JPS58135688A - Manufacture of magneto-resistance element - Google Patents

Manufacture of magneto-resistance element

Info

Publication number
JPS58135688A
JPS58135688A JP57018593A JP1859382A JPS58135688A JP S58135688 A JPS58135688 A JP S58135688A JP 57018593 A JP57018593 A JP 57018593A JP 1859382 A JP1859382 A JP 1859382A JP S58135688 A JPS58135688 A JP S58135688A
Authority
JP
Japan
Prior art keywords
resistance
resistance value
heat treatment
ferromagnetic
resistor pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57018593A
Other languages
Japanese (ja)
Inventor
Yoshi Yoshino
吉野 好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP57018593A priority Critical patent/JPS58135688A/en
Publication of JPS58135688A publication Critical patent/JPS58135688A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To reduce the specific resistance and the dispersion of resistance values and thus increase the magneto-resistance effect, by forming a ferromagnetic alloy thin film on a substrate under a specific condition and heat-treating it. CONSTITUTION:The ferromagnetic material having composition of Ni 70wt% and Co 30wt% is evaporated in the thickness of 1,000Angstrom on the Si oxide film substrate 11, and thus a resistor pattern 12 due to a ferromagnetic thin film is formed. To the resistor pattern 12 due to a ferromagnetic thin film is formed. To the resistor pattern 12, electrode parts 13 and 14 are formed by a conductive material evaporation, etc. using a mask pattern, and a heat treatment is performed at 450 deg.C for 30min. The heat treatment is performed in the atmosphere of inert gas or reduction gas. A protection film 15 is formed on the resistor pattern 12 and the electrode parts 13 and 14, and accordingly the magneto-resistance element is obtained. When the content of Ni becomes larger than 91wt% and smaller than 38wt%, and then of Co becomes larger than 62wt% and smaller than 9wt%, the rate of resistance value changes suddenly decreases. When the alloy film thickness becomes thinner 400Angstrom and thicker than 1,200Angstrom , the output decreases, and therefore the significant difference of the dispersion of the rate of resistance value changes (output) and resistance values is not found within heat treatment temperatures 310-550 deg.C.

Description

【発明の詳細な説明】 この発明は、安定した磁気抵抗特性を有するようにし九
磁気抵抗素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetoresistive element having stable magnetoresistive characteristics.

従来の磁気抵抗素子は、基板に対して250℃以下の基
板加熱を行い、この加熱基板に対してニッケル(Ni)
−コバルト(Co)合金を適当な厚さで蒸着することに
よって構成していた。この場合、作業の容易さ、強度等
の点から、上記合金膜の厚さは2000 X以上であり
、この合金膜の蒸着俵の熱処理は行なわない。
In conventional magnetoresistive elements, the substrate is heated to a temperature of 250°C or less, and nickel (Ni) is applied to the heated substrate.
- It was constructed by depositing a cobalt (Co) alloy to a suitable thickness. In this case, from the viewpoint of ease of operation, strength, etc., the thickness of the alloy film is 2000× or more, and the deposited bale of this alloy film is not heat-treated.

しかし、このような手段で構成された磁気抵抗素子は、
真空装置の構造から蒸着時の温度が250℃以下と低い
ものであシ、シたがって形成され丸蓋着合金膜に蒸着時
の欠陥が残シ、比抵抗が大きくなるばかシか、抵抗値の
ばらつきも大きくなる傾向にある。そして、磁気抵抗素
子として最屯重要な磁気抵抗効果も小さなものであった
However, the magnetoresistive element constructed by such means is
Due to the structure of the vacuum equipment, the temperature during evaporation is low at 250℃ or less, so defects during evaporation may remain on the round lid-coated alloy film that is formed, increasing the resistivity or decreasing the resistance value. There is also a tendency for the dispersion of Furthermore, the magnetoresistive effect, which is most important for magnetoresistive elements, was also small.

