JPS6083301A - Thin film resistor - Google Patents

Thin film resistor

Info

Publication number
JPS6083301A
JPS6083301A JP58190914A JP19091483A JPS6083301A JP S6083301 A JPS6083301 A JP S6083301A JP 58190914 A JP58190914 A JP 58190914A JP 19091483 A JP19091483 A JP 19091483A JP S6083301 A JPS6083301 A JP S6083301A
Authority
JP
Japan
Prior art keywords
silicon
thin film
atoms
film resistor
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190914A
Other languages
Japanese (ja)
Inventor
坂下 光則
武広 蛸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP58190914A priority Critical patent/JPS6083301A/en
Publication of JPS6083301A publication Critical patent/JPS6083301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、例えはサーマルヘッドの発熱抵抗体などに用
いられる薄膜抵抗体に係り、特にクロム−酸化ケイ素系
あるいはクロム−ケイ素−酸化ケイ素系(以下、これら
を総称してクロム−ケイ素−酸素系という)の薄膜抵抗
体に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film resistor used, for example, as a heating resistor of a thermal head, and particularly relates to a chromium-silicon oxide type or chromium-silicon-silicon oxide type (hereinafter collectively referred to as these). Chromium-Silicon-Oxygen thin film resistor.

近年、電子i術の飛躍的な発展に伴ない、回路素子に対
する電気的特性の要求も次第に厳しいものとなり、素子
自体の高性能化が必要となってきた。
In recent years, with the rapid development of electronic technology, the demands on the electrical characteristics of circuit elements have become increasingly strict, and it has become necessary to improve the performance of the elements themselves.

従来、サーマルヘッド用の発熱抵抗体として、窒化タン
タルやタンタル−シリコンなどが用いられていた。とこ
ろがこれらの材付は発熱を繰り返すことKより酸化が進
行し、それの抵抗値が大きく変化して、印字品質の低下
をきたすなどの欠点があった。
Conventionally, tantalum nitride, tantalum-silicon, and the like have been used as heating resistors for thermal heads. However, these materials have disadvantages in that oxidation progresses due to repeated heat generation, resulting in a large change in resistance value and deterioration of printing quality.

この欠点な解消するため、クロム−ケイMCr、1゜素
糸の薄膜抵抗体′が提案され、高温下での特性の安定化
をある程度図ることができたが\高温下で長時間連続し
て放置しておくと抵抗値の変化が現われ、十分に満足で
きるものではない。
In order to overcome this drawback, a chromium-silicon MCr, 1° thread thin film resistor was proposed, and although it was able to stabilize the characteristics to some extent under high temperatures, If left as is, a change in resistance value will appear, which is not completely satisfactory.

本発明者らはクロム−ケイ素−なf素系の薄膜抵抗体の
高温下における抵抗値変化について種々核討した結巣、
品記組成中のケイ素含有率と1% ’IIA千での抵抗
値変化との間に相関関係があることす艶出した。
The present inventors conducted various investigations into the resistance value change of chromium-silicon f-based thin film resistors at high temperatures.
It was revealed that there is a correlation between the silicon content in the product composition and the change in resistance at 1% IIA.

すなわち第1図は、クロム−ケイ素−酸素系の薄膜抵抗
体中のケイ素含有率と、高i%(xzs℃)下における
抵抗値変化率(ΔR/R)とのUtJ係を示す特性図で
ある。各試料は、ターゲットとじて1271ψのシリコ
ン上にクロムプレートを載置した招合ターゲット構造と
し、RFマグネトロンスパッタ装置を用いて成膜した。
In other words, Figure 1 is a characteristic diagram showing the UtJ relationship between the silicon content in a chromium-silicon-oxygen thin film resistor and the rate of change in resistance value (ΔR/R) under high i% (xzs°C). be. Each sample had a combined target structure in which a chromium plate was placed on silicon having a diameter of 1271 ψ as a target, and a film was formed using an RF magnetron sputtering device.

