A Granted JPS60137494A (en) 1983-12-26 1983-12-26 Method for controlling amount of hydrogen donor to be injected into denitrification vessel

Country Status (1)

Country Link
JP (1) JPS60137494A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129104A (en) * 1998-12-23 2000-10-10 Tetra Process Technologies A Severn Trent Services Company Method for automotive dose control of liquid treatment chemicals
JP4768886B1 (en) * 2011-03-02 2011-09-07 株式会社加藤建設 How to remove nitrogen in water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222916A (en) * 1975-08-11 1977-02-21 American Bank Note Co Identification card such as identification certificate or the like and card sheet and method of producing same
JPS558852A (en) * 1978-07-04 1980-01-22 Ebara Infilco Co Ltd Controlling organic carbon source injection ratio in biological denitrification

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222916A (en) * 1975-08-11 1977-02-21 American Bank Note Co Identification card such as identification certificate or the like and card sheet and method of producing same
JPS558852A (en) * 1978-07-04 1980-01-22 Ebara Infilco Co Ltd Controlling organic carbon source injection ratio in biological denitrification

Also Published As

Publication number Publication date
JPS60137494A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
TWI402221B (en) Nitration of ammonia - containing nitrogen water and its treatment
JP3691650B2 (en) Water treatment method and control device
JP2017006894A (en) Method for controlling the amount of aeration in activated sludge
JP5791763B2 (en) Control device for biological water treatment equipment
JP4008694B2 (en) Sewage treatment plant water quality controller
JP2006315004A (en) Water quality control unit for sewage disposal plant
JP4183844B2 (en) Control device for biological water treatment equipment
JPH0476759B2 (en)
JPS61249597A (en) Method for controlling methanol injection in biological denitrification process
JPH0133236B2 (en)
JPH0362480B2 (en)
JP3677811B2 (en) Biological denitrification method
JPH08224594A (en) Biological nitrification and denitrification device
JP3279008B2 (en) Control method of intermittent aeration type activated sludge method
JP2002307094A (en) Sewage treatment system
JPH11253990A (en) Treatment of nitrogen-containing waste water
JPS6320033A (en) Oxidation and reduction treatment device
JP4451422B2 (en) Control device for biological water treatment equipment
JPS58124596A (en) Apparatus for controlling active sludge process
JP3260575B2 (en) Control method of intermittent aeration type activated sludge method
JP3260554B2 (en) How to control the sewage treatment process
JPH0137993B2 (en)
JP4037491B2 (en) Nitrogen removal method and apparatus
JP5826328B2 (en) Control device for biological water treatment equipment
JP2003053388A (en) Control system and control method for biologically nitrogen removing facility