JPH0517484B2 - - Google Patents

Info

Publication number
JPH0517484B2
JPH0517484B2 JP6865083A JP6865083A JPH0517484B2 JP H0517484 B2 JPH0517484 B2 JP H0517484B2 JP 6865083 A JP6865083 A JP 6865083A JP 6865083 A JP6865083 A JP 6865083A JP H0517484 B2 JPH0517484 B2 JP H0517484B2
Authority
JP
Japan
Prior art keywords
light
distance
receiving means
distance measurement
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6865083A
Other languages
Japanese (ja)
Other versions
JPS59193307A (en
Inventor
Takashi Kawabata
Susumu Matsumura
Tokuichi Tsunekawa
Juichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6865083A priority Critical patent/JPS59193307A/en
Priority to US06/601,054 priority patent/US4575211A/en
Publication of JPS59193307A publication Critical patent/JPS59193307A/en
Publication of JPH0517484B2 publication Critical patent/JPH0517484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は複数の測距視野を有し、各視野におい
て測距を行なう測距回路を備えた焦点調節装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a focus adjustment device that has a plurality of distance measurement fields and is equipped with a distance measurement circuit that performs distance measurement in each field of view.

従来、単一の測距視野を用いて測距を行なう装
置は、測距視野が狭くて被写体が該視野から外れ
てしまう事があつた。
Conventionally, in devices that perform distance measurement using a single distance measurement field of view, the distance measurement field of view is so narrow that the subject may fall out of the field of view.

又広い測距視野を用いた場合は、背景等の複数
距離の被写体の混入による誤測距が起こつた。
Furthermore, when a wide field of view for distance measurement is used, erroneous distance measurement occurs due to the inclusion of objects at multiple distances, such as the background.

この改良のため複数視野の測距結果を用いたも
のでも最至近等々単純な選択を用いた場合は、前
景等々の結果による誤測距が発生する事が有つ
た。
For this improvement, even if distance measurement results from multiple fields of view are used, if a simple selection such as closest distance is used, erroneous distance measurement may occur due to results such as the foreground.

本発明は上記事項に鑑みなされたもので、その
構成として複数の光軸に対して光束を投光する投
光手段と、各光軸における投光光束の測定対象か
らの反射光をそれぞれ受光する複数の受光手段を
有し、各受光手段出力に応じて、各光軸ごとの測
定対象に対する物体距離信号を求める測距回路を
備え、各光軸に対応する各測距視野での物体距離
を検出し焦点調節を行なう焦点調節装置におい
て、 前記光軸のうち中央部の光軸における投光光束
の測定対象からの反射光を受光する受光手段出力
に応じて中央部の測距視野での物体距離値を検出
する第1の検出回路と、前記複数の受光手段のう
ち少なくとも二つの受光手段からの出力に応じて
複数の測距視野での各物体距離値の平均値を検出
する第2の検出回路と、第1の検出回路にて検出
された物体距離値と第2の検出回路にて検出され
た前記平均値のうち近距離を表わす検出結果を選
択する選択回路を設け、該選択された検出結果に
よりピント合わせを行なうことにより中央部で至
近に位置する被写体に対して十分な考慮をはらう
とともに、中央部以外に位置する前景等々の被写
体をも考慮し、ピント調節を行ない種々な撮影画
面に対しても好適なピント調節を行なわせる焦点
調節装置を提供せんとするものである。
The present invention has been made in view of the above-mentioned matters, and includes a light projecting means that projects a light beam onto a plurality of optical axes, and a light projector that receives reflected light from a measurement target of the projected light beam on each optical axis. It has a plurality of light receiving means, and is equipped with a distance measuring circuit that obtains an object distance signal for the measurement target for each optical axis according to the output of each light receiving means, and calculates the object distance in each ranging field corresponding to each optical axis. In a focus adjustment device that detects and adjusts focus, an object is detected in a distance measurement field of view at a center portion according to an output of a light receiving means for receiving reflected light from a measurement target of a projected light beam on a central optical axis among the optical axes. a first detection circuit that detects a distance value; and a second detection circuit that detects an average value of each object distance value in a plurality of distance measuring fields according to outputs from at least two light receiving means among the plurality of light receiving means. a detection circuit; and a selection circuit for selecting a detection result representing a short distance from among the object distance value detected by the first detection circuit and the average value detected by the second detection circuit; By adjusting the focus based on the detection results, sufficient consideration is given to the subject located close to the center, and the focus is adjusted to take into consideration subjects such as the foreground located outside the center, allowing for various types of shooting. It is an object of the present invention to provide a focus adjustment device that allows suitable focus adjustment to be made on a screen as well.

