JPS6082913A - Active type range finder - Google Patents

Active type range finder

Info

Publication number
JPS6082913A
JPS6082913A JP19208183A JP19208183A JPS6082913A JP S6082913 A JPS6082913 A JP S6082913A JP 19208183 A JP19208183 A JP 19208183A JP 19208183 A JP19208183 A JP 19208183A JP S6082913 A JPS6082913 A JP S6082913A
Authority
JP
Japan
Prior art keywords
light
light receiving
signal
output
receiving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19208183A
Other languages
Japanese (ja)
Inventor
Takashi Kanbe
高志 神戸
Yoshihiro Harunari
春成 嘉弘
Ryuji Tokuda
徳田 隆二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19208183A priority Critical patent/JPS6082913A/en
Publication of JPS6082913A publication Critical patent/JPS6082913A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure easily a distance, and also to make a device small-sized by discriminating whether a signal light quantity which is made incident to only the first photodetecting means is above a prescribed threshold level or not, and the polarity in difference of a signal light quantity of the second photodetecting means. CONSTITUTION:A center position of a photodetecting lens 4, a point where the center of a projected luminous flux forms an image on an object whose distance is measured S, the center position of a photodetecting lens 5, a point where a straight line which passes through a position (c) and is parallel to a straight line (a) (b) crosses a plane containing a photodetecting surface of photodetectors 1, 2, and a point where a part of reflected light from the object whose distance is measured S passes through the center position (c) and forms an image on the photodetecting surface of the photodetectors 1, 2 are denoted as (a), (b), (c), (d) and (e), respectively. In this case, a triangle (a), (b) and (c) and a triangle (d), (c) and (e) become similar, therefore, if the length of a segment (a) (c) and (c) (d) is known, the length of the straight line (a) (b), namely, a distance to the object whose distance is measured S can be known by a position of (e).

Description

【発明の詳細な説明】 本発明は、例えばカメラに使用され、光束を物体に投射
しその反射光により物体までの距離を測定する能動型測
距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an active distance measuring device used in, for example, a camera, which projects a luminous flux onto an object and measures the distance to the object using the reflected light.

従来の所謂能動型測距装置においては、被測距物に光線
を投射しその反射光の絶対量の判別により測距を行う方
法が、特開昭56−121019号公報や特開昭56−
130608号公報等に提案されている。この方法によ
ると、基本的に反射光量値が被測距物の反射率に依存す
るために、基線効果等によりこの反射率依存性を軽減す
るような工夫を加えても、所定、の距離1点を設定し、
それよりも近側か遠側かというような極めて簡易な形式
の測距装置を実現できる。しかし、この方法は反射光の
絶対量判別の閾値を複数個設けて、より多点の距離分解
能力を得ようとすると、基線効果発揮のための工夫、例
えば投光手段と受光手段の角度設定等の反射率依存性の
軽減対策が十分に行えず、各切換設定点の反射率依存性
により、成る反射率以下では前述の1点の判別をする場
合からさほどの向」二が得られないという結果となる。
In conventional so-called active distance measuring devices, a method of projecting a beam of light onto an object to be measured and measuring the distance by determining the absolute amount of reflected light is disclosed in Japanese Patent Application Laid-open No. 56-121019 and Japanese Patent Application Laid-open No. 56-1989.
It has been proposed in Publication No. 130608 and the like. According to this method, since the reflected light amount value basically depends on the reflectance of the object to be measured, even if measures are taken to reduce this dependence on the reflectance using the baseline effect, etc., for a predetermined distance of 1 set the point,
Rather than that, it is possible to realize an extremely simple type of distance measuring device that can measure either the near side or the far side. However, this method requires multiple thresholds for determining the absolute amount of reflected light to obtain distance resolution capability for more points. Because of the reflectance dependence of each switching setting point, it is not possible to take sufficient measures to reduce reflectance dependence such as This is the result.

ところで、複数の臨む視野の異なる受光素子を用いて、
それらで得られる信号の比を判別し測距する方法や、投
光側或いは受光側に距離に対応した機械的或いは電気的
な運動をさせ、投光像と受光像との重なり具合を判別し
測距する方法も種々提案されている。しかし、これらの
方法によると大規模な回路を必要としたり、空間を占有
することにより撮影レンズの焦点距離が短いか、或いは
Fナンバーが大きいような、比較的簡易な少数ゾーン分
解での測距でも満足できる光学系においては、前述の絶
対量を判別する方法に比べて測距精度は良好であっても
、格段に高価になったり大型になるという不具合がある
By the way, using multiple light receiving elements with different viewing fields,
There are methods for measuring the distance by determining the ratio of the signals obtained, and for determining the extent to which the emitted and received images overlap by making mechanical or electrical movements on the emitter or receiver side that correspond to the distance. Various distance measurement methods have also been proposed. However, these methods require large-scale circuits and occupy space, making it difficult to perform distance measurement using relatively simple decomposition of a small number of zones when the focal length of the photographing lens is short or the F-number is large. However, in a satisfactory optical system, even if the distance measurement accuracy is better than the above-mentioned method of determining an absolute quantity, there are disadvantages in that it is significantly more expensive and larger.

本発明の目的は、上述のような欠点に鑑みて、比較的簡
易な例えば3つの距離ゾーンを判別する等の測距能力を
満足し、全体として小規模かつ安価に得られる能動型測
距装置を提供することにある。
In view of the above-mentioned drawbacks, an object of the present invention is to provide an active distance measuring device that is relatively simple and satisfies distance measuring capability such as discriminating between three distance zones, and that can be obtained on a small scale and at low cost as a whole. Our goal is to provide the following.