この発明は上記のような点に鑑みなされたもので、特に
比抵抗が小さく且つ抵抗値のばらつきも小さくして磁気
抵抗効果を大きくして、各種磁気センチとして効果的に
使用し得るようにする磁気抵抗素子の製造方法を提供し
ようとするもので、ニッケル91〜38重量%、プパル
ト9〜62重量嗟からなる強磁性合金薄膜を基板上に4
00X〜1200芙の厚さで形成し、これを310〜5
50℃の温度で熱処理するようにし九ものである。
This invention was made in view of the above-mentioned points, and the purpose is to increase the magnetoresistive effect by particularly reducing specific resistance and variation in resistance value, so that it can be effectively used as various magnetic centimeters. The purpose is to provide a method for manufacturing a magnetoresistive element, in which a ferromagnetic alloy thin film consisting of 91 to 38% by weight of nickel and 9 to 62% by weight of Pupart is deposited on a substrate.
Formed with a thickness of 00X to 1200mm, and then
The material is heat treated at a temperature of 50°C.

以下この発明の一実施例を説明する。iず、第1図で示
すように1シリコン酸化膜基板11上に、ニッケル(N
i)70重量%、コバルト(Co)30重量%の組成を
有する強磁性体材料を1OOOXの厚さで蒸着し、強磁
性体薄膜による抵抗体/f量ターン2を形成する。そし
て、この抵抗体・量ターン12に対しては、マスクパタ
ーンを用いた導電材料の蒸着等によって電極部13.1
4を形成し、これを450℃で30分間熱処理を行なう
、この場合、この熱処理は不活性がスあるいは還元性ガ
スの雰囲気中Cヤ〜■なう。そして、抵抗体パターン1
2、電極部13゜14部上に保纒膜15を形成し、磁気
抵抗素子が完成される。
An embodiment of this invention will be described below. First, as shown in FIG. 1, nickel (N
i) A ferromagnetic material having a composition of 70% by weight and 30% by weight of cobalt (Co) is deposited to a thickness of 1OOOX to form a resistor/f turn 2 made of a ferromagnetic thin film. Then, the electrode portion 13.1 is formed by vapor deposition of a conductive material using a mask pattern for the resistor/quantity turn 12.
4 is formed and then heat treated at 450 DEG C. for 30 minutes. In this case, the heat treatment is carried out in an atmosphere of inert gas or reducing gas. And resistor pattern 1
2. A protective film 15 is formed on the electrode portions 13 and 14 to complete the magnetoresistive element.

このようにして製造され九磁気抵抗素子と、従来の製造
方法によシ製造された磁気抵抗素子の特性を対比してみ
ると、第1表のようになる0第1表 すなわち、上記実施例に示した方法で磁気抵抗素子を製
造することによって比抵抗は約1/2、抵抗値のばらつ
きはIA以下となり、さらに抵抗値の変化率すなわち出
力は25−以上も大となり、非常に良好な特性の磁気抵
抗素子を製造できることが確認される。
Comparing the characteristics of the magnetoresistive element manufactured in this manner and the magnetoresistive element manufactured by the conventional manufacturing method, the results are as shown in Table 1. By manufacturing a magnetoresistive element using the method shown in Figure 2, the specific resistance becomes approximately 1/2, the variation in resistance value becomes less than IA, and the rate of change in resistance value, that is, the output, increases by more than 25 -, which is a very good result. It is confirmed that it is possible to manufacture a magnetoresistive element with these characteristics.

ここで、抵抗体・やターン12を構成する強磁性材とな
る合金組成について実験的に示すと、第2図に示すよう
になる。これは、ニッケル(Nt)とコパル)(Co)
の合金組成と抵抗値変化率(出力)との関係を示したも
ので、ニッケルが91重量%より大きく、38重量%よ
り小さくなシ、コバルトが62重量−より大きく、9重
量%よシ小さくなると抵抗値変化率が急激に小さくなる
ことが確認される。
Here, the alloy composition of the ferromagnetic material constituting the resistor/turn 12 is experimentally shown as shown in FIG. This is nickel (Nt) and copal (Co)
This shows the relationship between alloy composition and resistance value change rate (output), where nickel is greater than 91% by weight and less than 38% by weight, and cobalt is greater than 62% by weight and less than 9% by weight. It is confirmed that the rate of change in resistance value decreases rapidly.

