JPS6082670A - Manufacture of silicon carbide film - Google Patents

Manufacture of silicon carbide film

Info

Publication number
JPS6082670A
JPS6082670A JP19022683A JP19022683A JPS6082670A JP S6082670 A JPS6082670 A JP S6082670A JP 19022683 A JP19022683 A JP 19022683A JP 19022683 A JP19022683 A JP 19022683A JP S6082670 A JPS6082670 A JP S6082670A
Authority
JP
Japan
Prior art keywords
substrate
silicon carbide
gas
bomb
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19022683A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP19022683A priority Critical patent/JPS6082670A/en
Publication of JPS6082670A publication Critical patent/JPS6082670A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form inexpensively a silicon carbide film on a substrate by subjecting a carbonaceous compd. such as CH4 and a silicon compd. such as SiCl4 which is introduced along with a carrier gas to a gaseous phase reaction by the energy such as plasma. CONSTITUTION:A carrier gas such as H2 from a bomb 1 is passed through liquid SiCl4, SiBr4, SiI4, etc. in a water bath 7 to evaporate the liquid, and spouted from an opening of an electrode 10 into a vacuum vessel 20 along with CH4, C2H6, C2H4, C2H2, etc. from a bomb 2. In this case, a doping gas such as B2H6 from a bomb 3 is added at need. The inside of said vacuum vessel 20 is evacuated to appropriate pressure with a diffusion pump 16, a mechanical booster pump, rotary oil pumps 17a and 17b, etc., and a substrate 12 attached to an electrode 11 is heated to a suitable temp. by a heater 13 and rotated by a rotary motor 14. Under said conditions, plasma is discharged between both electrodes 10 and 11 with a high-frequency electric power source 15, and CH4, etc. and SiCl4, etc. are subjected to a gaseous phase reaction to form an SiC film on the substrate 12.

Description

【発明の詳細な説明】 木登明け、シリコンのハロゲン化物の液体、すなわち、
EiCム、BiBn 、BiX+の少なくとも一つの中
ヘキャリアガスを導入し、このキャリアガスと炭素化合
物とのガヌとを気相反応させることにより基板上に安価
な炭化シリコンを形成するだめの炭化シリコン膜の製造
方法に関する、炭化シリコン(以下でけSiCとかく)
は、非常に堅い性質をもち、非常に高抵抗の電気的特性
をもつため、半導体のパッシベーション膜、電子写真感
光体の感光体膜等広い分野で利用されている。
[Detailed Description of the Invention] Akira Kito, silicon halide liquid, viz.
Silicon carbide is produced by introducing a carrier gas into at least one of EiC, BiBn, and BiX+, and causing a vapor phase reaction between the carrier gas and a carbon compound to form inexpensive silicon carbide on the substrate. Silicon carbide (hereinafter referred to as SiC) regarding the film manufacturing method
Because it has extremely hard properties and electrical properties of extremely high resistance, it is used in a wide range of fields such as passivation films for semiconductors and photoreceptor films for electrophotographic photoreceptors.

EiCの薄膜の作製方法として従来から用いられている
方法はOVD法が一般に用いられている。
The OVD method is generally used as a conventional method for manufacturing EiC thin films.

この方法は、シリコンの水素化物、すなわち、モノシラ
ン(SiH4)やジシラン(8i2Ha )とメタンガ
ス(、CjH4)との混合ガスを高周波プラズマ、熱、
あるいは光によって分解し2、基板上にSiOの膜を堆
積する方法である。
This method uses high-frequency plasma, heat,
Another method is to decompose it with light 2 and then deposit a SiO film on the substrate.

ところが、この方法で用いるシリコンの水素化物は非常
に高価な材料である。たとえばモノシランガスでn1f
l当り100円前後であり、さらにジシランではさらに
モノシランガスの数十倍の値段である。
However, the silicon hydride used in this method is a very expensive material. For example, monosilane gas n1f
The price is around 100 yen per liter, and disilane is several tens of times more expensive than monosilane gas.