成膜される抵抗体の組成比(ケイ素含有率)は、クロム
プレートのターゲット七における面積占有率を変えるこ
とによってそれぞれ調整した。
The composition ratio (silicon content) of the resistor to be formed was adjusted by changing the area occupation rate of the chromium plate on target 7.

速U5o17分でスパッタリングを行ない各試料を作成
した。
Each sample was prepared by sputtering at a speed of U5o for 17 minutes.

第1図において曲線Aはケイ素含イi率が68原子チ2
曲線Bは同含有率が66原子チ1曲線Cは同含有率が4
5原子チ1曲線りは同含有率が30原子−の抵抗体であ
る。この図から明らかなように1従来提案されたものの
ようにケイ素含有率が高いとく曲線A、B)、高温下で
長時間連続して放置しておくと、抵抗値変化率が次第に
大きくなり、ケイ素含有率が68原子優のもの(曲線A
)では、125℃で1000詩間放寵しておくと、抵抗
値変化率が0.8チに達してしよう。これにλjして抵
抗体中のケイ界含有率が45原子−以下のもの(曲線C
,D)は高温試験においてもj〔4抗値変化率が極めて
小さく、り′イ素含有率45原千チのもの(曲線C)で
は、125℃で1000時間放置しても抵抗値変化率は
約0.12%程度で、11す述のケイ素含有率68原子
チのものの約6分の1以下である。また、ケイ未含有率
30原子優のもの(曲線D)では、高温下で長1(々間
連糾してjj、’i i?’t しても抵抗値変化率は
ほぼ零であり、抵抗値の変化がほとんどない。
In Figure 1, curve A shows a silicon content of 68 atoms.
Curve B has the same content of 66 atoms. Curve C has the same content of 4 atoms.
A curve of 5 atoms and 1 curve is a resistor with a content of 30 atoms. As is clear from this figure, when curves A and B have a high silicon content like those previously proposed, if they are left continuously at high temperatures for a long time, the rate of change in resistance gradually increases. Silicon content is over 68 atoms (curve A
) Then, if you leave it at 125℃ for 1000 cycles, the rate of change in resistance value will reach 0.8cm. Adding λj to this, the silicon field content in the resistor is 45 atoms or less (curve C
, D) has an extremely small resistance value change rate even in high-temperature tests, and the resistance value change rate is extremely small even when left at 125°C for 1000 hours in the case of 45% hydrogen (curve C). is about 0.12%, which is about one-sixth or less of the silicon content of 68 atoms mentioned in item 11. In addition, for the silicon-free material (curve D) with a silicon content of over 30 atoms, the rate of change in resistance value is almost zero even if it is repeatedly heated for a long time at high temperature. There is almost no change in resistance value.

これらの結果から明らかなように、クロノ・−ケイ素−
G(米系の薄枦抵抗14・中にお&1z)ケイ素含有率
を約45原子−以下に規制することにより、X’jl温
下で長時間放置しても抵抗値変化率の小さい、性能的に
交電した薄膜抵抗体が得られる〇前述のように薄膜抵抗
体中のケイ素含;a率が少くなると抵抗値変化率は小さ
くへる傾向にあるが、ケイ素含有棒くが余り少なくムリ
d・1きると、エツチング剤(硝酸とフッ化水素)によ
るパターンニングができ難くなり、加工性ならびに加工
精度に問題がある。従ってケイ素含有率の下限は2o原
子チ程度にとどめておく方がよく、特にケイ素含有率が
約20〜40原子俤のものは、抵Jノ’C値変化率が極
めて小さいとともにエツチング加工が支障なく行なわh
ろ。
As is clear from these results, chrono-silicon-
G (US-based thin resistor 14, medium & 1z) By regulating the silicon content to about 45 atoms or less, the performance has a small resistance change rate even when left at X'jl temperature for a long time. As mentioned above, as the silicon content in the thin film resistor decreases, the rate of change in resistance value tends to decrease. When d.1 is exceeded, patterning using an etching agent (nitric acid and hydrogen fluoride) becomes difficult, resulting in problems in workability and processing accuracy. Therefore, it is better to keep the lower limit of the silicon content at about 20 atoms, and in particular, when the silicon content is about 20 to 40 atoms, the rate of change in resistance J/C value is extremely small and etching becomes difficult. Let's do it without hesitation
reactor.

