JPH0534581A - Distance measuring device - Google Patents
Distance measuring deviceInfo
- Publication number
- JPH0534581A JPH0534581A JP19199591A JP19199591A JPH0534581A JP H0534581 A JPH0534581 A JP H0534581A JP 19199591 A JP19199591 A JP 19199591A JP 19199591 A JP19199591 A JP 19199591A JP H0534581 A JPH0534581 A JP H0534581A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- light receiving
- receiving element
- glass
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Automatic Focus Adjustment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はオートフォーカスカメラ
等に用いられるアクティブタイプの測距装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active type distance measuring device used in an autofocus camera or the like.
【0002】[0002]
【従来の技術】従来、アクティブタイプの測距装置は通
常、図5のようにカメラ本体1に固定された投光レンズ
2、受光レンズ3があり、投光素子4から投光レンズ2
を通して投光された光が被写体で反射され、受光レンズ
3を通して受光素子5の上に結像される。被写体の距離
に応じて受光素子5上に結像される位置が変化するので
半導体位置検出装置(以下、PSDと記載)等で受光位
置を検出し、距離を演算するように構成されている。2. Description of the Related Art Conventionally, an active type distance measuring device usually has a light projecting lens 2 and a light receiving lens 3 fixed to a camera body 1 as shown in FIG.
The light projected through is reflected by the subject, and is imaged on the light receiving element 5 through the light receiving lens 3. Since the position where the image is formed on the light receiving element 5 changes according to the distance of the subject, the semiconductor position detecting device (hereinafter referred to as PSD) or the like is used to detect the light receiving position and calculate the distance.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来例では図6のようにガラス6がカメラ本体1の前にあ
る場合、投光素子4から投光レンズ2を通して投光され
た光の大部分はガラス6を透過するが、ガラス6の表面
(または裏面)とカメラ本体1との間でわずかに拡散反
射された光が受光レンズ3を通して受光素子5を全面的
に照射してしまうので、高層ビルやタワーの展望室から
窓ガラス越しに遠景を撮影しようとした場合にはガラス
6を透過した主光線は被写体が遠景なので反射光は返っ
て来ないが拡散反射光が受光素子5を全面的に照射して
しまうので例えば1m〜2mの中間距離が測距されてし
まいピンボケ写真となってしまう欠点があった。However, in the above conventional example, when the glass 6 is in front of the camera body 1 as shown in FIG. 6, most of the light projected from the light projecting element 4 through the light projecting lens 2 is used. Passes through the glass 6, but the light slightly diffused and reflected between the front surface (or the back surface) of the glass 6 and the camera body 1 irradiates the light receiving element 5 through the light receiving lens 3 over the entire surface. If you try to shoot a distant view from the observatory of a building or tower through a window glass, the main ray that has passed through the glass 6 does not return reflected light because the subject is a distant view, but diffuse reflected light completely covers the light receiving element 5. However, there is a drawback that an intermediate distance of, for example, 1 m to 2 m is measured, resulting in a defocused photograph.
【0004】この問題点は近年、カメラの小形化に伴な
う投受光レンズ間距離の短縮化により特に顕著となるの
でカメラを小形化する上でのネックとなっていた。In recent years, this problem becomes particularly noticeable due to the reduction in the distance between the light emitting and receiving lenses accompanying the miniaturization of the camera, which has been a bottleneck in downsizing the camera.
【0005】また、ガラスからの拡散反射光を受光する
専用の受光素子を設けその出力の有無によりガラス越し
撮影か否かを判別する方法も考えられるが、コストアッ
プの要因になる。Further, a method of providing a dedicated light receiving element for receiving diffusely reflected light from the glass and discriminating whether or not the image is taken through the glass depending on the presence or absence of the output can be considered, but this causes a cost increase.
【0006】従って、本発明の目的は、このような欠点
のない、改良された測距装置を提供することであり、特
に、従来装置よりも著るしいコストアップを招かずに前
述の問題点を解決できる測距装置を提供することであ
る。Therefore, an object of the present invention is to provide an improved distance measuring device which does not have such drawbacks, and in particular, the above-mentioned problems do not result in a significant cost increase as compared with the conventional device. It is to provide a distance measuring device that can solve the above problem.