したがって、EliC1d峙性は非常に優れたものを持
ちながら、製造費がかかるだめデバイスへの応用が難し
いという欠点を有している。
Therefore, although it has very good resistance to EliC1d, it has the disadvantage that it is difficult to apply to devices that are expensive to manufacture.

本発明けかかる欠点を除去したものであって、その目的
とするところは、安価な方法でSiC膜を作ることにあ
る。
The present invention eliminates these drawbacks, and its purpose is to produce SiC films in an inexpensive manner.

本発明の詳細については実施例をもって説明する。包相
反応の方法Kld′プラズマ、光、ν、による方法があ
るが、いずれも膜の特性上、大きな差はないのでプラズ
マCVDVcついて述べる。
The details of the present invention will be explained with reference to Examples. There are methods for the envelope phase reaction using Kld' plasma, light, and ν, but since there is no major difference in film characteristics between them, plasma CVDVc will be described.

実施例 坑1図は本発明の製造に用いる装置である。同図におい
て、1け千ヤリアガスのボンベ、2は炭素化合物のボン
ベ、3けドーピングガスのボンベ、40〜4cは調圧5
+ 5a、〜5cはマスフローコントローラ、6a〜6
eはガス配管、7はウォーターバス、8目フローメータ
、9けシリコンのハロゲン化物、10けガス吹出し口を
もつ高周波電極、11け高周波電極、12は基板、13
1−を基板加熱ヒーj、14け井桁回転モータ、151
−を高周波電源、16け油鉱散ポンプ、18けメカニカ
ルブースタポンプ、17aと17bとは油回転ポンプ、
19α〜19Cけパルプである。才だ20は真空容器で
ある。
Example Pit 1 Figure 1 shows an apparatus used in the production of the present invention. In the same figure, 1 is a cylinder of gas, 2 is a cylinder of carbon compound, 3 is a cylinder of doping gas, and 40 to 4c are pressure regulating cylinders.
+5a, ~5c are mass flow controllers, 6a~6
e is gas piping, 7 is water bath, 8-point flow meter, 9-piece silicon halide, 10-piece high-frequency electrode with gas outlet, 11-piece high-frequency electrode, 12 is substrate, 13
1- is a substrate heating heater, 14 parallel girder rotation motor, 151
- is a high-frequency power supply, 16-piece oil scattering pump, 18-piece mechanical booster pump, 17a and 17b are oil rotary pumps,
It is a 19α to 19C pulp. 20 is a vacuum container.

Si:Oの製造方法について叩明する。The method for producing Si:O will be explained.

あらかじめ、油拡散ポンプ16と油回転ポンプ17cL
によって真空容器20の内部を5XiO−’Torr以
下に排気し、基析加熱ヒー〃16によって基板の温度を
150〜300℃のコrX当な福1度、たとえば200
℃に制御する。
In advance, oil diffusion pump 16 and oil rotary pump 17cL
The inside of the vacuum chamber 20 is evacuated to below 5XiO-'Torr, and the temperature of the substrate is heated to 150 to 300°C by 1°C, for example, 200°C.
Control to ℃.

真空容器20の内圧が沖、定の圧力に達しだところで、
排頻系を油拡散ポンプからメカニカルブースタ18と油
回転ポンプ17bの系列に切り替える。
When the internal pressure of the vacuum container 20 reaches a certain pressure,
The exhaust system is switched from an oil diffusion pump to a series of mechanical booster 18 and oil rotary pump 17b.

1bj時にキャリアガス、すなわち、水素、アルゴン、
ヘリウムのいずれか一つたとえば水素ガスの入ったボン
ベ1から、調圧器4aでI Kg/cyn2に圧力制御
したガスをマスフローコントローラ5cで流量をj O
Oc c/min程度に流量制御して配管6Cに流ず。
At 1bj, carrier gas, i.e., hydrogen, argon,
A gas whose pressure is controlled to I Kg/cyn2 by a pressure regulator 4a is supplied from a cylinder 1 containing one of helium gases, for example, hydrogen gas, and the flow rate is adjusted to J O by a mass flow controller 5c.
The flow rate is controlled to about Oc c/min so that it does not flow into pipe 6C.

配管6cを通ったガスはシリコンのハロゲン化物5ic
t+ 、Sl+:Br+ 、 Bi I4の一つ、たと
えばBi仏の液体9の中を通って配管6dへと流れる。
The gas passing through the pipe 6c is silicon halide 5ic.
t+, Sl+:Br+, Bi I4, for example, flows through the Bi Buddha liquid 9 to the pipe 6d.

このとき、5iOt4の温度はウォーターバス7によっ
て21°CVC(Mつ。21℃におけるSiCムの分圧
は、200 mW TO7’rであり、キャリアガスに
よって5iO14のガi◇1が配管6dK運ばれる。
At this time, the temperature of 5iOt4 is 21° CVC (M) by the water bath 7. The partial pressure of SiC at 21°C is 200 mW TO7'r, and the carrier gas carries 5iO14 gas i◇1 through the pipe 6dK. .

一方、炭素化合物、たとえばメタンガス(CiH4)の
入ったボンベ2から調圧器4bでI KVCIn2 に
圧力tlll al サh、 fc カスをマスフロー
コントローラ・5bで100cc/miガ、程度に流量
制御して、配管6bに流す。
On the other hand, the flow rate of a carbon compound such as methane gas (CiH4) is controlled to about 100 cc/mi by using a mass flow controller 5b, and then the gas is transferred from a cylinder 2 containing a carbon compound such as methane gas (CiH4) to a pressure of IKVCIn2 using a pressure regulator 4b. 6b.

ホy ヘJ + 言周圧54 c+ マスフローコント
ローラ5α、配管6ahドーピング用のガス系で、ホウ
素をSiC中にドーピングしだい場合にはジボラン(B
2H,)を、リンをドーピングしたい場合にはホスヒン
(PH3)のガスを適当に希釈してボンベ乙に充填し、
配管6αを通して流す。これらのガスは配管6eにおい
て混合され、電1i10の吹き出し口から真空容器内に
導入される。パルプ8け流量制御用のパルプで、真空容
器内の圧力が07〜1、37Orrになるように流量調
整を行なう。
Hoy HeJ + Peripheral pressure 54 c+ Mass flow controller 5α, piping 6ah In the doping gas system, as soon as boron is doped into SiC, diborane (B
If you want to dope 2H,) with phosphorus, dilute the phosphine (PH3) gas appropriately and fill it into a cylinder.
It flows through piping 6α. These gases are mixed in the piping 6e and introduced into the vacuum container from the outlet of the electrode 1i10. Using pulp for controlling the flow rate of 8 pulps, the flow rate is adjusted so that the pressure inside the vacuum container is 0.7 to 1.37 Orr.

この状態で回転モータ14によって、基板12f装着し
た電極11を約5 r、 p、 rnで回転しつつ、雷
啄10と電体11との間に高周波電力を電力11 Lプ
ラズマ放Nを生じさせる。
In this state, the rotary motor 14 rotates the electrode 11 attached to the substrate 12f at approximately 5 r, p, rn, and applies high frequency power between the thunderbolt 10 and the electric body 11 to generate electric power 11 L plasma emission. .

高周波の周波数は通常15.56MHzであるが、4M
Hzでもよい。また高周波−■力は電極の直径が、30
cmφの場合、300〜800 Wである。
The frequency of high frequency is usually 15.56MHz, but 4M
Hz may also be used. In addition, the high frequency −■ force is determined when the diameter of the electrode is 30
In the case of cmφ, it is 300 to 800 W.

一般に、高周波電力が上記の範囲では、71(力が太き
くなるに従って基板上にbs!長するSiCの成長速度
は増加する。たとえば500Wのと’h b9長速度は
約5μrrV/Hであり、800Wの場合には約7 t
trn/Hとなる。
Generally, when the high frequency power is in the above range, the growth rate of long SiC on the substrate increases as the power increases. For example, the growth rate of long SiC on the substrate at 500 W is about 5 μrr V/H, Approximately 7 tons for 800W
trn/H.

上記実施例では、シリコンのハロゲン化物トシて5iC
7!4を用いた場合について説明しだが、5iBn又は
Si工番の場合にも、ウォーターバスの温度を適当に制
御することによってまったく同櫛の結果が得られる。ま
た、電子写真感光体のような円筒形状でも、電極が異な
るの入で同様なsia膜を得ることができる。炭素化合
物ではメタンの他にエタン、エチレンあるいけアセチレ
ンでも同様の結果であ−た。
In the above example, 5iC is used as a silicon halide.
Although the case where 7!4 is used is explained, the same result can be obtained also in case of 5iBn or Si process number by appropriately controlling the temperature of the water bath. Further, even with a cylindrical shape such as an electrophotographic photoreceptor, a similar sia film can be obtained with different electrodes. Similar results were obtained for carbon compounds such as ethane, ethylene, and acetylene in addition to methane.

fJic模の製造コストを分析して入ると、従来の方法
、すなわちモノシランガスとメタンガスのプラズマCV
I)Kよる方法では、ガス化の占める割合は全体の30
〜40Ll)である。これはモノシランガスが非常に高
価な為である。゛ 覗、在モノシランガスは1g当り100円前後であり、
水素、メタン、アルゴン、ヘリウム等の価格に比べれば
5〜10倍の価格である。
Analyzing the manufacturing cost of the fJic model, we found that the conventional method, namely plasma CV using monosilane gas and methane gas,
I) In the K method, the proportion of gasification is 30% of the total.
~40Ll). This is because monosilane gas is very expensive.゛Look, monosilane gas costs around 100 yen per gram.
The price is 5 to 10 times higher than that of hydrogen, methane, argon, helium, etc.

本発明ではモノシランガスの代りに12当り、10円以
下のシリコンのハロゲン化物を千1用し、モノシランガ
スを用いた場合とほぼ同じ成長速度でSia嘆を形成し
ている。したがって、SiCの製造コスト(d従来のほ
ぼ7割になる。
In the present invention, a silicon halide of less than 10 yen per 12 parts is used instead of monosilane gas, and the Sia layer is formed at almost the same growth rate as when monosilane gas is used. Therefore, the manufacturing cost of SiC (d is approximately 70% of the conventional cost).

SiC膜が種々のデバイスに応用されるようになった現
在、製造コストの3削減は非常に大きな価値をもつもの
であり電子写真感光体、太陽電池等薄膜デバイヌー・と
応用分野は広い。
Now that SiC films are being applied to a variety of devices, the reduction in manufacturing costs is of great value, and the application fields are wide, including electrophotographic photoreceptors, solar cells, and other thin film devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造に用いる装置である。 1・・曲キャリアガヌのボンベ 2・・・、−・・炭素化合物のボンベ 3・・・・・・ドーピングガスのボンベ4α〜4c・・
・・・・調圧器 5a〜5C,、“°・マス70−コントry −ラ6a
〜6e・・・・・・ガス配管 7・・・・・・つJ−ターバス 8・・・・・・フローメータ 9・・・・・・シリコンのハロケア化’4h1a・・曲
ガス吹出し口をもつ高周波電極11・・・・・・高周波
型(夕 12・・・・・・基板 13 ・・・中基板加熱ヒータ 14・・・・・・基板回転モータ 15山・・・高周波電源 16・・・・・・油拡散ポンプ 17ct〜17b・・・・・・油回転ポンプ18・・・
・・メカニヵルノーヌタボンプ19a〜19c・・・・
・バルン 20・・・・・・真空容器 以上 出願人 株式会社 諏訪粒工舎 伏埋人 弁促士 最上 務
FIG. 1 shows an apparatus used for manufacturing the present invention. 1...Carrier Ganu cylinder 2...Carbon compound cylinder 3...Doping gas cylinder 4α~4c...
...Pressure regulators 5a to 5C, "°・mass 70-control-ra 6a
~6e...Gas piping 7...J-turbus 8...Flow meter 9...Silicon halocare '4h1a...Curved gas outlet High frequency electrode 11... High frequency type (Y 12... Substrate 13... Middle substrate heater 14... Substrate rotation motor 15 Mountains... High frequency power source 16... ...Oil diffusion pump 17ct~17b...Oil rotary pump 18...
・・Mechanical No Nuta Bomb 19a~19c・・・・
・Balun 20・・・・・・Vacuum containers and above Applicant: Suwa Zunkosha Co., Ltd. Fubujin, Promoter: Tsutomu Mogami

Claims (1)

【特許請求の範囲】 1)炭素化合物とシリコン化合物の気相反応による炭化
シリコン膜の製造方法において、炭素化合物としてメク
ン(C!)(4)、エタン(02H6)、エチレン(C
2J(4)、あるいはアセチレン(0zHz )を用い
シリコン化合物としてシリコンのハロゲン化物、すなわ
ちSiaム、5iBr4あるいは5Z14を用い、両者
の包体を気相反応させ、適当な温度の基板上に炭化シリ
コンを形成することを特徴とする炭化シリコン膜の製造
方法。 2)気相反応を行なわせる為の手段として、プラズマ、
熱、あるいは光のエネルギーを用いたことを特徴とする
特許請求の範囲第1項記載の炭化シリコン膜の製造方法
[Claims] 1) A method for producing a silicon carbide film by gas phase reaction of a carbon compound and a silicon compound, in which the carbon compound is mekun (C!) (4), ethane (02H6), ethylene (C
Using 2J (4) or acetylene (0 zHz), a silicon halide such as Siam, 5iBr4, or 5Z14 as the silicon compound, reacting the two packages in a gas phase, and depositing silicon carbide on a substrate at an appropriate temperature. 1. A method of manufacturing a silicon carbide film, comprising: forming a silicon carbide film. 2) Plasma,
The method for producing a silicon carbide film according to claim 1, characterized in that heat or light energy is used.
JP19022683A 1983-10-12 1983-10-12 Manufacture of silicon carbide film Pending JPS6082670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19022683A JPS6082670A (en) 1983-10-12 1983-10-12 Manufacture of silicon carbide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19022683A JPS6082670A (en) 1983-10-12 1983-10-12 Manufacture of silicon carbide film

Publications (1)

Publication Number Publication Date
JPS6082670A true JPS6082670A (en) 1985-05-10

Family

ID=16254579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19022683A Pending JPS6082670A (en) 1983-10-12 1983-10-12 Manufacture of silicon carbide film

Country Status (1)

Country Link
JP (1) JPS6082670A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100127A1 (en) * 2002-05-24 2003-12-04 Sig Technology Ltd. Method and device for the plasma treatment of workpieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100127A1 (en) * 2002-05-24 2003-12-04 Sig Technology Ltd. Method and device for the plasma treatment of workpieces

Similar Documents

Publication Publication Date Title
US2910394A (en) Production of semi-conductor material for rectifiers
JPS62158874A (en) Multi-layered structure of thin film and its formation
US4292343A (en) Method of manufacturing semiconductor bodies composed of amorphous silicon
JPS6063375A (en) Apparatus for producing deposited film by vapor phase method
JPS6126774A (en) Apparatus for forming amorphous silicon film
US4539934A (en) Plasma vapor deposition film forming apparatus
JPS6082670A (en) Manufacture of silicon carbide film
Lee et al. The large area deposition of diamond by the multi-cathode direct current plasma assisted chemical vapor deposition (DC PACVD) method
JPS6054999A (en) Production of carbon fiber grown in vapor phase
JPS58156594A (en) Preparation of hard coating film
US3099523A (en) Method of producing hyperpure silicon, silicon carbide and germanium
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS6054996A (en) Synthesis of diamond
JPS62180073A (en) Amorphous carbon film and its production
JPH0364466A (en) Production of amorphous silicon-based semiconductor film
JPS60231498A (en) Synthesizing method of diamond under low pressure
JPS6369220A (en) Manufacture of group iv semiconductor thin film
JPS62142778A (en) Formation of deposited film
JPS6280269A (en) Amorphous silicon film forming device
JPS62142780A (en) Formation of deposited film
JPS60109221A (en) Manufacture of amorphous silicon
JPH04214872A (en) Device for producing hard coating film
JPH06158323A (en) Method for synthesizing hard carbon coating film in vapor phase
Choi et al. Alternatively matched rf-PECVD system for diamond synthesis
JPH0656583A (en) Method for accumulation of thin diamond film