なお、ケイ二F含有率が約45原子−以下のクロム−ケ
イ素−酸素系抵抗体を作成する際の酸素分圧について検
討した結果、約1×10〜2×10’rorrが好適で
あることが分かった、酸素分圧が大きくなり過きると抵
抗温度係数T、 O,R,がマイナス側へ太きく Qす
、ef現性もノと(くなろので、@素分子Eは約2 X
 10 T Or rゼ、(度にとどめておいた力が良
い。
In addition, as a result of studying the oxygen partial pressure when creating a chromium-silicon-oxygen-based resistor with a SiF content of about 45 atoms or less, it was found that about 1 x 10 to 2 x 10'rorr is suitable. It was found that when the partial pressure of oxygen becomes too large, the temperature coefficient of resistance T, O, R, increases to the negative side.
10 T or rze, (the power that is kept at a certain degree is good.

また本発明に係るクロノ・−ケイ素−酸素系抵抗体を形
1&シたのち、約250〜350℃の温度範囲で熱処理
すると、さらに性能的に安;jτした抵抗体が得られる
。すなわち、前述の湿度範囲で熱処理すれば、ケイ素含
有率が上限値(約45原子チ)付近のものでも高1fa
下にお(−)ろ411看ノ゛L値変化率を・さらに抑え
ることがでざる。なお、Elk処(jl!温度が250
℃より低いと十分LC〆2〜処1・効果が得らJド4′
、一方、熱処理温度が350℃を超えるとクロノ・とケ
イ素の結晶化が始まり、性能の安定化に悲影臀をおよぼ
すため好ましくない。
Further, when the chrono-silicon-oxygen resistor according to the present invention is heat-treated in a temperature range of about 250 to 350° C. after being formed into a chrono-silicon-oxygen resistor, a resistor with even lower performance can be obtained. In other words, if the heat treatment is performed within the humidity range mentioned above, even silicon content near the upper limit (approximately 45 atoms) can be heated to a high 1fa.
It is not possible to further suppress the rate of change in the L value by moving it downward (-). In addition, Elk place (jl! temperature is 250
If it is lower than ℃, it will be sufficient to obtain the effect of LC〆〆2~〆1・J〆〆4'
On the other hand, if the heat treatment temperature exceeds 350°C, crystallization of chrono-silicon will begin, which will have a negative impact on stabilizing performance, which is not preferable.

さらにまた、薄III″1.抵抗体を形成する1ル板を
予め例えは約250〜350℃に加熱しておき、そθ)
高温の基板上に4】(抗体を形Φ1し、しかるのちOI
J述のように約250〜350℃で熱処理する方法を採
用すJlま、その熱処理時間によりJl、抗淘曳係汀f
を約30〜50ppm/℃の範囲でバ・j加することが
できるから、多少の抵抗nl漬度係数の一19Ji整か
可0(テである。
Furthermore, a thin III''1.
Form the antibody Φ1 on a high-temperature substrate, then OI
As mentioned above, a method of heat treatment at approximately 250 to 350°C is used, and depending on the heat treatment time, the
can be added in the range of about 30 to 50 ppm/°C, so the resistance nl immersion coefficient can be adjusted to some extent or 0 (te).

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

127 RNψのシリコンターゲット上にクロス、プレ
ートを載置した拶合ターゲット購危を右するRFマグネ
トロンスパッタ装置17rを用い、99.5 il j
4”<チのアルミナを含有して300℃に加熱されたJ
、1板1上にケイ素とクロムをスパッタリングず2)。
Using an RF magnetron sputtering device 17r with a cross and a plate placed on a silicon target of 127 RNψ, 99.5 il j
J heated to 300℃ containing alumina of 4"
, without sputtering silicon and chromium on one plate 1).