上記1的を達成するための本発明の要旨とするところは
、所定の基線長を隔てて投光部及び受光部を配置し、該
投光部からの投射光の被測距物上での反射光を信号光と
して該受光部で検知する測距装置において、前記該受光
部は基線方向に第1及び第2の受光手段を有し、該第1
の受光手段のみに入射する信号光量が一定の閾値以上で
あるか否かを判別すると共に、該第1の受光手段と該第
2の受光手段の信号光量の差の極性を判別することによ
り該被測距物までの距離情報を得ることを特徴とする能
動型測距装置である。
The gist of the present invention for achieving the above first objective is to arrange a light projecting section and a light receiving section apart from each other by a predetermined baseline length, and to project light from the light projecting section onto an object to be measured. In the distance measuring device in which the light receiving section detects reflected light as signal light, the light receiving section has first and second light receiving means in the baseline direction, and the first and second light receiving means are arranged in the base direction.
It is determined whether the amount of signal light incident only on the first light receiving means is equal to or higher than a certain threshold value, and the polarity of the difference in the amount of signal light between the first light receiving means and the second light receiving means is determined. This is an active distance measuring device characterized by obtaining distance information to an object to be measured.

本発明において、第1、第2の受光手段はシワコンフォ
トダイオード等の受光素子であって、それぞれ入射する
信号光量に対応する出力信号を出力する。いま、第1の
受光手段に入射する信号光量は、被測距物の位置により
基線上を移動する反射光束によるものであるが、その光
量を測定することにより被測距物の位置を測距できるこ
とになる。ここで、距離切換点に対応する閾値を設けて
おけは、入射する信号光量がこの値より大であるか否か
を検知することにより、この距離から被測距物が遠点に
あるか近点にあるか、即ち被測距物が存在する距離ゾー
ンを知ることができる。なお、この閾値と被測距物の位
置との対応は被測距物の反射率により若干変化すること
になるが、これはで許容できる範囲内にすることができ
る。
In the present invention, the first and second light-receiving means are light-receiving elements such as wrinkle-contoured photodiodes, and each outputs an output signal corresponding to the amount of incident signal light. Now, the amount of signal light incident on the first light receiving means is due to the reflected light flux that moves on the base line depending on the position of the object to be ranged, but by measuring the amount of light, the position of the object to be ranged can be measured. It will be possible. Here, if a threshold value corresponding to the distance switching point is provided, by detecting whether the amount of incident signal light is greater than this value, based on this distance, it is possible to determine whether the object to be measured is at the far point or nearby. It is possible to know whether the object is located at a point, that is, the distance zone in which the object to be measured exists. Note that the correspondence between this threshold value and the position of the distance-measuring object will change slightly depending on the reflectance of the distance-measuring object, but this can be kept within an allowable range.

次に、この反射光束が基線上り配された第1の受光手段
と第2の受光手段に重複して投影されたとき、その信号
光量が第1と第2の受光手段に均等になるときの被測距
物の位置は1点であって。
Next, when this reflected light beam is projected onto the first light receiving means and the second light receiving means arranged above the baseline, the amount of signal light becomes equal to the first and second light receiving means. The position of the object to be measured is one point.

反射率に影響されることなく極めて正確である。Extremely accurate, independent of reflectance.

従って、第1と第2の受光手段が受ける信号光量の差の
極性を判別することにより、被測距物の位置がこの1点
より遠いか近いかを知ることができる。
Therefore, by determining the polarity of the difference in the amount of signal light received by the first and second light receiving means, it is possible to know whether the position of the object to be measured is farther or closer than this one point.

いま、受光手段が第1と第2の2つのみからなる場合と
すれば、第1の受光手段の受ける信号光量で、第1の距
離切換点、第1と第2の受光手段の受ける信号光量の差
の極性により第2の距離切換点が定まるので、近点、中
点、遠点の3つの距離ゾーンの判別ができることになる
Now, assuming that the light receiving means consists of only two, the first and second light receiving means, the amount of signal light received by the first light receiving means is equal to the signal received by the first distance switching point and the first and second light receiving means. Since the second distance switching point is determined by the polarity of the difference in light amount, it is possible to determine three distance zones: the near point, the midpoint, and the far point.

以下に本発明を図示の実施例に基づいて詳細に説明する
The present invention will be explained in detail below based on illustrated embodiments.

“第1図及び第2図は原理説明図、第3図はブロック回
路構成図、第4図は第3図の回路より出力される信号の
タイミングチャート図、第5図は第3図の回路図中の信
号波形図、第6図は第3図に含まれる同期検波回路の具
体的なブロック回路構成図である。
"Figures 1 and 2 are principle explanatory diagrams, Figure 3 is a block circuit configuration diagram, Figure 4 is a timing chart of signals output from the circuit in Figure 3, and Figure 5 is the circuit in Figure 3. The signal waveform diagram in the figure and FIG. 6 are concrete block circuit configuration diagrams of the synchronous detection circuit included in FIG. 3.

第19(a)において、1.2はシリコンフォトダイオ
ード等から成る受光素子であり、3は受光素子1.2と
所定間隔に配置され近赤外光を発光する発光素子である
。発光素子3から出射された光束は投光用レンズ4を介
して被測距物Sに投光され、その反射光は受光用レンズ
5を介して受光素子J、2に入射するようになっている
In the 19th (a), 1.2 is a light-receiving element made of a silicon photodiode or the like, and 3 is a light-emitting element arranged at a predetermined interval from the light-receiving element 1.2 and emits near-infrared light. The luminous flux emitted from the light emitting element 3 is projected onto the object S to be measured via the light projecting lens 4, and the reflected light is incident on the light receiving elements J and 2 via the light receiving lens 5. There is.