を九、第3図は抵抗体・苛ターン120合金薄膜の膜厚
と、膜厚10001のときの抵抗値変化    率(出
力)(R100O)を基準とし九ときの抵    (抗
値変化率(出力)凡の百分率を示したもので合金膜厚が
400Xよシ薄くまた1200Xより暉くなると、出力
は小さくなり、400X〜1200Xの膜厚で効果的な
抵抗値変化率(出力)が得られる。
Figure 3 shows the resistance value change rate (output) when the film thickness is 10001 and the resistance value change rate (resistance value change rate (output)) when the film thickness is 10001. ) When the alloy film thickness is thinner than 400X or thicker than 1200X, the output becomes small, and an effective resistance change rate (output) can be obtained with a film thickness of 400X to 1200X.

さらに第4図は抵抗体・々ターフ12の形成後の熱処理
温度と、処理温度450℃の抵抗値変化率(出力)、R
450を基準としたときの抵抗値変化率(出力)Rの百
分率を示したもので、熱処理が250℃より低くまた5
50℃より高いと、出力は急激に小さくなる。また、3
00℃より低いと、抵抗値のばらつきは300℃〜55
0℃の場合に比較して2.5倍以上大きくなることが確
認された。すなわち、熱処理温度310℃〜550℃の
間で、抵抗値変化率(出力)、および抵抗値のばらつき
の有意差はみられない。
Furthermore, FIG. 4 shows the heat treatment temperature after forming the resistor/turf 12, the resistance value change rate (output) at the treatment temperature of 450°C, and the R
It shows the percentage of resistance value change rate (output) R when 450 is the standard.
When the temperature is higher than 50°C, the output decreases rapidly. Also, 3
Below 00℃, the variation in resistance value is between 300℃ and 55℃.
It was confirmed that the temperature was 2.5 times larger than that at 0°C. That is, no significant difference in the rate of change in resistance value (output) or variation in resistance value is observed between the heat treatment temperatures of 310°C to 550°C.

次に、上記第2図乃至第4図に示した実験結果に対応し
てWN2の実施例を説明する。すなわち、この実施例で
はガラス基板上にニッケル(Ni)45.重iチ、コバ
ルト(Co ) 55 m11%の組成を有する強憔性
材料を、600Xの厚さで蒸着し、抵抗体・譬ターンを
形成する。そして、この抵抗体・量ターンに対して前実
施例と同様に電極部を形成し、350℃で1時間熱処理
を行なって、磁気抵抗素子を製造する。
Next, an example of WN2 will be described in accordance with the experimental results shown in FIGS. 2 to 4 above. That is, in this example, nickel (Ni) 45. A strong abrasive material having a composition of 11% and 55% cobalt (Co) is deposited to a thickness of 600X to form a resistor/transformer. Then, an electrode portion is formed on this resistor/metal turn in the same manner as in the previous embodiment, and heat treatment is performed at 350° C. for 1 hour to produce a magnetoresistive element.

このようにして製造された磁気抵抗素子について、その
抵抗値変化率(出力)を測定してみたところ、従来のも
のに比較して15チ以上も大となり、また抵抗値のばら
つきもIA以下となり磁気抵抗素子としての特性は大幅
に向上されていた。
When we measured the resistance change rate (output) of the magnetoresistive element manufactured in this way, it was more than 15 inches larger than the conventional one, and the variation in resistance was less than IA. The characteristics as a magnetoresistive element were significantly improved.

以上のようにこの発明製造方法によって磁気抵抗素子を
作成すれば、比抵抗を充分に小さくできるばかりか、抵
抗値変化率(出力)も15チ以上大きくなり、且つ抵抗
値のばらつきもIA以下の状態に改良された。したがっ
て、この磁気抵抗素子によれば各種磁気上ンサとして効
果的に利用でき、自動制御用測定手段として効果的に応
用できるようになる。
As described above, by manufacturing a magnetoresistive element using the manufacturing method of the present invention, not only can the resistivity be sufficiently reduced, but the rate of change in resistance value (output) can also be increased by 15 inches or more, and the variation in resistance value can be reduced to less than IA. The condition has been improved. Therefore, this magnetoresistive element can be effectively used as various magnetic sensors, and can be effectively applied as a measuring means for automatic control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明により製造される磁気抵抗素子の構造
を示す図、第2図乃至第4図はそれぞれ合金組成、合金
膜厚、熱処理温度と抵抗値変化率(出力)との関係を示
す曲線図である。 11・・・基板、12・・・抵抗体ノ臂ターン、13゜
14・・・電極部、15・・・保獲膜。
Fig. 1 shows the structure of a magnetoresistive element manufactured according to the present invention, and Figs. 2 to 4 show the relationship between alloy composition, alloy film thickness, heat treatment temperature, and resistance value change rate (output), respectively. It is a curve diagram. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Resistor arm turn, 13 degrees 14... Electrode part, 15... Capture membrane.

