JPS6083280A - Magnetic disk device - Google Patents

Magnetic disk device

Info

Publication number
JPS6083280A
JPS6083280A JP19218283A JP19218283A JPS6083280A JP S6083280 A JPS6083280 A JP S6083280A JP 19218283 A JP19218283 A JP 19218283A JP 19218283 A JP19218283 A JP 19218283A JP S6083280 A JPS6083280 A JP S6083280A
Authority
JP
Japan
Prior art keywords
magnetic disk
slider
negative pressure
magnetic
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19218283A
Other languages
Japanese (ja)
Inventor
Yoshimasa Miura
三浦 義正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19218283A priority Critical patent/JPS6083280A/en
Publication of JPS6083280A publication Critical patent/JPS6083280A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion

Abstract

PURPOSE:To hold a magnetic head and a magnetic disk at a proper interval with safety by fitting a piezoelectric element to the arm fitting part of a negative pressure type magnetic head slider, applying an exciting voltage to the piezoelectric element when the magnetic disk attains to a specific rotating speed and displacing the magnetic head slider, and loading the magnetic head onto the magnetic disk. CONSTITUTION:The support spring 7 of the negative pressure type slider 1 is fixed to an arm 8 and the piezoelectric element 9 is fitted between this spring 7 and arm 8. When the magnetic disk 6 stops, the negative pressure type slider 1 is installed at safe distance of 0.1-0.5mm. from a magnetic disk surface without contacting. When the magnetic disk 6 is driven and enters steady rotation, the piezoelectric element 9 is excited electrically in an impulsive or oscillatory state to cause displacement corresponding to the piezoelectric element, thereby moving the negative pressure type slider 1 within the distance Ho of selfloading.

Description

【発明の詳細な説明】 +al 発明の技術分野 本発明は磁気デ′イスク装置の改良に関し、特に、磁気
ディスク上に負圧型磁気ヘノ1′スライダをローデング
させるだめの新しい構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to improvements in magnetic disk drives, and more particularly to a new structure for loading a negative pressure type magnetic helenoid 1' slider onto a magnetic disk.

(bl 技術の背景 最近、磁気ディスクはまずまず高密度化されており、こ
のような背景からも、正確で安定な磁気ヘントスライダ
のローデング方法が要望されている。
Background of the Technology In recent years, magnetic disks have become more densely packed, and against this background, there is a need for an accurate and stable method for loading magnetic hent sliders.

FCI 従来技術と問題点 従来、磁気ディスク上に磁気へソドスライダをローデン
グさせる方法については、1・−ジョンバ一方式や、ラ
ンプローデング方式など機械的に変位させる方法がある
が、最近ではコンスタント・スタート・ストップ(C3
S)方式が使われている。このC8S方式は機構的に簡
便になっている反面、磁気ディスク表面に潤118I処
理が必要であるとか、装置の停止時に磁気へシトスライ
ダがディスク表面に吸着するなど多くの問題がある。磁
気ディスク装置i働時の磁気ヘントスライダと磁気ディ
スクの間隙は、磁気ディスクの回転に伴って発生ずる気
流の浮揚力(空気ベアリング)と、磁気ヘントスライダ
を磁気ディスク表面に押しっ番ノる外力とが丁度示衡し
て一定に維持され、この状態で磁気ディスクへの情報の
記録及び再生が行われている。従って、磁気ヘントスラ
イダが異常な加振力を受けた場合にはこの間隙が変動し
、この時は信号振幅の変動をもたらすのみならず、著し
い場合は磁気ディスクと磁気ヘッドとが接触、即ぢヘッ
ドクラッシュ等を生じ致命的な障害となる場合がある。
FCI Conventional technology and problems Conventionally, there are methods for loading a magnetic slider onto a magnetic disk by mechanically displacing it, such as the one-way method and the ramp loading method, but recently, constant start methods have been used.・Stop (C3
S) method is used. Although the C8S system is mechanically simple, it has many problems, such as the need for wet 118I treatment on the magnetic disk surface and the fact that the magnetic slider sticks to the disk surface when the device is stopped. The gap between the magnetic hent slider and the magnetic disk during operation of the magnetic disk device is determined by the buoyancy force (air bearing) of the airflow generated as the magnetic disk rotates, and the external force that pushes the magnetic hent slider against the surface of the magnetic disk. are maintained at a constant level, and information is recorded and reproduced on the magnetic disk in this state. Therefore, when the magnetic hent slider receives an abnormal excitation force, this gap changes, and this not only causes a change in signal amplitude, but also, in severe cases, causes the magnetic disk and magnetic head to come into contact, causing immediate This may cause a head crash, resulting in a fatal failure.