【0007】[0007]
【課題を解決するための手段】本発明による測距装置で
は、超近距離検出用受光素子とその出力を第1のレベル
および第2のレベルと比較する出力レベル判定手段を設
けることにより、出力レベルが第1のレベル以下なら通
常測距距離、第2のレベル以上なら超近距離、第1のレ
ベル以上で第2のレベル以下なら遠景撮影距離を選択す
るようにしたものである。In the distance measuring apparatus according to the present invention, by providing a light receiving element for detecting an ultra short distance and an output level judging means for comparing the output of the light receiving element with the first level and the second level, When the level is lower than the first level, the normal distance measurement distance is selected, when the level is higher than the second level, the ultra short distance is selected, and when the level is higher than the first level and lower than the second level, the distant view shooting distance is selected.
【0008】[0008]
【実施例】図1は本発明の特徴を最も良く表わす図面で
あり、同図に於いて1〜6は従来例と同じ構成要素であ
るから説明を省略する。7は超近距離検出兼ガラス検出
用の受光素子、8は受光素子の出力レベルを3段階に判
定する出力レベル判定手段、9は(キャノン2重積分等
の)公知の測距演算手段、10は出力レベル判定手段8
と測距演算手段9の出力を入力とし被写体距離を決定す
る距離決定手段である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a drawing best showing the features of the present invention. In FIG. 1, 1 to 6 are the same constituent elements as in the conventional example, and therefore their explanations are omitted. Reference numeral 7 is a light receiving element for super short distance detection and glass detection, 8 is an output level determining means for determining the output level of the light receiving element in three stages, and 9 is a known distance measuring operation means (such as Canon double integration). Is output level determination means 8
It is a distance determining means for determining the subject distance by using the output of the distance measuring calculation means 9 as an input.
【0009】図2は出力レベル判定手段8の実施例を示
し、11はオペアンプ、12は抵抗で受光素子7で受光
した光電流を電圧に変換する。13,14はコンパレー
タ、15,16,17は抵抗で基準電圧VREFを抵抗
15,16,17で分圧した値とオペアンプ11の出力
電圧を比較する。18,19はSR形のフリップフロッ
プであり、不図示の電源投入検出回路からのパワーアッ
プクリア信号PUCでリセットされ、各々コンパレータ
13,14のHレベル出力でセットされ、ガラス検出出
力GOUTおよび超近距離検出出力NOUTを出力す
る。FIG. 2 shows an embodiment of the output level judging means 8, 11 is an operational amplifier, and 12 is a resistor for converting the photocurrent received by the light receiving element 7 into a voltage. Reference numerals 13 and 14 are comparators, and reference numerals 15 and 16 and 17 are resistors for comparing the output voltage of the operational amplifier 11 with a value obtained by dividing the reference voltage VREF by the resistors 15, 16 and 17. Reference numerals 18 and 19 denote SR type flip-flops, which are reset by a power-up clear signal PUC from a power-on detection circuit (not shown) and set by the H-level outputs of the comparators 13 and 14, respectively, and detect the glass detection output GOUT and the super close range. The distance detection output NOUT is output.
【0010】図3は被写体距離が(A)6.0m,
(B)1.2m,(C)0.6m,(D)0.4m,
(E)0.2mの場合における受光素子5および受光素
子7上に結像される投光素子4の像20A、20B、2
0C、20D、20Eを示している。(A)から(E)
へ距離が近ずくにつれて投光素子4の中心が移動すると
共に1.2mでピントの合った像がボケて大きくなる。
ここで通常の測距範囲は6.0m〜0.6mであり、像
はほとんど受光素子5の中にあり、距離の変化に対する
出力の変化にリニアリティがある。(D)の0.4mに
なると像20Dは受光素子5および受光素子7にまたが
り、中心は受光素子5からはずれているので距離の変化
に対する出力変化にはリニアリティは無い。また受光素
子7上の像の割り合いは少ないが、距離が近いので受光
パワーは大きい。(E)の0.2mになると像20Eは
受光素子5の上には無く、ボケて大きくなっているので
受光素子7上には1/4〜1/5ほどが結像されてお
り、受光パワーは大きい。In FIG. 3, the object distance is (A) 6.0 m,
(B) 1.2 m, (C) 0.6 m, (D) 0.4 m,
(E) Images 20A, 20B, 2 of the light projecting element 4 formed on the light receiving element 5 and the light receiving element 7 in the case of 0.2 m
0C, 20D, and 20E are shown. (A) to (E)
As the distance becomes shorter, the center of the light projecting element 4 moves and the focused image becomes larger at 1.2 m.