第1図は本体の作動例で、右側に被写体例、左
側にその前後関係及び本体の測距結果を左側の矢
印で、右側に従来の平均測距例をAで、最至近結
果をMで、中央部のみの測距例をCで示す。
Figure 1 shows an example of the operation of the main unit, with an example of the subject on the right, its context and distance measurement results on the left with the arrow on the left, an example of conventional average distance measurement with A on the right, and M with the closest result. , C shows an example of distance measurement only at the center.

即ち1−1に示す様に平坦な被写体面では全て
同じ結果となる。しかし1−2に示す様に中央近
くの測距部に遠景(背景)が有つた場合には、平
均的測距では背景に引つぱられて被写体が前ピン
になつてしまう。
That is, as shown in 1-1, the same result is obtained for all flat object surfaces. However, as shown in 1-2, if there is a distant view (background) in the distance measuring section near the center, the subject will be brought into focus by the background in average distance measurement.

又1−3に示す様に中央に被写体の有る場合は
やはり平均測距では前ピンになつてしまう。
Also, as shown in 1-3, if there is a subject in the center, the average distance measurement will still focus on the front.

逆に前景をアレンジのため入れた場合は1−4
に示す様に最至近を優先する測距では、その前景
に引つぱられ、後ピンになつてしまう。
On the other hand, if you include the foreground for arrangement, it will be 1-4.
As shown in Figure 2, when distance measurement prioritizes the closest object, the object is drawn to the foreground and becomes the rear focus.

又2人を撮る場合には1−5に示す様に中央部
測距では背景を測距し、又平均的測距においても
背景により被写体が前ピンになつてしまつた。
Furthermore, when photographing two people, as shown in 1-5, the background was measured in the central distance measurement, and even in the average distance measurement, the subject was brought into focus due to the background.

これに対して本発明によれば平均的多点測距に
加えて中央重点的測距を採用しているので、1−
1〜1−3に示す様な場合には主被写を選択して
ピント調節し、又1−4に示す様な場合には近景
にピントが合うことを防止し、更に1−5に示す
様な場合にも背景にピントが合うことを防止出来
るものである。
On the other hand, according to the present invention, center-weighted ranging is adopted in addition to average multi-point ranging, so 1-
In the cases shown in 1 to 1-3, select the main subject and adjust the focus, and in the cases shown in 1-4, prevent the foreground from being in focus, and further as shown in 1-5. This can prevent the background from being brought into focus in various situations.

前記の目的の為本案発明では以下の構成を採っ
た。
For the above purpose, the present invention adopts the following configuration.

第2図は本案発明の実施例で11の発光素子及
び12の光学部材により若干角度差を有する1
3,14,15の3ビームを若干の上下差と供に
投光を被写体に向かつて行ない被写体面に3図に
示す様な投光を行なう。
Figure 2 shows an embodiment of the present invention, in which 11 light emitting elements and 12 optical members have a slight angle difference.
Three beams 3, 14, and 15 are projected toward the object with a slight vertical difference, and the light is projected onto the object surface as shown in FIG. 3.

本件では測距の為このビームを至近側から無限
側へ第2図に示す方向へ走査し、それと同時に対
応距離に図示しない撮影レンズをフオーカスし、
合焦に至つた時の測距信号によりこの走査行為を
中止させる事により自動焦点を行なうものとす
る。
In this case, for distance measurement, this beam is scanned from the closest side to the infinity side in the direction shown in Figure 2, and at the same time, a photographic lens (not shown) is focused on the corresponding distance.
Automatic focusing is performed by stopping this scanning action based on the distance measurement signal when focusing is achieved.

この被写体面上の走査による反射光を、17の
受光レンズにより18の受光光電変換素子上に投
影しその受光系により第3図の19,20,21
の各光点(測距部)の右への移動に対応し、19
の光点は図4の22→23の受光部への光点変化
へ、20の光点は図4の24→25の受光部への
光点変化へ、21の光点は26→27の受光部へ
の光点移動をもたらす。
The reflected light from this scanning on the object surface is projected onto 18 light-receiving photoelectric conversion elements by 17 light-receiving lenses, and the light-receiving system uses 19, 20, 21 in FIG.
Corresponding to the movement of each light point (distance measuring part) to the right, 19
The light point changes from 22 to 23 in Figure 4, the light point 20 changes from 24 to 25 in Figure 4, and the light point 21 changes from 26 to 27. This causes the light spot to move to the light receiving section.

この各光点移動に伴ない受光部光量変化即ち各
フオト・トランジスタの光電流変化即ち22→2
3の移動に伴ない初め多かつた28線の電流はや
がて29線の電流増加に変化する。
As each light point moves, the light intensity of the light receiving section changes, that is, the photocurrent of each phototransistor changes, that is, 22→2.
As the wire 3 moves, the current in the 28 wires, which increases at first, eventually changes to increase in the current in the 29 wires.