この対策として空気ヘアリングの剛性を増すようにすれ
ば間隙変動は少なくなるが、この為には一般的に磁気へ
シトスライダを磁気ディスク表面に押しつりる力を大き
くする必要がある。しかし、このことは前記ローデング
方式においては磁気ヘントスライダをローデングした時
に磁気ヘッドスライダの動作姿勢に多少でも乱れがある
と、磁気へシトスライダの角部などが接触して磁気ディ
スクに損傷を与えるとか、cSs方式では磁気ディスク
の耐久性を著しく劣化させたり、甚だしい時は磁気ヘッ
ドが磁気ディスクに吸着してしまい、磁気ディスクの回
転を起動できなくなるなど問題が多い。
As a countermeasure to this problem, the gap fluctuation can be reduced by increasing the rigidity of the air hair ring, but this generally requires increasing the force with which the magnetic slider is pressed against the surface of the magnetic disk. However, in the above-mentioned loading method, if there is any disturbance in the operating posture of the magnetic head slider when loading the magnetic head slider, the corners of the magnetic head slider may come into contact and damage the magnetic disk. The cSs method has many problems, such as significantly deteriorating the durability of the magnetic disk, and in extreme cases, the magnetic head may stick to the magnetic disk, making it impossible to start the rotation of the magnetic disk.

以上の問題点の解決手段として、負圧力の利用により磁
気ヘントスライダをディスク表面に押しつける力を軽減
する、いわゆる負圧型スライダが提案されているが、C
3S方式を採る限りこのスライダによっても吸着時の問
題を完全に解決することは困ゲ1tである。
As a solution to the above problems, a so-called negative pressure slider has been proposed, which uses negative pressure to reduce the force pressing the magnetic hent slider against the disk surface.
As long as the 3S method is adopted, it is difficult to completely solve the problem of suction even with this slider.

(d) 発明の目的 本発明は、上記従来状況から負圧型スライダを対象にし
て磁気ヘッドと磁気ディスクとの間隙を適正、且つ安全
に維持できるようにした新しい磁気ディスク装置の提供
を目的とするものである。
(d) Purpose of the Invention The purpose of the present invention is to provide a new magnetic disk device that can appropriately and safely maintain the gap between the magnetic head and the magnetic disk for a negative pressure slider in view of the above-mentioned conventional situation. It is something.

(Q) 発明の構成 上記目的は本発明によれば、負圧型磁気へ7ドスライダ
のアーム取付は部に圧電素子を取付け、磁気ディスクが
所定の回転数に達した時に該圧電素子に単発、又は繰り
返しの振動を発生させる励振電圧を与えて磁気へ、トス
ライダを変位させ、磁気ディスク上にローデングさせる
ようにしたことを特徴とする磁気ディスク装置を提供す
ることで達成される。
(Q) Structure of the Invention According to the present invention, a piezoelectric element is attached to the arm of the negative pressure magnetic slider, and when the magnetic disk reaches a predetermined rotational speed, the piezoelectric element is This is achieved by providing a magnetic disk device characterized in that an excitation voltage that generates repeated vibrations is applied to magnetically displace a tosslider and load it onto a magnetic disk.

更に、本発明では負圧型磁気へシトスライダの支持バネ
の共振周波数と同一の電気周波数で圧電素子に単発、又
は繰り返しの励振電圧を与えて圧電素子に振動を発生さ
せることにより、より効率的に負圧型磁気ヘントスライ
ダに変位を与える構成を提案している。
Furthermore, in the present invention, by generating vibration in the piezoelectric element by applying a single or repeated excitation voltage to the piezoelectric element at the same electric frequency as the resonance frequency of the support spring of the negative pressure type magnetic hesito slider, negative pressure can be more efficiently achieved. We have proposed a configuration that applies displacement to a pressure-type magnetic hent slider.