ここで、投光用レンズ4の中心位置をa、投光された光
束の中心が被測距物S上で結像される点をb、受光用レ
ンズ5の中心位置をC1このCを通り直線abと平行な
直線が受光素子1.2の受光面を含む平面に交わる点を
d、被測距物Sからの反射光の一部が受光用レンズ5の
中心Cを通り受光素子1.2の受光面上で結像する点を
eとすると、三角形abcと三角形dceが相似となる
ため、線分aCとcdの長さが既知であれば、eの位置
により直線abの長さ、即ち被測距物Sまでの距離を知
ることができる。
Here, the center position of the light emitting lens 4 is a, the point where the center of the emitted light beam forms an image on the object S to be measured is b, and the center position of the light receiving lens 5 is C1. A point d is a point where a straight line parallel to the straight line ab intersects with a plane including the light receiving surface of the light receiving element 1.2. If the point of image formation on the light-receiving surface of 2 is e, triangle abc and triangle dce are similar, so if the lengths of line segments aC and cd are known, the length of line ab is determined by the position of e, That is, the distance to the distance-measuring object S can be known.

次に、第1図(b)は発光素子3により投光された光束
が、投光用レンズ4を通り被測距物S上で反射し、その
一部が工〜■の各破線に示された経路で受光素子1.2
上に結像されたときの受光素子1及び2と、斜線を施さ
れた結像S′の関係をモデル的に示したものである。■
の状態は受光素子1及び2に等量の像が生じたときを表
し、本発明ではこの状態を検知することで、先ず1点の
切換距離を判別する。この方法によれば、受光素子1.
2が受ける全体の1/2を一方の素子が受けるという比
の概念によるため、被測距物Sの反射率の変化のよる誤
差は原理上化ずることはない。
Next, in FIG. 1(b), the light beam projected by the light emitting element 3 passes through the light projection lens 4 and is reflected on the object S to be measured. The photodetector 1.2
This is a model showing the relationship between the light receiving elements 1 and 2 when images are formed on the top, and the image S' shown by diagonal lines. ■
The state represents when equal amounts of images are generated on the light receiving elements 1 and 2, and in the present invention, by detecting this state, first, the switching distance of one point is determined. According to this method, the light receiving element 1.
Since this is based on the concept of ratio in which one element receives 1/2 of the total amount received by S, errors due to changes in the reflectance of the object to be measured S will not be reduced in principle.

更に、もう1点の切換距離の判別をするために、一方の
受光素子のみでその信号量の絶対値を検出し、所定の値
以上であるか否かを判別し測距を行う。ただし、この方
法は前述したように、切換距離が被測距物Sの反射率に
依存し易いので、許容できる測距精度になるように、切
換点の設定及び光学系のm節を公知の種々の方法で行う
ことが望ましい。これら種々の方法の具体例としては、
投光素子3或いは(及び)受光素子1.2のピント調節
を切換点の前方で鮮明な結像を得られるようにすること
により、遠方被測距物からの反射光量を距離の2乗に反
比例して減衰するばかりでなく、ぼけの効果による減衰
をも併せる方法、或いは基線長に比してできるだけ小さ
な投光素子を用いる方法、或いは特開昭57−5911
2号公報に見られるように投光軸と受光軸の交差点の設
定を工夫する等が挙げられる。これらを単独或いは組合
わせて用いることにより、1つの切換距離の被測距物の
反射率依存性を許容範囲内に納めることは必ずしも困難
ではない。
Furthermore, in order to determine another switching distance, the absolute value of the signal amount is detected using only one light receiving element, and distance measurement is performed by determining whether or not it is greater than a predetermined value. However, as mentioned above, in this method, the switching distance tends to depend on the reflectance of the object to be measured S, so in order to obtain an acceptable distance measurement accuracy, the setting of the switching point and the m-section of the optical system are determined using known methods. It is desirable to do this in various ways. Specific examples of these various methods include:
By adjusting the focus of the light emitting element 3 or (and) the light receiving element 1.2 to obtain a clear image in front of the switching point, the amount of reflected light from a distant object to be measured can be adjusted to the square of the distance. A method that not only attenuates inversely proportionally but also attenuates due to the effect of blur, or a method that uses a light emitting element as small as possible compared to the base line length, or Japanese Patent Application Laid-Open No. 57-5911
Examples include devising the setting of the intersection of the light emitting axis and the light receiving axis, as seen in Publication No. 2. By using these methods alone or in combination, it is not necessarily difficult to keep the dependence of one switching distance on the reflectance of the object to be measured within an allowable range.

第2図(a) 、 (b) 、 (c)は従来例及び本
発明において、近点、中点、遠点の3ゾーンの識別を行
った場合の被測距物の距離と反射率との関係を示した図
である。第2図゛(a)ではその2つの境界が反射率依
存性を有する従来例の延長の場合であり、(b)では近
点と中点の境界には反射率依存性か無く、中点と遠点の
境界はなるべく反射率依存性が少なくなるように留意し
た場合である。(c)では中点と遠点の境界が反射率依
存性が無く、近点と遠点の境界の反射率依存性が少なく
なるように留意した場合を示している。即ち、一方の境
界線の反射率依存性を無くす方式を導入することにより
、3つの最良合焦点の設定の余裕度が大きくなり、第2
図(a)の場合に比べて格段に良好な測距分解能を得る
ことができることになる。
Figures 2 (a), (b), and (c) show the distance and reflectance of the object to be measured when the three zones of near point, midpoint, and far point are identified in the conventional example and the present invention. FIG. Figure 2 (a) is an extension of the conventional example in which the two boundaries have reflectance dependence, while in (b) there is no reflectance dependence at the boundary between the periapsis and the midpoint, and the midpoint This is a case in which care is taken to minimize the reflectance dependence of the boundary between and the far point. (c) shows a case in which care is taken so that the boundary between the midpoint and the far point has no dependence on reflectance, and the boundary between the near point and the far point has less dependence on reflectance. In other words, by introducing a method that eliminates the reflectance dependence of one boundary line, the degree of latitude in setting the three best in-focus points increases, and the second
This means that it is possible to obtain much better distance measurement resolution than in the case shown in FIG.