Here, the normal distance measuring range is 6.0 m to 0.6 m, the image is almost in the light receiving element 5, and there is linearity in the change of the output with respect to the change of the distance. At 0.4 m of (D), the image 20D straddles the light receiving element 5 and the light receiving element 7, and the center is deviated from the light receiving element 5, so there is no linearity in the output change with respect to the change in distance. Further, the proportion of the image on the light receiving element 7 is small, but the light receiving power is large because the distance is short. At 0.2 m of (E), the image 20E does not exist on the light receiving element 5 and becomes large due to blurring. Therefore, about 1/4 to 1/5 of the image is formed on the light receiving element 7, The power is great.
【0011】上記構成による動作を図4のフローチャー
トに従って説明する。The operation of the above configuration will be described with reference to the flowchart of FIG.
【0012】#1で電源投入時パワーアップクリア信号
PUSが出力されフリップフロップ18および19はリ
セットされるので出力GOUTおよびNOUTはLレベ
ルになる(#2)。When the power is turned on in # 1, the power-up clear signal PUS is output and the flip-flops 18 and 19 are reset, so that the outputs GOUT and NOUT are at the L level (# 2).
【0013】#3で投光素子4による投光が開始され
る。At # 3, the light projecting by the light projecting element 4 is started.
【0014】被写体が通常測距範囲 (6m〜0.6m)
の場合 図3の(A),(B),(C)のように受光素子5の上
に結像された投光像20A,20B,20Cによる受光
出力が距離演算手段9によって演算され、距離情報とし
て距離決定手段10に入力される。また、受光素子7の
上には投光像20A,20B,20Cは結像されないの
で出力レベル判定手段8のオペアンプ11の出力は基準
電圧VREFと同電圧となり、コンパレータ13および
14の出力は共にLレベルのままでGOUTおよびNO
UTもLレベルなので#4,#5を経て#6のように距
離決定手段10は距離演算手段9の出力により距離を決
定する。The subject is a normal distance measuring range (6 m to 0.6 m)
In the case of , the light receiving output by the projected images 20A, 20B, 20C formed on the light receiving element 5 is calculated by the distance calculating means 9 as shown in FIGS. The information is input to the distance determining means 10. Further, since the projected images 20A, 20B, 20C are not formed on the light receiving element 7, the output of the operational amplifier 11 of the output level determination means 8 becomes the same voltage as the reference voltage VREF, and the outputs of the comparators 13 and 14 are both L. GOUT and NO at the level
Since the UT is also at the L level, the distance determining means 10 determines the distance from the output of the distance calculating means 9 like # 6 via # 4, # 5.
【0015】被写体が超近距離(0 .4m〜0.2m)
の場合 図3の(D)のように投光像20Dの一部が受光素子5
の上にある場合は距離演算手段9によって演算された距
離情報は0.6mより近いが、0.4mより遠い距離と
なる。像の重心移動に対し、受光素子5上の重心移動が
少ない。The subject is a very short distance (0.4 m to 0.2 m)
In such a case, as shown in FIG. 3D, part of the projected image 20D is the light receiving element 5
When it is above, the distance information calculated by the distance calculation means 9 is closer than 0.6 m but farther than 0.4 m. The movement of the center of gravity on the light receiving element 5 is small relative to the movement of the center of gravity of the image.
【0016】また、図3(E)のように投光像20Eが
受光素子上に無い場合は距離、演算手段9に入る信号が
無いので無限遠という距離情報が出てしまう。一方、受
光素子7上には図3の(D)の場合も、(E)の場合も
投光像20Dまたは20Eの一部があり、距離が近いの
で受光素子から出力される電流は大きく、オペアンプ1
1の出力電圧はコンパレータ14の出力をHレベルにす
るに十分な低い電圧となり、フリップフロップ19はセ
ットされ、超近距離検出出力NOUTもHレベルとなる
ので#4を介し#7のように距離演算手段9の出力によ
らず超近距離に被写体があると決定する。Further, when the projected image 20E is not on the light receiving element as shown in FIG. 3 (E), there is no signal to enter the calculating means 9, so that distance information of infinity appears. On the other hand, there is a part of the projected image 20D or 20E on the light receiving element 7 in both cases (D) and (E) of FIG. 3, and since the distance is short, the current output from the light receiving element is large, Operational amplifier 1
The output voltage of 1 becomes a voltage low enough to bring the output of the comparator 14 to the H level, the flip-flop 19 is set, and the super short distance detection output NOUT also becomes the H level, so that the distance like # 7 is passed through # 4. It is determined that there is a subject at a very short distance regardless of the output of the calculation means 9.