([1発明の実施例 以下、発明の実施例についてB’(=細に説明する。([1 Examples of the invention Hereinafter, embodiments of the invention will be described in detail.

第1図は本発明に適用した負圧型磁気へシトスライダ(
以下負圧型スライダと略する)の斜視図である。負圧型
スライダの構造は、従来使用されている正圧型スライダ
の構造にさらにクロスレール4を設りたことに特徴があ
り、サイト“レール2及び3には従来同様に磁気ディス
ク上にこのスライダをローデン°グさせたとき、磁気デ
ィスクとこのスライダとの間に空気ベアリングが形成さ
れ浮揚力が19)J <が、凹部5には反対に両者の間
に吸引力負圧が働く。従来使用されているスラ・イダの
構造は、所期の間隙を保持するためには浮揚力に平衡す
る抑止力を外部から加えることが必要であり、この加圧
法はスライダの支持系にハネ力を与える等で行なってき
た。しかし本負圧型スライダ1は、前述の浮揚力と吸引
力を負圧型スライダ1月が有するため、このような外力
が無くても間隙を保持できる利点がある。
Figure 1 shows a negative pressure type magnetic slider (
FIG. 2 is a perspective view of a negative pressure slider (hereinafter abbreviated as a negative pressure slider). The structure of the negative pressure slider is characterized by the addition of a cross rail 4 to the structure of the conventionally used positive pressure slider, and this slider is placed on the magnetic disk at the site "rails 2 and 3" in the same way as before. When loaded, an air bearing is formed between the magnetic disk and this slider, creating a buoyancy force (19) J<, but in the concave portion 5, on the contrary, an attractive negative pressure acts between the two. In order to maintain the desired gap, it is necessary to apply a deterrent force from the outside that balances the buoyancy force, and this pressurization method applies a bouncing force to the slider support system. However, the present negative pressure slider 1 has the advantage of being able to maintain the gap even without such external force because the negative pressure slider 1 has the above-mentioned levitation force and suction force.

第2図に負圧型スライダの動作時における浮揚力と吸引
力の関係を示す。第2図(a)で1は負圧型スライダで
あり、6は磁気ディスクである。磁気ディスク6の回転
によって浮揚力Fpを生ずるが、前述の四部5の吸引力
Faの為この双方の力が作用しあい、丁度hoの空隙で
平衡が保たれ、負圧型スライダ1は磁気ディスク6に対
し安定に動作する。第2図(blは負圧型スライダ1の
長さ方向に対する浮揚力Fpと吸引力Faとの分布を各
々示している。また第3図は浮揚力Fp、吸引力Faと
、負圧型スライダと磁気ディスクの間隙との関係を示し
ている。第3図から判るように吸引力FaはI、+!、
 In力F pより癌かにロングレンジであり、このこ
とは最初磁気ディスクと離れた位置におかれた負圧型ス
ライダが、磁気ディスクが回転を始めると吸引力の為磁
気ディスクの方向に次第に接近し始め、それがhOの間
19になっ′C平f9jするという、いわゆるセルフロ
ーデングが可能であることを示している。今ごの負圧型
スライダを、ハネ力roの支jh系にて磁気ディスクの
表面にHo以下の距離で近接して配置して磁気ディスク
を回転すると、(イシ気デスクが回転し始めることによ
り、スライダに刻する吸引力が増大し、定常回転に近づ
くに従って吸引力がハネ力foに打t3勝ぢ、その結果
当該スライダは完全にセルフローデングすることが可能
になる。実際には、1g以上の力を発生させるためには
このHoは約100μm以下の間隙にする必要があるが
、実用」二はスライダの組立、加工公差によって負圧型
スライダを磁気デスクの上に接触することなくセルフI
コート′距離100.rfm以下に設定することは非常
に困難である。
FIG. 2 shows the relationship between buoyancy force and suction force during operation of the negative pressure slider. In FIG. 2(a), 1 is a negative pressure type slider, and 6 is a magnetic disk. The rotation of the magnetic disk 6 generates a levitation force Fp, but due to the above-mentioned attraction force Fa of the four parts 5, these two forces act on each other, and a balance is maintained in the gap ho, and the negative pressure slider 1 is forced to the magnetic disk 6. It operates stably. Figure 2 (bl shows the distribution of the levitation force Fp and attraction force Fa in the length direction of the negative pressure slider 1, respectively. Figure 3 shows the distribution of the levitation force Fp, attraction force Fa, and the magnetic force of the negative pressure slider 1. It shows the relationship with the gap between the discs.As can be seen from Figure 3, the suction force Fa is I, +!
The In force F has a much longer range than P, and this means that the negative pressure slider, which is initially placed at a distance from the magnetic disk, gradually approaches the magnetic disk due to the attractive force when the magnetic disk starts rotating. This shows that so-called self-loading is possible. When a modern negative pressure type slider is placed close to the surface of the magnetic disk at a distance of less than Ho using a support system with a spring force ro and the magnetic disk is rotated, (as the disk begins to rotate, The suction force applied to the slider increases, and as it approaches steady rotation, the suction force overcomes the spring force fo, and as a result, the slider becomes completely self-loading.Actually, more than 1 g In order to generate force, this Ho needs to be a gap of about 100 μm or less, but in practice, depending on the assembly and processing tolerances of the slider, the negative pressure slider can be self-conducted without touching the magnetic desk.
Court' distance 100. It is very difficult to set it below rfm.