次に第3図のブロック回路において、発光素子3の駆動
回路10は公知の手段により定電圧或いは定電流等の信
号Bにより変調駆動を成し得るのでその詳細の説明は省
略する。先ず測距の開始と共に、スイッチング部材11
が閉から開状態へと移行し、抵抗器12とコンデンサ1
3とによる時定数で決定される所定の時間に、インバー
タ14の出力である信号Aは旧ghレベル信号(以下H
と云う)からLowレベル信号(以下りと云う)に移行
する。なお、RSフリップフロップ15〜17のS、R
端子はHによりそれぞれ出力Q及びその反転出力QをH
にし、Tフリップフロップ18.19、Dフリップフロ
ップ20.21、分周器22は、それぞれクリア人力C
LをHにすることでリセットし、Q出力をし、その反転
出力QをHに設定し、クロック入力のLからHの立上り
エツジでトリガされるものとする。信号AがHの間、各
フリップフロップ15〜21及び分周器22はそのQ出
力をLに、(出力をHに初期設定される。
Next, in the block circuit of FIG. 3, the drive circuit 10 for the light emitting element 3 can perform modulation drive using a signal B such as a constant voltage or constant current by a known means, so a detailed explanation thereof will be omitted. First, at the start of distance measurement, the switching member 11
transitions from closed to open state, resistor 12 and capacitor 1
3, the signal A that is the output of the inverter 14 becomes the old gh level signal (hereinafter referred to as H
) to a Low level signal (hereinafter referred to as "low level signal"). In addition, S, R of RS flip-flops 15 to 17
The terminal outputs Q and its inverted output Q by H.
The T flip-flops 18 and 19, the D flip-flops 20 and 21, and the frequency divider 22 are each cleared manually by C.
It is assumed that the circuit is reset by changing L to H, outputs Q, sets its inverted output Q to H, and is triggered by the rising edge of the clock input from L to H. While the signal A is H, each of the flip-flops 15 to 21 and the frequency divider 22 is initialized with its Q output set to L and its output set to H.

その間、アンドゲート29を除く各アンドゲート23〜
35の出力は少なくとも1つの入力がLなのでその出力
はLである。
Meanwhile, each AND gate 23~ except for AND gate 29
The output of 35 is L because at least one input is L.

信号AがLになると、各フリップフロップ15〜21及
び分周器22はそのリセット状態を解除され、Tフリッ
プフロップ19のQ出力は発振器36のクロックを1/
4に分周した信号Bを出力し、信号BがHのときに点灯
、Lのときに非点灯となる駆動回路10により発光素子
3は点滅を開始する。同時に、84図のタイミングチャ
ート図に示すように、アンドゲート27及び28の出力
である信号C及びDが、後に詳細に説明する同期検波回
路37にサンプリング制御信号を送り同期検波を開始す
る。このとき、分周器22のQ出力は米だLであり、D
フリップフロップ20のQ出力である信号EはLであり
、同じくDフリップフロップ20のQ出力である信号F
はHなので、アナログスイッチ38は開状態、スイッチ
39は閉状態である。これらのアナログスイッチ38.
39はそのゲートを論理信号E及びFによりHにするこ
とにより閉状8(導通状i)、lにすることにより開状
態(非導通状態)にするものである。
When the signal A becomes L, each of the flip-flops 15 to 21 and the frequency divider 22 are released from their reset states, and the Q output of the T flip-flop 19 divides the clock of the oscillator 36 by 1/2.
The light emitting element 3 starts blinking by the driving circuit 10 which outputs a signal B whose frequency is divided by 4 and turns on when the signal B is H and turns off when the signal B is L. At the same time, as shown in the timing chart of FIG. 84, signals C and D, which are the outputs of AND gates 27 and 28, send sampling control signals to a synchronous detection circuit 37, which will be described in detail later, to start synchronous detection. At this time, the Q output of the frequency divider 22 is L, and D
The signal E, which is the Q output of the flip-flop 20, is L, and the signal F, which is the Q output of the D flip-flop 20, is also L.
is H, so the analog switch 38 is open and the switch 39 is closed. These analog switches 38.
The gate 39 is set to a closed state 8 (conductive state i) by setting the gate to H using logic signals E and F, and is set to an open state (non-conducting state) by setting the gate to l.

オペアンプ40の非反転、反転入力間には受光素子1が
接続されており、アナログスイッチ39を閉状態にしで
あるのは受光素子2による光電流が受光素子1側へリー
クするなどの相互干渉を防止するために受光素子2に閉
ループを形成するためである。分周器22の段数で決定
される所定の時間を経過すると、分周器22のQ出力は
H,Q出力はLとなり、更に信号Bの一周期分遅れてD
フリップフロップ20のQ出力である信号EがH,Q出
力である信号FがLとなる。このため第4図に示すタイ
ミングで、アンドゲート34の出力である信号Gが所定
の時間だけHになる。
The light receiving element 1 is connected between the non-inverting and inverting inputs of the operational amplifier 40, and closing the analog switch 39 prevents mutual interference such as leakage of photocurrent from the light receiving element 2 to the light receiving element 1 side. This is to form a closed loop in the light receiving element 2 to prevent this. After a predetermined period of time determined by the number of stages of the frequency divider 22 has elapsed, the Q output of the frequency divider 22 becomes H, the Q output becomes L, and further delayed by one cycle of the signal B, the D
The signal E, which is the Q output of the flip-flop 20, becomes H, and the signal F, which is the Q output, becomes L. Therefore, at the timing shown in FIG. 4, the signal G, which is the output of the AND gate 34, becomes H for a predetermined period of time.