【0017】被写体がガラス越しの 遠景の場合 この場合はガラス6及びカメラ本体1で拡散反射された
光が受光素子5及び7の上を全面的に照射する。従って
受光素子5に入射する光の中心はほぼ受光素子5の中心
になるので距離演算手段9によって演算された距離情報
は1.2m前後の距離となる。また、投光素子4から投
光された光の大部分はガラス6を透過してしまい、反射
された光の一部が受光素子7を照射することになるので
受光素子7の受光パワーは小さいので、オペアンプ11
の出力電圧はコンパレータ13の出力はHレベルにする
が、コンパレータ14の出力はLレベルのままとなるよ
うな電圧となり、フリップフロップ18のみがセットさ
れ、ガラス検出出力GOUTのみがHレベルとなるので
#4,#5を介して#8のように距離決定手段10は距
離演算手段9の出力によらず例えば無限遠距離あるいは
撮影レンズの過焦点距離等の遠景撮影用の距離に決定す
る。In the case where the object is a distant view through glass, in this case, the light diffusely reflected by the glass 6 and the camera body 1 illuminates the entire surface of the light receiving elements 5 and 7. Therefore, since the center of the light incident on the light receiving element 5 is substantially the center of the light receiving element 5, the distance information calculated by the distance calculating means 9 is about 1.2 m. Further, most of the light projected from the light projecting element 4 passes through the glass 6 and a part of the reflected light irradiates the light receiving element 7, so that the light receiving power of the light receiving element 7 is small. Therefore, the operational amplifier 11
Output voltage of the comparator 13 is set to the H level, but the output of the comparator 14 remains at the L level, only the flip-flop 18 is set, and only the glass detection output GOUT becomes the H level. Like # 8 via # 4 and # 5, the distance determining means 10 determines the distance for long-distance shooting such as infinity or the hyperfocal distance of the taking lens, regardless of the output of the distance calculating means 9.
【0018】なお、上記実施例では2つのコンパレータ
でガラス検出、超近距離検出を行なったが、超近距離の
受光出力に比べて、ガラス検出は大部分がガラスを透過
してわずかな反射光しか受光できないので、超近距離の
みコンパレータで直接検出し、ガラス検出は積分して行
なった方が好ましい。In the above embodiment, the glass detection and the ultra short distance detection are performed by the two comparators, but most of the glass detection is transmitted through the glass and slightly reflected light as compared with the super short distance received light output. Since only the light can be received, it is preferable to directly detect only the ultra-short distance by the comparator and integrate the glass detection.
【0019】測距演算手段への入力を切換えて通常測距
用受光素子とガラス検出用受光素子を時分割に測距演算
手段に入力し、出力レベル判定手段と測距演算手段を兼
用しても良い。The input to the distance measuring calculation means is switched to input the normal distance measuring light receiving element and the glass detecting light receiving element to the distance measuring calculation means in a time-sharing manner so that the output level determining means and the distance measuring calculation means can also be used. Is also good.
【0020】[0020]
【発明の効果】以上説明した様に、本発明による測距装
置によれば、超近距離検出用受光素子とガラス検出用受
光素子を兼用して受光出力レベルの大小により超近距離
とガラスとを区別することによりほとんどコストアップ
無しにガラス越し遠景撮影が可能となる。As described above, according to the distance measuring apparatus of the present invention, the light receiving element for detecting the ultra-short distance and the light receiving element for detecting the glass are used in combination, so that the light receiving output level is large and the distance between the ultra-short distance and the glass is large. By distinguishing between, it is possible to shoot a distant view through the glass with almost no increase in cost.