そこで本発明では、磁気ディスクが停止している時には
、負圧型スライダを磁気ディスク面から0.1〜0.5
龍の距離に設定しておき、磁気ディスクの起動時におい
て負圧型スライダを変位さ−lるごとにより、セルフロ
ード距離Ho・以内にする為の機構を提案している。
Therefore, in the present invention, when the magnetic disk is stopped, the negative pressure slider is moved 0.1 to 0.5
A mechanism is proposed in which the self-loading distance is set at a distance of 100 mm, and the self-loading distance is reduced to within Ho.

第4図(a)はそのような機構を有する磁気ヘントスラ
イダの一例構造を示す。同図において負圧型スライダ1
の支持ハネ7はアーム8に固定されるが、本発明ではこ
のハネ7とアーム8との間に圧電素子9を取りイ・」り
ている。この圧電素子9は例えば積層型圧電セラミック
ス等があげられる。また磁気ディスク6が停止している
時には、負圧型スライダ1は、磁気ディスク面から間隙
が0.1〜0.5順の接触のおそれのない安全な距離に
設置されるようにしである。そして磁気ディスク6が起
動し定常回転に達した時、圧電素子9にパルス状又は振
動的な電気励振を与えることにより圧電素子に相応の変
位を生ぜしめ、負圧型スライダ1をセルZIコードの距
Fill Ll o以内に移動させるように構成してい
る。圧電素子9自体の変位置はせいぜい数μmから数十
μmであるが、支持ハネ7の先α111)に取りつりら
れた負圧型スライダ1のヘッドの部分では0.1〜0,
5龍に拡大して変位させることができ、実用」二有効な
変位である。又、支持ハネ7の共振周波数に合わせて圧
電素子9を駆動するようにすれば、小電力で支持ハネ7
により大きな変位を得ることができる。一旦セルフロー
ト”の距Fi1[’llo以内に移動した負圧型スライ
ダ1は、第4図(a+で示すようにハネ力foに抗して
、磁気ディスクの表面方向に吸引され、浮揚力と平衡し
て適正な間隙hoを維11i11シて動作する。これを
第4図(【))に示す。従って厳密にいえば、吸引力(
I’a)−ハネ力(fo)−浮揚力(1’p)の状態て
平i?j シていることになる。吸引力F aを数十g
、ハネ力roを1乃至28とずればFa>fOであり、
実用」二全く問題がない。以−にのような状態になると
、もはや圧電素子9を駆動する必要はない。圧電素子9
を駆動する時間は僅か数msから数十msであり、この
時間は磁気ディスク面から0.1〜0.5關の距離にあ
る負圧型スライダ1を、セルフロード間隙11o以内に
する迄の短い時間である。磁気ディスクの回転が停止す
ると吸引力はなくなり、ハネ力foによって負圧型スラ
イダ1は磁気ディスク面から離れる。
FIG. 4(a) shows an example structure of a magnetic hent slider having such a mechanism. In the figure, negative pressure slider 1
The support spring 7 is fixed to the arm 8, but in the present invention, a piezoelectric element 9 is disposed between the support spring 7 and the arm 8. This piezoelectric element 9 may be, for example, a laminated piezoelectric ceramic. Further, when the magnetic disk 6 is at rest, the negative pressure slider 1 is installed at a safe distance from the magnetic disk surface with a gap of 0.1 to 0.5 without fear of contact. When the magnetic disk 6 starts and reaches steady rotation, a pulse-like or vibrational electric excitation is applied to the piezoelectric element 9 to cause a corresponding displacement in the piezoelectric element, and the negative pressure slider 1 is moved to the distance of the cell ZI code. It is configured to move within Fill Llo. The displacement of the piezoelectric element 9 itself is from several μm to several tens of μm at most, but at the head portion of the negative pressure slider 1 attached to the tip α111) of the support spring 7, the displacement is from 0.1 to 0.