この各光電流は各々30〜35のダイオードと
36〜41のトランジスタにより構成する各々カ
レントミラー回路により電流反転を受ける。
Each of these photocurrents undergoes current inversion by a current mirror circuit constituted by 30 to 35 diodes and 36 to 41 transistors.

これにより22→23の光量変化は28→29
の電流増加に、42→43の電流増加へ変換され
る。
As a result, the light intensity change from 22 to 23 is 28 to 29
This is converted into a current increase of 42→43.

これにより44線には22,24,26の受光
光量に応じた電流、45線には23,25,27
の受光光量に応じた電流が流れ、即各光点の平均
測距を行なうことが可能となる。この電流を4
6,47の抵抗により電圧へ変換し、走査につれ
22→23の光量変化により44→45の電流変
化即ち44線の電圧は上昇し、45線の電圧は下
降する。
As a result, the 44th wire has a current corresponding to the amount of light received at 22, 24, and 26, and the 45th wire has a current of 23, 25, and 27.
A current flows in accordance with the amount of light received, and it becomes possible to immediately measure the average distance of each light spot. This current is 4
It is converted into a voltage by resistors 6 and 47, and as the scanning progresses, the current changes from 44 to 45 due to the change in light intensity from 22 to 23, that is, the voltage on line 44 increases and the voltage on line 45 decreases.

これを48の比較器により光点が平均的に中央
になつた時にHighになる信号を出力する。
48 comparators output a signal that becomes High when the light spot is centered on average.

以下同様に49の比較器は(22+24)の光
量と(23+25)の光量比較結果、50の比較
器は(22+26)と(23+27)の光量比較
を、51の比較器は(24+26)と(25+2
7)の光量比較を行なう。
Similarly, the 49th comparator compares the light intensity of (22+24) and (23+25), the 50th comparator compares the light intensity of (22+26) and (23+27), and the 51st comparator compares the light intensity of (24+26) and (25+2).
7) Compare the amount of light.

そして52の比較器は中央測距部24と25の
光量比較を行なう。
A comparator 52 compares the light amounts of the central distance measuring sections 24 and 25.

これにより48の比較で3点平均の測距出力
を、49〜51の比較で3点中2点の測距出力
を、52の比較で中央部測距出力を得る。
As a result, the distance measurement output of the average of three points is obtained by the comparison of 48, the distance measurement output of two out of three points is obtained by the comparison of 49 to 51, and the distance measurement output of the central part is obtained by the comparison of 52.

そして以上各出力を53のOR・gateで論理和
を採る事により以上の測距の走査による早い方即
ち近い方の合焦により54端子にHighを出力し
公知の自動測距を走査途中で中止せしめて合焦調
定する。
Then, by taking the logical sum of each of the above outputs with the OR gate of 53, the faster one, that is, the closer one, is focused by the above distance measurement scanning, and a high is output to the 54 terminal, and the known automatic distance measurement is stopped in the middle of scanning. At least adjust the focus.

前記実施例は3測距視野で2つの視野を複数多
数としたが3つ以上の視野についても例えば5の
内3個所等々に拡張可能である。
In the embodiment described above, a plurality of two fields of view are provided in three distance measurement fields, but it is also possible to extend the field of view to three or more fields, for example, to three out of five fields.

外光除去についても本件では略したが、類似の
同一発明人々による様に考慮する事が実用上は必
要である事は言うまでも無い。
Although external light removal is also omitted in this case, it goes without saying that it is practically necessary to consider it as similar inventions by the same inventors.

本件ではフオト・トランジスタを用いたが類似
の光電変換部を用いても良い。
Although a phototransistor is used in this case, a similar photoelectric conversion section may also be used.

又実際回路上も電流に限定される事は無く、
MOS,CCD等々の構造を用いても類似の判定論
理が可能である事は言うまでも無い。
Also, in actual circuits, it is not limited to current,
It goes without saying that similar decision logic is possible using structures such as MOS and CCD.

以上説明した様に本件では複数測距視野に基づ
く複数測距結果により使い易い自動測距を実現出
来る。
As explained above, in this case, easy-to-use automatic distance measurement can be realized using multiple distance measurement results based on multiple distance measurement fields of view.

又高感度フオト・トランジスタと高精度が得易
いカレント・ミラー回路により複数処理を並列容
易に構成可能にし、単なる比較器と合せて容易な
パイポーラ技術で実現出来る。
In addition, multiple processing can be easily configured in parallel using a highly sensitive photo transistor and a current mirror circuit that easily achieves high accuracy, and can be realized using easy bipolar technology in combination with a simple comparator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本件及び従来例の説明図、第2図は本
件の自動測距の一実施光学図、第3図は本件の投
光パターン図、第4図は本件の処理回路例の回路
図。 17……受光レンズ,18……光電変換素子。
Fig. 1 is an explanatory diagram of the present case and the conventional example, Fig. 2 is an optical diagram of an implementation of automatic distance measurement of the present case, Fig. 3 is a diagram of the light projection pattern of the present case, and Fig. 4 is a circuit diagram of an example of the processing circuit of the present case. . 17... Light receiving lens, 18... Photoelectric conversion element.