一方、同期検波回路37の出力は受光素子1で受光する
信号量に応じて、基準電位v2からプラス方向にその電
位が上昇する。受光素子lにより信号が検出されないと
き、即ち第1図(b)で例えばIの状態のときには、理
論的には同期検波回路37の出力にはV2が出力される
筈であるが、実際には同期検波回路37のオフセット分
や雑音が含まれた信号となる。同期検波回路37の出力
が安定するまで、つまり分周器22の段数で決定される
所定の時間を待ち、信号GがHになったときに、同期検
波回路37の出力により受光素子1が無信号状態である
か否か及びどの程度の信号があるかを検出する。このた
め、コンパレータ41で第5図に示すようなり2+αの
電位であるv3と比較すると同時に、コンパレータ42
によりv3よりも高いV2+βの電位であるv4との比
較を行う。同期検波回路37の出力がv4を越えれば、
コンパレーク42の出力はHであり、信号GがHのとき
にアンドゲート23の信号がHとなり、RSフリップフ
ロップ15のQ出力はHにラッチされる。同期検波回路
37の出力がv3を越えれば、コンパレータ41の出力
はHであり、信号GがHのときにアンドゲート24の出
力がHとなり、RSフリップフロップ16のQ出力はH
にラッチされる。
On the other hand, the potential of the output of the synchronous detection circuit 37 increases in a positive direction from the reference potential v2 according to the amount of signal received by the light receiving element 1. When no signal is detected by the light-receiving element l, that is, in the state I in FIG. 1(b), theoretically V2 should be output as the output of the synchronous detection circuit 37, but in reality The signal contains the offset of the synchronous detection circuit 37 and noise. Wait until the output of the synchronous detection circuit 37 stabilizes, that is, wait a predetermined time determined by the number of stages of the frequency divider 22, and when the signal G becomes H, the output of the synchronous detection circuit 37 turns off the light receiving element 1. Detect whether there is a signal condition and how much signal there is. Therefore, as shown in FIG.
A comparison is made with v4 which is the potential of V2+β which is higher than v3. If the output of the synchronous detection circuit 37 exceeds v4,
The output of the comparator 42 is H, and when the signal G is H, the signal of the AND gate 23 is H, and the Q output of the RS flip-flop 15 is latched at H. If the output of the synchronous detection circuit 37 exceeds v3, the output of the comparator 41 is H, and when the signal G is H, the output of the AND gate 24 is H, and the Q output of the RS flip-flop 16 is H.
latched to.

次に、信号EがLからH1信号FがHからLへと移行す
ると、アナログスイッチ38は閉状態、アナログスイッ
チ39は開状態となり、オペアンプ40のプラスやマイ
ナス入力間に受光素子1及び2が接続される。ただし、
受光素子1.2のアノード・カソード方向は相互に逆向
きとなっている。オペアンプ40と抵抗43〜45、コ
ンデンサ46による帰還インピーダンスによって、受光
素子1.2を流れる光電流の差が、基準電圧v1に加え
られた電圧としてオペアンプ40から出力される。従っ
て、第1図(a)の■及びHの場合には、同期検波回路
37の出力は基準電圧V2よりもマイナス側に、■の場
合には変化せず、■及び■の場合にはプラス側に出力さ
れる。即ち、信号量が受光素子2の方が1に比べて多い
ときにはマイナス電位、逆の場合はプラス電位、同量の
場合は零電位が基準電圧V2に加えられる。
Next, when the signal E changes from L to H1 and the signal F changes from H to L, the analog switch 38 is closed, the analog switch 39 is opened, and the light receiving elements 1 and 2 are connected between the positive and negative inputs of the operational amplifier 40. Connected. however,
The anode and cathode directions of the light receiving element 1.2 are opposite to each other. Due to the feedback impedance of the operational amplifier 40, the resistors 43 to 45, and the capacitor 46, the difference in photocurrent flowing through the light receiving element 1.2 is outputted from the operational amplifier 40 as a voltage added to the reference voltage v1. Therefore, in the cases of ■ and H in FIG. 1(a), the output of the synchronous detection circuit 37 is on the negative side of the reference voltage V2, does not change in the case of ■, and is positive in the cases of ■ and ■. output to the side. That is, when the signal amount is greater in the light receiving element 2 than in the light receiving element 1, a negative potential is applied to the reference voltage V2, in the opposite case, a positive potential is applied, and when the signal amount is the same, a zero potential is applied to the reference voltage V2.