Claims (1)

【特許請求の範囲】[Claims] 基板に対してニッケル91〜38重量%、コバルト9〜
62重量−からなる強磁性合金薄膜を、4001−12
001(11さで形成した後、これを不活性ガスあるい
は還元性ガスの雰囲気中で310℃〜550Cの温度範
囲で熱処理するようにし九ことを特命とする磁気抵抗素
子の製造方法。
Nickel 91-38% by weight, cobalt 9-9% by weight based on the substrate
A ferromagnetic alloy thin film consisting of 4001-12 weight
001 (11) A method for producing a magnetoresistive element having the special mission of heat-treating the element in a temperature range of 310° C. to 550° C. in an atmosphere of an inert gas or a reducing gas.
JP57018593A 1982-02-08 1982-02-08 Manufacture of magneto-resistance element Pending JPS58135688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57018593A JPS58135688A (en) 1982-02-08 1982-02-08 Manufacture of magneto-resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018593A JPS58135688A (en) 1982-02-08 1982-02-08 Manufacture of magneto-resistance element

Publications (1)

Publication Number Publication Date
JPS58135688A true JPS58135688A (en) 1983-08-12

Family

ID=11975930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018593A Pending JPS58135688A (en) 1982-02-08 1982-02-08 Manufacture of magneto-resistance element

Country Status (1)

Country Link
JP (1) JPS58135688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927587A (en) * 1982-08-05 1984-02-14 Akai Electric Co Ltd Manufacture of thin magnetic film for magneto-resistance element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132592A (en) * 1973-04-23 1974-12-19
JPS54114427A (en) * 1978-02-27 1979-09-06 Sony Corp Magnetoelectric conversion element alloy and praration thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132592A (en) * 1973-04-23 1974-12-19
JPS54114427A (en) * 1978-02-27 1979-09-06 Sony Corp Magnetoelectric conversion element alloy and praration thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927587A (en) * 1982-08-05 1984-02-14 Akai Electric Co Ltd Manufacture of thin magnetic film for magneto-resistance element

Similar Documents

Publication Publication Date Title
JPH0821482B2 (en) High stability laminated film resistor and manufacturing method thereof
KR830001873B1 (en) Resistor composition
CN105247630A (en) Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
JPS5955001A (en) Resistor
JP4380586B2 (en) Thin film resistor and manufacturing method thereof
JPS58135688A (en) Manufacture of magneto-resistance element
US4338145A (en) Chrome-tantalum alloy thin film resistor and method of producing the same
TWI525196B (en) Alloy thin film resistor
JPH01291401A (en) Thin film resistor and manufacture thereof
US3585073A (en) Electric film resistors
JPS63147305A (en) Metal thin-film resistor
US5288380A (en) Method for fabrication of thin-film bolometric material
JPS634322B2 (en)
JPH04370901A (en) Electric resistance material
Nahar et al. Electrical properties of RF sputtered NiCr thin film resistors with Cu contacts
JPH047561B2 (en)
JP4752075B2 (en) Resistor and its manufacturing method
JPH04162206A (en) Thin-film magnetic head with improved coil conductor layer
Jezierski et al. The electronic specific heats of ordered Pt3MnxCr1-x alloys
JPH09503627A (en) Electrical resistance structure
JPH0620803A (en) Thin film resistor and manufacture thereof
JPS6319588B2 (en)
JPS6034241B2 (en) Manufacturing method of thin film resistor
CN114807859A (en) Platinum film with high resistance temperature coefficient and preparation method thereof
DE3400272A1 (en) Electrical resistor and method for the fabrication thereof