It can be expanded and displaced to 5 dragons, which is a practical and effective displacement. Furthermore, if the piezoelectric element 9 is driven in accordance with the resonance frequency of the support spring 7, the support spring 7 can be driven with a small amount of electric power.
A larger displacement can be obtained. Once the negative pressure slider 1 has moved within the distance Fi1['llo of the self-float, it is attracted toward the surface of the magnetic disk against the spring force fo, as shown in Fig. 4 (a+), and is balanced with the levitation force. This is shown in Figure 4 ([)].Therefore, strictly speaking, the suction force (
I'a) - floating force (fo) - buoyancy force (1'p)? j. Suction force F a is several tens of grams
, if the spring force ro is shifted from 1 to 28, Fa>fO,
Practical: No problems at all. In the above state, it is no longer necessary to drive the piezoelectric element 9. Piezoelectric element 9
The driving time is only a few ms to several tens of ms, and this time is short enough to bring the negative pressure slider 1, which is located at a distance of 0.1 to 0.5 degrees from the magnetic disk surface, within the self-loading gap 11o. It's time. When the rotation of the magnetic disk stops, the attractive force disappears, and the negative pressure slider 1 separates from the surface of the magnetic disk due to the spring force fo.

なお、磁気ディスクの停止時におりる磁気テjスク6と
負圧型スライダJとの間隙は一定ではなく、磁気ディス
クのうねり等のため、回転時には数μmから数十μmの
変動をする舟である。
Note that the gap between the magnetic disk 6 and the negative pressure slider J when the magnetic disk is stopped is not constant, and due to the undulation of the magnetic disk, it fluctuates by several micrometers to several tens of micrometers during rotation. .

以上、本発明の1実施例について説明したが、本発明は
かかる実施例に限らず、種々の変形と応用が可能である
。即ぢ、第5図は複数枚の磁気ディスクで構成される装
置に本発明を適用した場合の変形例を示す図である。こ
の実施例では11′(数の圧電素子9で、Up及びI)
 ’n負圧型スライダIAと1Bを同時変位させて、セ
ルフローデングを可能にしている。
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various modifications and applications are possible. That is, FIG. 5 is a diagram showing a modification in which the present invention is applied to an apparatus composed of a plurality of magnetic disks. In this example 11' (number of piezoelectric elements 9, Up and I)
'n Negative pressure sliders IA and 1B are simultaneously displaced to enable self-loading.

又、応用例としては圧電素子自体は受動素子であり、外
力を受けると変位して電圧を発生するので、この原理を
利用し磁気ディスクの足音動作中おりる負圧型スライダ
のクラッシュ等の異常検出を行うことができる。即ちそ
のような異常が発生ずると、支持ハネ系を通して圧電素
子に変位を与えるので、それによって圧電素子では電圧
を発生ずることになり、この電圧を検出すればクラッシ
ュ異常を検出可能である。従って、圧電素子は、磁気デ
ィスクが起動する時は励振電圧を与えて、負圧型スライ
ダに変位を与え、定常動作時には界雷検知用として検出
回路に接続することにより、ヘソF系の異常検出に使用
できる。
In addition, as an application example, the piezoelectric element itself is a passive element, and when it receives an external force, it displaces and generates a voltage, so this principle can be used to detect abnormalities such as the crash of a negative pressure slider that occurs during the footsteps of a magnetic disk. It can be performed. That is, when such an abnormality occurs, displacement is applied to the piezoelectric element through the support spring system, which causes a voltage to be generated in the piezoelectric element, and by detecting this voltage, it is possible to detect a crash abnormality. Therefore, when the magnetic disk starts up, the piezoelectric element applies an excitation voltage to give displacement to the negative pressure slider, and during normal operation, it is connected to a detection circuit for field lightning detection, thereby detecting abnormalities in the belly button F system. Can be used.

[+ 発明の効果 以」二、n’r:fillに説明したように、本発明の
磁気ディスク装置によれば、磁気ディスクと磁気ヘッド
スライダの間隙を安定に維持することができ、装置の信
頼性を著しく向上させることができ、9)果大なるもの
がある。
[+ Effects of the Invention] As explained in 2.n'r:fill, according to the magnetic disk device of the present invention, the gap between the magnetic disk and the magnetic head slider can be stably maintained, which improves the reliability of the device. 9) It can significantly improve your sexual performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に通用した負圧型磁気スライダの一例を
示す斜視図、第2図は負圧型磁気スライダの浮揚力と吸
引力による磁気ディスク間隙依存性を示す図、第3図は
負圧型磁気スライダと磁気ディスクとが平iチjする間
隙を示す図、第4図は本発明の一実施例を示す図、第5
図は本発明の変形例を示す図である。
Figure 1 is a perspective view showing an example of a negative pressure type magnetic slider applicable to the present invention, Figure 2 is a diagram showing the dependence of the magnetic disk gap due to the levitation force and attractive force of the negative pressure type magnetic slider, and Figure 3 is a negative pressure type magnetic slider. FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a diagram showing a flat gap between a magnetic slider and a magnetic disk.
The figure shows a modification of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1) 負圧力によって磁気ディスクと磁気ヘッドとの
間隙を維持する負圧型磁気ヘントスライダを有し、且つ
該負圧型磁気へソドスライダの支持バネのアーム取イ」
け部に圧電素子を設け、磁気ディス−りの回転数が所定
の回転数に達した時に、上記圧電素子に電気的励振によ
る振動を発生させることにより当該負圧型磁気ヘントス
ライダを変位させ、上記磁気ディスク上にローデングさ
せるようにしたことを特徴とする磁気ディスク装置。
(1) It has a negative pressure type magnetic slider that maintains the gap between the magnetic disk and the magnetic head by negative pressure, and a support spring arm of the negative pressure type magnetic slider.
A piezoelectric element is provided at the top part, and when the rotational speed of the magnetic disc reaches a predetermined rotational speed, the negative pressure type magnetic hent slider is displaced by generating vibrations in the piezoelectric element due to electrical excitation, and the above-mentioned A magnetic disk device characterized by being loaded onto a magnetic disk.
(2)前記圧電素子が負圧型磁気ヘントスライダの支持
ハネ系の共振周波数の信号で励振されることを特徴とす
る特許請求の範囲第(11項に記載の磁気ディスク装置
(2) The magnetic disk device according to claim 11, wherein the piezoelectric element is excited by a signal at a resonance frequency of a support spring system of a negative pressure magnetic hent slider.
(3)前記圧電素子が、負圧型磁気ヘントスライダのロ
ーデング後の定當浮動動作時において当該スライダの異
常変動検出に用いられることを特徴とする特許請求の範
囲第(1)項に記載の磁気ディスク装置。
(3) The magnetic disk according to claim (1), wherein the piezoelectric element is used to detect abnormal fluctuations in a negative pressure magnetic hent slider during a constant floating operation after loading the slider. Device.
JP19218283A 1983-10-13 1983-10-13 Magnetic disk device Pending JPS6083280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19218283A JPS6083280A (en) 1983-10-13 1983-10-13 Magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19218283A JPS6083280A (en) 1983-10-13 1983-10-13 Magnetic disk device

Publications (1)

Publication Number Publication Date
JPS6083280A true JPS6083280A (en) 1985-05-11

Family

ID=16287037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19218283A Pending JPS6083280A (en) 1983-10-13 1983-10-13 Magnetic disk device

Country Status (1)

Country Link
JP (1) JPS6083280A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289285A (en) * 1985-10-15 1987-04-23 Nec Corp Self-loading actuator mechanism for negative floating head
JPS62112276A (en) * 1985-11-12 1987-05-23 Nec Corp Floating actuator mechanism for negative pressure floating head cell
JPS6383979A (en) * 1986-09-26 1988-04-14 Nec Corp Loading mechanism of floating head
JPS6394479A (en) * 1986-10-07 1988-04-25 Fuji Electric Co Ltd Head floating quantity controller for disk storage device
JPS63173286A (en) * 1987-01-13 1988-07-16 Nec Corp Magnetic disk device
JPS63298878A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Drive device for hard disk
JPH01107382A (en) * 1987-10-20 1989-04-25 Nec Corp Negative pressure utility type floating head load mechanism
KR100451156B1 (en) * 2001-11-30 2004-10-02 엘지전자 주식회사 Apparatus for near field optical recorder

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289285A (en) * 1985-10-15 1987-04-23 Nec Corp Self-loading actuator mechanism for negative floating head
JPH0546635B2 (en) * 1985-10-15 1993-07-14 Nippon Electric Co
JPS62112276A (en) * 1985-11-12 1987-05-23 Nec Corp Floating actuator mechanism for negative pressure floating head cell
JPS6383979A (en) * 1986-09-26 1988-04-14 Nec Corp Loading mechanism of floating head
JPS6394479A (en) * 1986-10-07 1988-04-25 Fuji Electric Co Ltd Head floating quantity controller for disk storage device
JPS63173286A (en) * 1987-01-13 1988-07-16 Nec Corp Magnetic disk device
JPS63298878A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Drive device for hard disk
JPH01107382A (en) * 1987-10-20 1989-04-25 Nec Corp Negative pressure utility type floating head load mechanism
KR100451156B1 (en) * 2001-11-30 2004-10-02 엘지전자 주식회사 Apparatus for near field optical recorder

Similar Documents

Publication Publication Date Title
US6002549A (en) Dither microactors for stiction release in magnetic disc drives
CA1275503C (en) Micro mechanical actual transducer head on a slider
US4530021A (en) Micromotion release of heads from lubricated magnetic disks
JPH0594682A (en) Floating magnetic head
JPH04167276A (en) Magnetic disk device
JPH09167304A (en) System and method for storage of data in plurality of zones
JPS6083280A (en) Magnetic disk device
WO1989007309A1 (en) Torsion transducer
US6267004B1 (en) Glide test head assembly with high take-off resolution
JPS581858A (en) Magnetic disk device
JPS58169377A (en) Magnetic disk storage device
JPS6314374A (en) Magnetic disk device
JPH0684309A (en) Magnetic head supporting device and controller
JP3200939B2 (en) Magnetic disk drive
Hirano et al. A hard-disk drive tracking servo microactuator driven by PZT with stroke amplification mechanism
JPH01118275A (en) Optical head driving device
JPH05303859A (en) Floating type magnetic head and its supporting mechanism
JP3338359B2 (en) Storage device
JP2534006Y2 (en) Magnetic disk drive
JPH063669B2 (en) Magnetic head loading method
JPH02227869A (en) Magnetic disk device
JPH063670B2 (en) Negative pressure type floating head load mechanism
JPH0281379A (en) Sticking releasing system between head and disk
JPH02216684A (en) Magnetic disk device
JPH04341984A (en) Magnetic head slider