同期検波回路37の出力が安定するまで所定の時間を待
ち、第4図のタイミングチャート図に示すように信号I
がHになったときに、同期検波回路37の出力と基準電
位v3とをコンパレータ41で比較し、出力がV3を越
えると、つまり受光素子2よりも王の信号が大きければ
コンパレータ41の出力はHであり、アンドゲート25
の出力はHとなり、RSフリップフロップ17のQ出力
はHにラッチされ、Q出力はLにラッチされる。同期検
波回路37の出力が基準電圧v3よりも低いとき、即ち
受光素子1の信号よりも2の信号が大きいか等しいとき
には、コンパレータ41の出力はLであり、アンドゲー
ト25の出力はLであり、RSフリップフロップ17の
Q出力はLのまま、Q出力はHのままである。
Wait a predetermined period of time until the output of the synchronous detection circuit 37 becomes stable, and as shown in the timing chart of FIG.
When becomes H, the output of the synchronous detection circuit 37 and the reference potential v3 are compared by the comparator 41, and if the output exceeds V3, that is, if the signal of the output is larger than that of the light receiving element 2, the output of the comparator 41 becomes H, and gate 25
The output of the RS flip-flop 17 becomes H, the Q output of the RS flip-flop 17 is latched to H, and the Q output is latched to L. When the output of the synchronous detection circuit 37 is lower than the reference voltage v3, that is, when the signal of the light receiving element 1 is greater than or equal to the signal of the second signal, the output of the comparator 41 is L, and the output of the AND gate 25 is L. , the Q output of the RS flip-flop 17 remains at L, and the Q output remains at H.

次に、Dフリップフロップ21のQ出力つまり信号Jが
Hになると、RSフリップフロップ15.16の出力に
より、アンドゲート32.33及び26の出力、即ち信
号に1〜に3に測距情報が出力される。また、フリップ
フロップ21のQ出力がLに転じ、アンドゲート31の
出力はLのままになり信号JはHにラッチされ、オアゲ
ート47の出力もHとなるので、フリップフロップ18
〜20及び分周器22はリセットされ、信号B−E及び
G、■はLのまま、信号FはHのままとなる。測距を行
うにはスイッチング部材11を閉状態にし、各回路をリ
セットした後に再び開状態にすれば前記の動作を繰り返
すことになる。
Next, when the Q output of the D flip-flop 21, that is, the signal J becomes H, the output of the RS flip-flop 15.16 causes the outputs of the AND gates 32, 33 and 26, that is, the signal, to have ranging information in 1 to 3. Output. Also, the Q output of the flip-flop 21 changes to L, the output of the AND gate 31 remains L, the signal J is latched to H, and the output of the OR gate 47 also becomes H, so the flip-flop 18
.about.20 and the frequency divider 22 are reset, the signals B-E, G, and ■ remain at L, and the signal F remains at H. To perform distance measurement, the switching member 11 is closed, and after each circuit is reset, the switching member 11 is opened again, and the above operation is repeated.

第6図は同期検波回路37のブロック回路図であり、前
述したように例えば第4図に示す信号Bを用いてHのと
き点灯で、Lのとき消灯というように、第3図の投光素
子駆動回路10により発光素子3から被測距物Sに近赤
外光を変調投射する。その反射光を受光素子1或いは2
で受光し、その光電流をオペアンプ40及び抵抗43〜
45とコンデンサ46により形成される帰還回路により
電圧信号に変換するわけであるが、ここでこの帰還回路
には周波数特性を持たせ、低周波では電流・電圧変換効
率を低くし、信号B等の周波数領域では効率を高くし、
直射光等の外光の測距への影響やオペアンプ40の出力
の飽和を防止している。
FIG. 6 is a block circuit diagram of the synchronous detection circuit 37. As mentioned above, for example, using the signal B shown in FIG. 4, the light is turned on when it is H and turned off when it is L. The element drive circuit 10 modulates and projects near-infrared light from the light emitting element 3 onto the object S to be measured. The reflected light is transmitted to light receiving element 1 or 2.
receives the light and transmits the photocurrent to an operational amplifier 40 and a resistor 43 to
The feedback circuit formed by 45 and capacitor 46 converts it into a voltage signal, but this feedback circuit is given a frequency characteristic, and the current/voltage conversion efficiency is lowered at low frequencies, so that the signal B etc. High efficiency in the frequency domain,
This prevents the influence of external light such as direct light on distance measurement and saturation of the output of the operational amplifier 40.

オペアンプ40の出力信号から、バイパスフィルタ51
によりこの変調周波数を含む高周波成分を通過させると
共に、低周波成分を減衰させた後に増幅器51により増
幅する。その出力信号から信号Bの周波数に同期した第
3図に示す信号C7Dにより、つまりそのHのときに発
光素子3の点灯時を信号C1消灯時を信号りでサンプル
ホールド回路52及び53においてサンプリング及びホ
ールディングを行う。サンプルホールド回路53の出力
、即ち発光素子3の点灯時の信号をバッファ回路54を
通した後にインバータ回路55により、演算基準電位v
2に対して反転した出力と、更に一方のサンプルホール
ド回路52の出力、即ち消灯時信号であるバッファ回路
56の信号とを加算増幅器57において加算及び増幅す
る。これにより、発光素子3の点灯時と消灯時の受光素
子l、2への入力の差が得られることになる。ただし、
加算増幅器57は反転増幅器とし、その出力はローパス
フィルタ58により高周波分を減衰させ、同期検波回路
37の出力としている。
From the output signal of the operational amplifier 40, the bypass filter 51
The high frequency components including this modulation frequency are passed through, and the low frequency components are attenuated and then amplified by the amplifier 51. From the output signal, the signal C7D shown in FIG. 3 synchronized with the frequency of the signal B is used, that is, when the light emitting element 3 is on, the signal C1 is turned off. Holding. After passing the output of the sample hold circuit 53, that is, the signal when the light emitting element 3 is turned on, through the buffer circuit 54, the inverter circuit 55 converts the signal to the calculation reference potential v.
A summing amplifier 57 adds and amplifies the output inverted with respect to 2 and the output of one of the sample-and-hold circuits 52, that is, the signal of the buffer circuit 56 which is the light-off signal. Thereby, the difference in the input to the light receiving elements 1 and 2 when the light emitting element 3 is turned on and when the light is turned off can be obtained. however,
The summing amplifier 57 is an inverting amplifier, and its output is used as the output of the synchronous detection circuit 37 after attenuating high frequency components by a low-pass filter 58 .

さて、RSフリップフロップ15〜17にラッチされた
情報と測距ゾーンの関係は、例えば第2図(C)の状態
において、アンドゲート32の出力に1がHのとき近点
、アンドゲート32の出力に2がHのとき中点、アンド
ゲート26の出力に3がHのとき遠点である。つまり、
次のような組合わせとなる。
Now, the relationship between the information latched in the RS flip-flops 15 to 17 and the distance measurement zone is, for example, in the state shown in FIG. When the output 2 is H, it is the middle point, and when the output of the AND gate 26 is 3, it is the far point. In other words,
The combination is as follows.

近点:受光素子lによる信号が所定値v4より大きく、
かつ受光素子2による信号よりも大きい場合。
Near point: the signal from the light receiving element l is greater than the predetermined value v4,
and is larger than the signal from the light receiving element 2.

中点:受光素子1による信号が所定値V4より小さいが
無信号レベルv3より大きく、かつ受光素子2による信
号よりも大きい場合。
Midpoint: When the signal from the light receiving element 1 is smaller than the predetermined value V4 but larger than the no-signal level v3 and larger than the signal from the light receiving element 2.

遠点:受光素子2による信号が受光素子1による信号よ
りも大きいか、受光素子工、2共に無信号の場合。
Far point: When the signal from light receiving element 2 is greater than the signal from light receiving element 1, or when there is no signal from both light receiving elements.

第1図、第3図の例で示したように、受光素子1を近側
、受光素子2を遠側とそれぞれ臨み、近点と中点の境界
を受光素子1が得る信号の絶対量で判別する、つまり第
2図の(c)の状態の例を示したが、受光素子1を遠側
、受光素子2を近側とそれぞれ臨み、近点と中点の境界
を受光素子1.2が等量の信号を得ることを判別し、中
点と遠点との境界を受光素子1が得る信号の絶対量で判
別するような、第2図(b)の状態で測距することも容
易に成し得る。
As shown in the examples in Figures 1 and 3, the light receiving element 1 is viewed from the near side and the light receiving element 2 is viewed from the far side, and the boundary between the near point and the midpoint is defined as the absolute amount of the signal obtained by the light receiving element 1. In this case, the light receiving element 1 is viewed from the far side and the light receiving element 2 is viewed from the near side, and the boundary between the near point and the midpoint is viewed from the light receiving element 1.2. Distance measurement can also be carried out in the state shown in Fig. 2(b), in which the boundary between the midpoint and the far point is determined based on the absolute amount of signal obtained by the light-receiving element 1. It can be easily accomplished.

また、本実施例では一方の受光素子の絶対量と2つの受
光素子の差を時系列的に信号処理したが、各受光素子1
.2にそれぞれ信号処理回路を設け、前記絶対量と差と
を同時に判別してもよく、本発明の範囲は本実施例にの
みに限定されるものではない。更に、時系列処理の順番
も最初に2つの受光素子の差を見て、後に単独の受光素
子への入射信号量を見るようにすることも容易である。
In addition, in this example, the absolute amount of one light receiving element and the difference between the two light receiving elements were processed in time series, but each light receiving element 1
.. 2 may be provided with a signal processing circuit, respectively, to determine the absolute amount and the difference at the same time, and the scope of the present invention is not limited to this embodiment. Furthermore, it is also easy to change the order of time-series processing to first look at the difference between two light-receiving elements, and then look at the amount of signal incident on a single light-receiving element later.

以上説明したように本発明に係る能動型測距装置は、受
光素子の得る信号の絶対量の判別と共に、それらの得る
信号の2分の1の量という比率の概念を加えるごとによ
り、比較的簡易な測距装置を小規模に構成することを可
能にすると同時に、受光素子の接続切換による差演算と
時系列的処理により、後段処理回路を1系統にすること
ができ、複数系統の処理回路の各出力を演算する際に問
題となる各処理回路の特性のばらつき等を考慮しないで
済むという利点を有する。
As explained above, the active distance measuring device according to the present invention not only determines the absolute amount of signals obtained by the light-receiving element, but also adds the concept of the ratio of 1/2 the amount of the signals obtained. At the same time, it is possible to configure a simple distance measuring device on a small scale, and at the same time, the number of post-processing circuits can be reduced to one system due to difference calculation and time-series processing by switching the connection of light receiving elements, and it is possible to reduce the number of processing circuits for multiple systems. This method has the advantage that it is not necessary to consider variations in characteristics of each processing circuit, which are problematic when calculating each output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明で用いる測距原理の
説明図、第2図(a) 、 (b) 、 (c)は本発
明における実施例と従来例との測距特性を比較した説明
図、第3図は本発明に係る能動型測距装置の実施例の回
路構成図、第4図は第3図に示す回路より出力される信
号のタイミングチャート図、第5図は第3図の回路図中
の信号波形図、第6図は第3図中の同期検波回路のブロ
ック回路構成図である。 符号1.2は受光素子、3は発光素子、4は投光レンズ
、5は受光レンズ、10は発光素子駆動回路、11はス
イッチング部材、15〜21はフリップフロップ、22
は分周器、23〜35はアンドゲート、37は同期検波
回路、38.39はアナログスイッチ、40はオペアン
プ、41゜42はコンパレータ、47はオアゲートであ
る。 特許出願人 キャノン株式会社 第1図 V口重−5′ 第2図
Figures 1 (a) and (b) are explanatory diagrams of the distance measurement principle used in the present invention, and Figures 2 (a), (b), and (c) are distance measurement characteristics of the embodiment of the present invention and the conventional example. FIG. 3 is a circuit configuration diagram of an embodiment of the active distance measuring device according to the present invention, FIG. 4 is a timing chart of signals output from the circuit shown in FIG. 3, and FIG. is a signal waveform diagram in the circuit diagram of FIG. 3, and FIG. 6 is a block circuit configuration diagram of the synchronous detection circuit in FIG. 3. 1.2 is a light receiving element, 3 is a light emitting element, 4 is a light projecting lens, 5 is a light receiving lens, 10 is a light emitting element drive circuit, 11 is a switching member, 15 to 21 are flip-flops, 22
1 is a frequency divider, 23 to 35 are AND gates, 37 is a synchronous detection circuit, 38 and 39 are analog switches, 40 is an operational amplifier, 41 and 42 are comparators, and 47 is an OR gate. Patent applicant: Canon Co., Ltd. Figure 1: V mouth weight - 5' Figure 2

Claims (1)

【特許請求の範囲】 1、所定の基線長を隔てて投光部及び受光部を配置し、
該投光部からの投射光の被測距物上での反射光を信号光
として該受光部で検知する測距装置において、前記該受
光部は基線方向に第1及び第2の受光手段を有し、該第
1の受光手段のみに入射する信号光量が一定の閾値以上
であるか否かを判別すると共に、該第1の受光手段と該
第2の受光手段の信号光量の差の極性を判別することに
より該被測距物までの距離情報を得ることを特徴とする
能動型測距装置。 2、 前記第1の受光手段のみに入射する信号光量の判
別と、第1及び第2の受光手段の信号光量の差の極性判
別を時系列的に行う特許請求の範囲第1項に記載の能動
型測距装置。 3、前記時系列的判別は、それぞれに割当てられた所定
時間のうちの所定のタイミングで行われる手段と、その
結果をラッチする手段とを有する特許請求の範囲第2項
に記載の能動型測距装置。 4、 前記第1及び第2の受光手段の信号光量の差の極
性の判別は、第1の受光手段と第2の受光手段を逆並列
に接続することによりなし得るようにした特許請求の範
囲第2項に記載の能動型測距装置。
[Claims] 1. A light projector and a light receiver are arranged at a predetermined baseline length,
In the distance measuring device in which the light receiving unit detects reflected light of the light projected from the light projecting unit on the object to be measured as signal light, the light receiving unit includes first and second light receiving means in the baseline direction. and determines whether the amount of signal light incident only on the first light receiving means is greater than or equal to a certain threshold, and the polarity of the difference in the amount of signal light between the first light receiving means and the second light receiving means. An active distance measuring device characterized in that distance information to the object to be measured is obtained by determining the distance. 2. The method according to claim 1, wherein the determination of the amount of signal light incident only on the first light receiving means and the polarity determination of the difference in the amount of signal light of the first and second light receiving means are performed in a time series manner. Active ranging device. 3. The active measurement method according to claim 2, comprising means for performing the time-series determination at a predetermined timing within a predetermined time allotted to each, and means for latching the result. range device. 4. A claim in which the polarity of the difference in the amount of signal light between the first and second light receiving means can be determined by connecting the first light receiving means and the second light receiving means in antiparallel. The active distance measuring device according to item 2.
JP19208183A 1983-10-14 1983-10-14 Active type range finder Pending JPS6082913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19208183A JPS6082913A (en) 1983-10-14 1983-10-14 Active type range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19208183A JPS6082913A (en) 1983-10-14 1983-10-14 Active type range finder

Publications (1)

Publication Number Publication Date
JPS6082913A true JPS6082913A (en) 1985-05-11

Family

ID=16285320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19208183A Pending JPS6082913A (en) 1983-10-14 1983-10-14 Active type range finder

Country Status (1)

Country Link
JP (1) JPS6082913A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749906A (en) * 1980-09-09 1982-03-24 Ricoh Co Ltd Distance measuring circuit
JPS58143211A (en) * 1982-02-22 1983-08-25 Canon Inc Distance detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749906A (en) * 1980-09-09 1982-03-24 Ricoh Co Ltd Distance measuring circuit
JPS58143211A (en) * 1982-02-22 1983-08-25 Canon Inc Distance detector

Similar Documents

Publication Publication Date Title
US4615616A (en) Measuring distance apparatus
JPS5817311A (en) Distance measuring device and automatic focus adjusting device using said measuring device
US4573783A (en) Focusing controlling device
US4682872A (en) Signal processing apparatus for a semiconductor position sensing device
JPS6082913A (en) Active type range finder
JPS61144615A (en) Automatic focus detector
JP3023213B2 (en) Distance measuring device
JPS5834312A (en) Active type distance measuring device
JP2888492B2 (en) Distance information output device
JPH046410A (en) Photoelectric switch
JP3432852B2 (en) Distance measuring device
JPH0517484B2 (en)
JPH01116510A (en) Light projecting system automatic focusing device
JP3015099B2 (en) Distance measuring device
JP2763800B2 (en) Distance measuring device
JPS59142413A (en) Range finder
JPH0198914A (en) Range finding device for camera
JPH0534578A (en) Range-finding device
JPH01118108A (en) Light projection type auto-focusing device
JPH0534581A (en) Distance measuring device
JPH04360416A (en) Photoelectric switch
JPH0712592A (en) Displacement origin detector
JPS6082914A (en) Active type distance measuring device
JPS63182633A (en) Distance measuring instrument
JPS62151817A (en) Automatic focus detecting device