哉1j漠時の酸素分圧は5.3 X 10 TOrrで
、これ’1’orrにして1.惰1.+(l波tIL力
250 W s m膀速度50λ/分でスパッタリング
を行ない、ケイ素含有率が約40原子チのクロムーク゛
イ禦−酸素系の薄膜抵抗体を形成する。
The oxygen partial pressure at the time of desertion was 5.3 x 10 TOrr, which is 1. Ina 1. Sputtering is performed at a +(l-wave tIL power of 250 W sm and a speed of 50 λ/min) to form a chrome-oxide-oxygen thin film resistor having a silicon content of approximately 40 atoms.

次に硝Qとフッ化水素とからなるエツチング剤を用いて
t、?1紀薄膜抵抗体を所定の形状にパターンニングし
て、ドツト伏の抵抗発熱部2cL〜2グを形成する。し
かるのち常法に従って各抵抗発熱部2a〜22に対応し
た個別T[を極3α〜32と共通電極4を蒸;A1法も
しくはスパッタリング法で形成し、その後大気中におい
て300℃で2時間熱処理してサーマルヘッドどする。
Next, using an etching agent consisting of nitrogen Q and hydrogen fluoride, t,? The primary thin film resistor is patterned into a predetermined shape to form dotted resistance heating parts 2cL to 2g. Thereafter, individual T [corresponding to each of the resistor heating parts 2a to 22] are formed using the vaporization method or the sputtering method to form the electrodes 3α to 32 and the common electrode 4 according to a conventional method, and then heat treated in the atmosphere at 300° C. for 2 hours. and remove the thermal head.

本発明は前述のようなtill戊になっており、高+i
!下において長時11j」放Hしても抵抗値便化率の小
さい、性6):の安定しプこ薄膜抵抗体を提供すること
ができる。
The present invention has a till structure as described above, and has a high + i
! It is possible to provide a stable thin film resistor with a low resistance value conversion rate even if it is exposed to heat for a long time under the condition 6).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はケイ素含有率と抵抗値変化率との関係を示す特
性図、第2図は本4e明の実施例に係ろサーマルヘッド
の平面図である。 1・・・・・・基板、2a〜27・・・・・・1.lL
抗介熟tり円。 手続補正書(自発) 昭和59年 6月/、、3日 特許庁長官 若 杉 和 夫 殿 ■ 事件の表示 特願昭58−190914号 2 発明の名称 薄膜抵抗体 3 補正をする者 事件との関係 出願人 住 所 東京都大田区雪谷大塚町1番7号名 称 (A
O9)アルプス電気株式会社代表者 片岡勝太部 4 代理人 住 所 〒105東京都港区西新橋1丁目6番13号6
 補正の内容 別紙記載の通り。 (1)明細書7ペ一ジ7〜14行を下記のように補正し
ます。 「次に電極膜を蒸着法もしくはスパッタリング法で形成
し、エツチング剤を用いて個別電極3a〜3gと共通電
極4を所定形状にパターニングした後、薄膜抵抗体をパ
ターニングし、ドツト状の抵抗発熱部28〜2gを形成
する。その後大気中において300℃で2時間熱処理し
てサーマルヘッドとする。」
FIG. 1 is a characteristic diagram showing the relationship between silicon content and resistance change rate, and FIG. 2 is a plan view of a thermal head according to an embodiment of the present invention. 1...Substrate, 2a to 27...1. lL
Anti-care t-trien. Procedural amendment (voluntary) June 3, 1980 Kazuo Wakasugi, Director General of the Patent Office ■ Indication of the case Patent Application No. 1989-190914 2 Name of the invention Thin film resistor 3 Person making the amendment Related Applicant Address 1-7 Yukitani Otsuka-cho, Ota-ku, Tokyo Name (A
O9) Alps Electric Co., Ltd. Representative Kataoka Kataoka 4 Agent address 1-6-13-6 Nishi-Shinbashi, Minato-ku, Tokyo 105
The details of the amendment are as stated in the attached sheet. (1) Please correct page 7, lines 7 to 14 of the detailed statement as follows. ``Next, an electrode film is formed by vapor deposition or sputtering, and after patterning the individual electrodes 3a to 3g and the common electrode 4 into a predetermined shape using an etching agent, the thin film resistor is patterned to form a dot-shaped resistance heating section. 28 to 2 g is formed.Then, heat treatment is performed at 300° C. for 2 hours in the atmosphere to form a thermal head.”

Claims (2)

【特許請求の範囲】[Claims] (1) クロム−ケイ素−酸素系の薄膜抵抗体((おい
て、前記ケイ素の含有率が約45原子−以下であること
を特徴とする薄膜抵抗体。
(1) A chromium-silicon-oxygen-based thin film resistor, characterized in that the silicon content is about 45 atoms or less.
(2) 特許請求の範囲第(1)項記載において、前記
ケイ素の含有率が約26〜40原子チの範囲に規制され
ていることを特徴とする薄膜抵抗体。
(2) A thin film resistor according to claim (1), wherein the silicon content is regulated to a range of about 26 to 40 atoms.
JP58190914A 1983-10-14 1983-10-14 Thin film resistor Pending JPS6083301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190914A JPS6083301A (en) 1983-10-14 1983-10-14 Thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190914A JPS6083301A (en) 1983-10-14 1983-10-14 Thin film resistor

Publications (1)

Publication Number Publication Date
JPS6083301A true JPS6083301A (en) 1985-05-11

Family

ID=16265805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190914A Pending JPS6083301A (en) 1983-10-14 1983-10-14 Thin film resistor

Country Status (1)

Country Link
JP (1) JPS6083301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256247A (en) * 1990-11-21 1993-10-26 Hitachi, Ltd. Liquid etchant composition for thin film resistor element
US5375042A (en) * 1990-11-30 1994-12-20 Hitachi, Ltd. Semiconductor package employing substrate assembly having a pair of thin film circuits disposed one on each of oppositely facing surfaces of a thick film circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882770A (en) * 1981-11-13 1983-05-18 Hitachi Ltd Heat-sensitive recording head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882770A (en) * 1981-11-13 1983-05-18 Hitachi Ltd Heat-sensitive recording head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256247A (en) * 1990-11-21 1993-10-26 Hitachi, Ltd. Liquid etchant composition for thin film resistor element
US5375042A (en) * 1990-11-30 1994-12-20 Hitachi, Ltd. Semiconductor package employing substrate assembly having a pair of thin film circuits disposed one on each of oppositely facing surfaces of a thick film circuit

Similar Documents

Publication Publication Date Title
KR830001873B1 (en) Resistor composition
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
US5281845A (en) PTCR device
JPS6083301A (en) Thin film resistor
EP0079586A1 (en) Resistor
US5316973A (en) Method of making semiconducting ferroelectric PTCR devices
Hauser Crucial role of residual gases in amorphization of crystalline films
JPH04370901A (en) Electric resistance material
JPH04162206A (en) Thin-film magnetic head with improved coil conductor layer
JPS625601A (en) Thin film resistor
JP2843982B2 (en) Thermal head
JPS62202753A (en) Thin film type thermal head
JPH0761870B2 (en) Method for manufacturing high temperature superconducting thin film
JPH0196380A (en) Formation of protective film
JPS6236622B2 (en)
JPS6196704A (en) Manufacture of resistor
JPS6034241B2 (en) Manufacturing method of thin film resistor
SU911630A1 (en) Resistive material
SU546021A1 (en) Material for making thin film resistors
JPH0287501A (en) Electric resistance material
JPS558036A (en) Electrode formation
JPH05182808A (en) Fixed film resistor
JPS6358901A (en) Resistor material
JPS6024561B2 (en) resistive film thin
JPS625602A (en) Thin film resistor