Claims (1)

【特許請求の範囲】 1 複数の光軸に対して光束を投光する投光手段
と、各光軸における投光光束の測定対象からの反
射光をそれぞれ受光する複数の受光手段を有し、
各受光手段出力に応じて、各光軸ごとの測定対象
に対する物体距離信号を求める測距回路を備え、
各光軸に対応する各測距視野での物体距離を検出
し焦点調節を行なう焦点調節装置において、 前記光軸のうち中央部の光軸における投光光束
の測定対象からの反射光を受光する受光手段出力
に応じて中央部の測距視野での物体距離値を検出
する第1の検出回路と、前記複数の受光手段のう
ち少なくとも二つの受光手段からの出力に応じて
複数の測距視野での各物体距離値の平均値を検出
する第2の検出回路と、第1の検出回路にて検出
された物体距離値と第2の検出回路にて検出され
た前記平均値のうち近距離を表わす検出結果を選
択する選択回路を設け、該選択された検出結果に
よりピント合わせを行なうことを特徴とする焦点
調節装置。
[Scope of Claims] 1. A light projecting means for projecting light beams onto a plurality of optical axes, and a plurality of light receiving means for respectively receiving reflected light from a measurement target of the projected light beams on each optical axis,
Equipped with a distance measuring circuit that obtains an object distance signal for the measurement target for each optical axis according to the output of each light receiving means,
In a focusing device that detects the object distance in each distance measurement field of view corresponding to each optical axis and adjusts the focus, the device receives reflected light from the measurement target of the projected light flux on the central optical axis among the optical axes. a first detection circuit that detects an object distance value in a central range-measuring field of view according to an output of the light-receiving means; and a plurality of distance-measuring fields of view according to outputs from at least two light-receiving means among the plurality of light-receiving means. a second detection circuit that detects the average value of each object distance value at , and a short distance between the object distance value detected by the first detection circuit and the average value detected by the second detection circuit; 1. A focus adjustment device comprising: a selection circuit that selects a detection result representing a focus adjustment circuit; and focusing is performed based on the selected detection result.
JP6865083A 1983-04-18 1983-04-18 Distance measuring apparatus Granted JPS59193307A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6865083A JPS59193307A (en) 1983-04-18 1983-04-18 Distance measuring apparatus
US06/601,054 US4575211A (en) 1983-04-18 1984-04-16 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6865083A JPS59193307A (en) 1983-04-18 1983-04-18 Distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPS59193307A JPS59193307A (en) 1984-11-01
JPH0517484B2 true JPH0517484B2 (en) 1993-03-09

Family

ID=13379784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6865083A Granted JPS59193307A (en) 1983-04-18 1983-04-18 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59193307A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800409A (en) * 1986-04-28 1989-01-24 Minolta Camera Kabushiki Kaisha Control device for use in a camera having an objective lens
JP2620235B2 (en) * 1987-04-24 1997-06-11 キヤノン株式会社 Signal forming device
JP4541479B2 (en) 2000-01-31 2010-09-08 キヤノン株式会社 Ranging device and camera

Also Published As

Publication number Publication date
JPS59193307A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US4983033A (en) Automatic range finder for camera
US4623237A (en) Automatic focusing device
JPH0380290B2 (en)
JPH05164552A (en) Range finder
JPH07120253A (en) Active autofocus device
JPH0517484B2 (en)
US4682872A (en) Signal processing apparatus for a semiconductor position sensing device
JPS59101611A (en) Focusing control device
JPH06317741A (en) Range finder
JPS61144615A (en) Automatic focus detector
EP0525674B1 (en) Distance measurement device
JP2559393B2 (en) Distance detector
JP2731159B2 (en) Camera multipoint ranging device
JPS6240409A (en) Automatic fucusing device
JP3140491B2 (en) Automatic focusing device
JPH03200940A (en) Range finder for camera
US4586806A (en) Camera range finder
JP3068886B2 (en) Automatic focusing device
JP3009513B2 (en) Distance measuring device for camera
JPH06137863A (en) Range measurement device
JP2764121B2 (en) Automatic focusing device
JP2969536B2 (en) Distance measuring device
JPH03140929A (en) Distance measuring device
JPH0534581A (en) Distance measuring device
JPH0440319A (en) Monocontact type optical displacement measuring instrument with focusing mechanism