【図1】本発明を実施したカメラのブロック図。FIG. 1 is a block diagram of a camera embodying the present invention.
【図2】図1の出力レベル判定手段の一実施例の回路
図。FIG. 2 is a circuit diagram of an embodiment of the output level determining means shown in FIG.
【図3】被写体距離による受光素子上へ結像反射光を示
す図。FIG. 3 is a diagram showing image formation reflected light on a light receiving element depending on a subject distance.
【図4】本発明の動作フローチャート。FIG. 4 is an operation flowchart of the present invention.
【図5】カメラの測距装置の投受光光学系の構成図。FIG. 5 is a configuration diagram of a light emitting / receiving optical system of a distance measuring device of a camera.
【図6】ガラス越し撮影での不要反射光の光路図。FIG. 6 is an optical path diagram of unnecessary reflected light when photographing through glass.
1…カメラ本体 2…投光レンズ 3…受光レンズ 4…投光素子 5…通常測距用受光素子 6…ガラス 7…超近距離検出兼ガラス検出用受光素子 8…出力レベル判定手段 9…距離演算手段 10…距離決定手段 DESCRIPTION OF SYMBOLS 1 ... Camera main body 2 ... Emitting lens 3 ... Light receiving lens 4 ... Emitting element 5 ... Normal distance measuring light receiving element 6 ... Glass 7 ... Ultra short distance detection and glass detecting light receiving element 8 ... Output level determination means 9 ... Distance Computing means 10 ... Distance determining means
Claims (1)
ィブタイプの測距装置において、前記受光素子の出力を
第一のレベル及び第二のレベルと比較する出力レベル判
定手段を設けたことを特徴とする測距装置。Claim: What is claimed is: 1. An active-type distance measuring apparatus having a light-receiving element for detecting an ultra-short distance, wherein an output level determination is made by comparing the output of the light-receiving element with a first level and a second level. A distance measuring device comprising means.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19199591A JP2950654B2 (en) | 1991-07-31 | 1991-07-31 | camera |
DE69227414T DE69227414T2 (en) | 1991-07-30 | 1992-07-29 | Distance measuring device |
EP92112948A EP0525747B1 (en) | 1991-07-30 | 1992-07-29 | Distance measuring apparatus |
US08/169,756 US5361118A (en) | 1991-07-30 | 1993-12-20 | Distance measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19199591A JP2950654B2 (en) | 1991-07-31 | 1991-07-31 | camera |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0534581A true JPH0534581A (en) | 1993-02-12 |
JP2950654B2 JP2950654B2 (en) | 1999-09-20 |
Family
ID=16283866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19199591A Expired - Fee Related JP2950654B2 (en) | 1991-07-30 | 1991-07-31 | camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2950654B2 (en) |
-
1991
- 1991-07-31 JP JP19199591A patent/JP2950654B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2950654B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4688919A (en) | Automatic focusing camera | |
US4593987A (en) | Method and device for automatic exposure control by programs | |
JP3073897B2 (en) | Distance measuring device | |
US6718133B2 (en) | Measuring distance device | |
US4529304A (en) | Zone sensing apparatus | |
JPH0346507A (en) | Distance measuring instrument | |
US5655160A (en) | Distance measuring apparatus | |
JP2737388B2 (en) | Electronic camera autofocus device | |
JPH0534581A (en) | Distance measuring device | |
JPS58122421A (en) | Distance measuring deivce | |
JP2002090616A (en) | Focus detector for camera | |
JPS61144615A (en) | Automatic focus detector | |
JPS59193307A (en) | Distance measuring apparatus | |
JPS5993409A (en) | Focusing error detector | |
JPH0534583A (en) | Distance measuring device | |
JP3199969B2 (en) | Multi-point distance measuring device | |
JPH01156694A (en) | Photoelectric switch | |
SU883843A1 (en) | Optical electronic device for automatic focusing | |
US5668626A (en) | Distance measuring apparatus | |
JP3233435B2 (en) | Distance measuring device | |
JPH095617A (en) | Auto-focusing device | |
JP2002156577A (en) | Range-finder | |
JP2001108893A (en) | Distance measuring instrument and camera | |
JPS61201223A (en) | Range finder for autofocus camera | |
JPS60151507A (en) | Distance measuring instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |