JPS6082615A - Production of steel sheet having high drawability - Google Patents

Production of steel sheet having high drawability

Info

Publication number
JPS6082615A
JPS6082615A JP18969283A JP18969283A JPS6082615A JP S6082615 A JPS6082615 A JP S6082615A JP 18969283 A JP18969283 A JP 18969283A JP 18969283 A JP18969283 A JP 18969283A JP S6082615 A JPS6082615 A JP S6082615A
Authority
JP
Japan
Prior art keywords
steel sheet
value
control
transformation
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18969283A
Other languages
Japanese (ja)
Other versions
JPH0133536B2 (en
Inventor
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18969283A priority Critical patent/JPS6082615A/en
Publication of JPS6082615A publication Critical patent/JPS6082615A/en
Publication of JPH0133536B2 publication Critical patent/JPH0133536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce the titled steel sheet having high Lankford value with a simple process in the production of steel sheet including a continuous annealing stage by controlling the annealing stage by specifying the relation between the carbon content of steel sheet and the rate of transformation to austenite. CONSTITUTION:An annealing stage is controlld so as to satisfy the formula, wherein Xc is wt% of carbon content of the steel sheet and Ygamma(%) is the rate of max. transformation rate of austenite when the steel sheet is heated to above the Ac1 transformation point and then cooled to Ar1 transformation point. By the formula, preferred relation between Xc(%) and Lankford value is obtd. Accordingly, in the continuous annealing of a steel sheet having a constant value for Xc(%), the control is to be performed so as to let the value Yalpha to satisfy the formula. By this method, the control is performed more easily because the variable to be controlled is only Yalpha, therefore, the control is executed easily and accuracy of the control is high.

Description

【発明の詳細な説明】 本発明は絞り加工性の良好な薄鋼板の製造方法に係り、
特に鋼の炭素含有量とオーステナイト変態率との関係で
j値を制御する製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thin steel sheet with good drawing workability,
In particular, the present invention relates to a manufacturing method for controlling the j value based on the relationship between the carbon content of steel and the austenite transformation rate.

通常の連続焼鈍ラインもしくは連続溶融亜鉛めっきライ
ン等により軟鋼もしくは高張力鋼板を連続焼鈍するに当
り、従来法に比し材質上、加工性、高張力性および時効
特性においてなお劣る点があることが大きな問題点とな
っている。
When continuously annealing mild steel or high-strength steel sheets using a regular continuous annealing line or continuous hot-dip galvanizing line, there may be some disadvantages in terms of material quality, workability, high tensile strength, and aging properties compared to conventional methods. This has become a major problem.

鋼板の加工性は該鋼板の材料特性のうち7値(ランクフ
ォード値)、In(伸び)、 y p (降伏点)など
と強い相関を有しており、府に深絞り加工には高いf値
が要求される。
The workability of a steel plate has a strong correlation with the 7 values of the material properties of the steel plate (Lankford value), In (elongation), yp (yield point), etc. A value is required.

7値を高(するために従来種々の方法が採られて来たが
、その主なるものは次の如(である。
Various methods have been used in the past to increase the 7 value, but the main ones are as follows.

(イ)鋼の組織を調整する、 仲) スラブ加熱条件を含む熱間圧延条件を制御する。(b) Adjust the structure of steel, Naka) Control hot rolling conditions including slab heating conditions.

C−1冷間圧延条件を最適化する。C-1 Optimize cold rolling conditions.

(−1焼鈍条件を制御する。(-1 Control the annealing conditions.

上記従来方法について、それぞれ具体的方法が開示され
一応の成功を収めているものがあるか、従来のこれらの
方法は一般に制の方法が複雑で制御しに((、従って製
造コスト高となる欠点が逝けられなかった。
Regarding the above-mentioned conventional methods, are there any concrete methods disclosed that have achieved a certain degree of success?These conventional methods generally have the disadvantage of being complicated and difficult to control ((, therefore, resulting in high manufacturing costs). could not pass away.

本発明の目的は、i値を高くするための上記従来方法の
欠点を解消し、簡単な方法によって適確に〒値を向上せ
しめ絞り加工性の良好な薄鋼板を得ることができる効果
的な方法を提供するKある。
The purpose of the present invention is to eliminate the drawbacks of the above conventional methods for increasing the i value, and to provide an effective method that can accurately increase the i value and obtain a thin steel plate with good drawing workability. K provides a method.

本発明の要旨とするところは次の如(である。The gist of the present invention is as follows.

すなわち、連続焼鈍工程を含む薄鋼板の製造方法におい
て、前記薄鋼板の炭素含有量をXc(重に%)とし、か
つ該鋼板なAc+変態点以上に加熱した後Ar+変態点
までの冷却における最大オーステナイト変態率をYr(
%)とするとき、 5≦Yγ(Xc) ≦50 なる関係式を満足するように前記焼鈍工程を制御するこ
とを特徴とする絞り加工性の良好な薄鋼板の製造方法、
である。
That is, in a method for manufacturing a thin steel sheet including a continuous annealing process, the carbon content of the thin steel sheet is Xc (heavily %), and the maximum carbon content of the steel sheet after heating to the Ac+ transformation point or higher and cooling to the Ar+ transformation point is The austenite transformation rate is Yr(
%), a method for producing a thin steel plate with good drawability, characterized in that the annealing process is controlled so as to satisfy the following relational expression: 5≦Yγ(Xc)≦50;
It is.

本発明者は各種冷延鋼板の連続焼鈍工程について検討中
、鋼板をAc+変態点以上に加熱する場合、その鋼の炭
素含有量とオーステナイト変態率との関係が焼鈍後の7
値と密接な関係にあることを見出し、更に追究の結果本
発明を得るに至ったものである。
The present inventor is currently studying a continuous annealing process for various cold-rolled steel sheets, and found that when a steel sheet is heated above the Ac+ transformation point, the relationship between the carbon content of the steel and the austenite transformation rate after annealing is 7.
It was discovered that there is a close relationship with the value, and as a result of further investigation, the present invention was obtained.

先ず本発明者の実験結果について説明する。第1表にて
示す如き化学組成を有する7種類の供試鋼を転炉にて溶
製した。
First, the experimental results of the present inventor will be explained. Seven types of test steels having chemical compositions as shown in Table 1 were melted in a converter.

上記転炉による溶鋼を連続鋳造後熱間圧延し、640℃
以上の温度で高温巻取すした。こり熱延鋼板を冷間圧延
して得た冷延鋼板を連続焼鈍し、この焼鈍中に変態した
オーステナイト分率を以て変態率Yγとし、該変態−$
Yγを連続的に測定して焼鈍後の鋼板の7値との相関関
係を調査した。
After continuous casting, the molten steel produced in the above converter is hot rolled to 640°C.
High temperature winding was carried out at the above temperature. A cold-rolled steel plate obtained by cold-rolling a hot-rolled steel plate is continuously annealed, and the austenite fraction transformed during this annealing is defined as the transformation rate Yγ, and the transformation −$
Yγ was continuously measured and its correlation with the 7 values of the steel plate after annealing was investigated.

この実験における各供試材の炭素言有量Xc(%ンと最
大オーステナイト変態率Yrと7値との関係は第1図に
示すとおりである。
The relationship between the carbon content Xc (%) and the maximum austenite transformation rate Yr of each sample material in this experiment is as shown in FIG.

第1図より明らかな如く、各供試材のC含有量Xc(%
)が少いほど7値は高いが、オーステナイト変態率Yr
が少な過ぎても、また多過ぎてもT値が小さくなる傾向
があり、またC含有量Xc(%ンが小い楊高〒値が得ら
れる変態率の範囲が広(なることがわかる。通常深絞り
成形用として最低限確保されていなければならない〒値
はほぼ1.5程度であることが知られている。従って第
1図に示す本実験結果によれば、C50,08%の鋼で
あればAC+変態点以上の適当な温度に適当な時間保持
すること罠より、〒≧1.5の鋼板が得られることがわ
かる。
As is clear from Fig. 1, the C content Xc (%
) is smaller, the 7 value is higher, but the austenite transformation rate Yr
It can be seen that if the T value is too small or too large, the T value tends to become small, and the range of transformation rates in which a small C content Xc (%) can be obtained is wide. It is known that the minimum 〒 value that must be secured for normal deep drawing is approximately 1.5. Therefore, according to the present experimental results shown in Figure 1, the C50.08% steel If so, it can be seen that a steel plate with 〒≧1.5 can be obtained by holding the temperature at an appropriate temperature above AC+transformation point for an appropriate time.

しかし、C含有量を囲域した鋼は、必然的に他の拐’ 
24 特性、例えば伸び特性も良好であるが、併せてデ
11度の加工に耐え得る材料であることを要する。従っ
て次の如きC含有量と7値の関係が望ましい。
However, steel with a high C content inevitably has other carbon content.
24 The material must have good properties, such as elongation properties, but also be able to withstand deformation of 11 degrees. Therefore, the following relationship between C content and 7 values is desirable.

o、 i≧C>0.06の範囲では7≧1.50.06
≧C> 0.02 r≧1.80.02≧C> 0. 
OO7r≧2.00、00 7≧CP≧2.2 そのためには炭素含有量:Xc(重量%)オーステナイ
トに態率:Yr とする第1図において、A直線はYr−50・(Xリ−
0゛08−0.08 にて表わされ、B直線はYγ=5・(Xリ にて表わさ
れるのでA直線とB直線にて挾まれる斜I碌で示される
鎖酸、すなわち s s Yr ・(XC)s 50 =lIJなる(1
)式を満足するKfl率Yγとなるように焼鈍時の均熱
温度もしくは保持時間で焼鈍すれば、これを達成できる
ことを見出した。更に好ましくは上記(1)式で示され
た範囲の下限から豹2/3のYr量となる条件で焼鈍す
ることが最も効果的であることも判明した。
o, in the range of i≧C>0.06, 7≧1.50.06
≧C> 0.02 r≧1.8 0.02≧C> 0.
OO7r≧2.00, 007≧CP≧2.2 To achieve this, the carbon content: Xc (wt%), the austenite ratio: Yr.
0゛08-0.08, and the B line is represented by Yγ=5・(X), so the chain acid shown by the diagonal I, which is sandwiched by the A line and the B line, that is, s s Yr ・(XC)s 50 = lIJ (1
) It has been found that this can be achieved by annealing at the soaking temperature or holding time during annealing so that the Kfl ratio Yγ satisfies the equation. More preferably, it has been found that it is most effective to perform annealing under conditions such that the amount of Yr is 2/3 from the lower limit of the range shown by the above formula (1).

すなわら、(1)式を満足する変態率Yγが得られる限
り、前記炭素含有量X c (%)と7値との好適な関
係が必然的に得られることが判明した。
In other words, it has been found that as long as the transformation rate Yγ that satisfies the formula (1) is obtained, a suitable relationship between the carbon content X c (%) and the 7 value is inevitably obtained.

従って炭素含有量Xc(%)−足の銅板の連続焼鈍に際
してオーステナイト変態率Yγか(IJ式を満足するよ
うに管理することによって該鋼板の下値を常に1.5以
上に管埋することができる。変態率Yγにて材質を管理
することによって上記のをまか次の如き効果が期待でき
る。
Therefore, by managing the carbon content Xc (%) - the austenite transformation rate Yγ during continuous annealing of the copper plate of the foot to satisfy the IJ equation, the lower value of the steel plate can always be kept at 1.5 or more. By controlling the material quality based on the transformation rate Yγ, the following effects can be expected in addition to the above.

(イ) 鋼板の材質、特にr値は焼鈍温度や時間とは直
接関係がな(、基本的には鋼板の各種組織、例えば結晶
粒、集合組織、析出物、変態相などを変えることに関係
し、材質そのものはその結果として得られたそれらの組
織と直接関係がある。従ってオルステナイト変態率Yγ
で管理する本発明方式は直接組織を管理することになる
のでより直接管理となり精度も高い。
(b) The material properties of the steel sheet, especially the r value, are not directly related to the annealing temperature or time (basically, they are related to changing the various structures of the steel sheet, such as crystal grains, texture, precipitates, transformed phases, etc.) However, the material itself is directly related to the resulting structure.Therefore, the orstenite transformation rate Yγ
The method of the present invention, which manages the organization, directly manages the organization, so it is more direct and has higher accuracy.

(ロ)鋼板の連続焼鈍ラインによる焼鈍工程は、短時間
処理であるため鋼板内部に生じている組織の変化現象は
、どの時点においても非平衡である。
(b) Since the annealing process using a continuous annealing line for steel plates is a short-time treatment, the phenomenon of changes in the structure occurring inside the steel plate is non-equilibrium at any point in time.

従つ℃焼鈍時の温度不足を時間で補足することも場合に
おいては可能であるか、管理パラメーターが多(なり匍
」御が困難であり、従って積置も低下する。それにひき
かえ、本発明によるオーステナイト変態率YγでV浬す
る場合は管理パラメーターが減少し、制御が容易であり
、従って精度も著しく向上する効果がある。
Therefore, in some cases, it is possible to compensate for the temperature deficiency during °C annealing by increasing the time, but the control parameters are difficult to control, and therefore the stacking capacity is also reduced.In contrast, the present invention In the case of V drilling at an austenite transformation rate of Yγ, the number of management parameters is reduced, control is easy, and the accuracy is therefore significantly improved.

実施例 第2表に示す如く、C量が0.0008%から0、 Q
 87%まで変化した化学組成を有する7種類の供試鋼
を転炉で溶製し、これを連続鋳造し直接熱間圧延もしく
は1000〜1280℃の種々のスラブの加熱条件で、
かつ700〜890℃の各種仕上げ圧延温度、350〜
700℃の各種巻取温度で熱間圧延した後50%以上の
圧下率で冷間圧延し、これから得た9種類の供試材をい
ずれも連続焼鈍炉にて焼鈍した。焼鈍中に測定されたオ
ーステナイト変態率Yγの最大値および製造条件および
焼鈍材の7値は第3表のとおりである。
As shown in Table 2 of Examples, the amount of C is from 0.0008% to 0, Q
Seven types of test steels with chemical compositions that changed by up to 87% were melted in a converter, and then continuously cast and directly hot rolled or heated under various slab heating conditions of 1000 to 1280°C.
and various finish rolling temperatures of 700-890°C, 350-890°C.
After hot rolling at various coiling temperatures of 700° C., cold rolling was performed at a reduction ratio of 50% or more, and nine types of test materials obtained therefrom were all annealed in a continuous annealing furnace. The maximum value of the austenite transformation rate Yγ measured during annealing, the manufacturing conditions, and the 7 values of the annealed material are shown in Table 3.

第2表、第3表より明らかなとお91本究明による限定
要件を満足する限り、鋼板のC廿有盆が少なげれば少い
ほど高いr値を示すことが明らかとなった。而して比較
例の供試材IA、6Aの試験結果から明らかな如く、鋼
の化学成分はそれぞれ供試材1および6と同一であって
も、上記(1)式を満足しない場合には、r値が格段に
低く、本発明の要件を満足する供試材/461〜7は、
いずれも高い7値を示し、絞り)M工性が良好であるこ
とを示している。
As is clear from Tables 2 and 3, it is clear that as long as the limiting requirements based on the 91 studies are satisfied, the less C-containing steel sheets have, the higher the r value will be. As is clear from the test results of Comparative Example Sample Materials IA and 6A, even if the chemical composition of the steel is the same as Sample Materials 1 and 6, respectively, if the above formula (1) is not satisfied, , Sample materials /461-7 that have a significantly low r value and satisfy the requirements of the present invention are:
All of them showed a high value of 7, indicating good drawing and machinability.

上記実施例より明らかな如(、オーステナイト変態率Y
γが(1)式を満足する範囲においては高いr値を示す
が、その理由は次の如くである。すなわち、未変態フェ
ライト粒の成長による+1111万位の集合組織は、基
本的には尚崗で焼鈍されるほど発達するが、その一方で
高温焼鈍するほどオーステナイト変態が進行して未fm
フェライト分率が低下するため、変態率Yrが適当なあ
る範囲でバランスするところがありi値が高くなること
によるものである。而して変態率Yγの最適範囲がC含
有量が多くなるほど狭(なり、かつC含有量が多いほど
、オーステナイト粒が均一かつ微細に分布し残留フェラ
イト粒の成長が阻害されるために変態率Yrの最適範囲
が低い方へずれる。従って本発明を満足する(1〕式の
範囲においてもC含有量Xc(%)が低いほど高7値を
得る変M 4Yγの最適範囲が広(なる。
As is clear from the above examples (, austenite transformation rate Y
A high r value is exhibited in a range where γ satisfies formula (1), and the reason for this is as follows. In other words, the +11.11 million-position texture due to the growth of untransformed ferrite grains basically develops the more it is annealed in Sangang, but on the other hand, the higher the annealing temperature, the more austenitic transformation progresses and the texture becomes untransformed.
This is because as the ferrite fraction decreases, the transformation rate Yr is balanced within a certain appropriate range and the i value increases. Therefore, the optimum range of the transformation rate Yγ becomes narrower as the C content increases. The optimum range of Yr shifts to the lower side. Therefore, even in the range of formula (1) that satisfies the present invention, the lower the C content Xc (%), the wider the optimum range of the variable M4Yγ for obtaining a high 7 value.

上記の如く、連続焼鈍工程を含む薄鋼板の製造方法にお
いて、本発明により焼鈍工程におけるAc+変j塵点以
上に力n熱した後ArI変態点までの冷却における最大
オーステナイト変態率Yγを前記C11式を満足するよ
うに?’jll呻することにより高い〒イ11の絞り加
工性の良好lt薄銅板を製造することができるようにな
った。而して不発明は管理パラメーターがオーステナイ
ト変態率のみであるので制御が容易であり、従って制御
精度も高(、ひいては製造コストの低減に大に寄与し得
る効果を収めることかできた8、
As described above, in the method of manufacturing a thin steel sheet including a continuous annealing process, the present invention allows the maximum austenite transformation rate Yγ in cooling to the ArI transformation point after heating to the Ac + j dust point in the annealing process to the ArI transformation point to be calculated using the above C11 formula. to satisfy you? By using this method, it has become possible to produce a thin copper plate with high drawability and good drawing workability. Since the only control parameter in the invention is the austenite transformation rate, it is easy to control, and therefore the control accuracy is high (and in turn, an effect that can greatly contribute to reducing manufacturing costs8)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明を得る実験における連続焼鈍における鋼
板のC含有tXcと最大オーステナイト変態率Yγおよ
び?値の関係を示す線図である。 代址人 弁理士 中 路 武 雄
Figure 1 shows the C content tXc, maximum austenite transformation rate Yγ and ? of a steel plate during continuous annealing in an experiment to obtain non-invention. FIG. 3 is a diagram showing the relationship between values. Representative Patent Attorney Takeo Nakaji

Claims (1)

【特許請求の範囲】[Claims] (1)連続焼鈍工程を含む薄鋼板の製造方法において、
前記薄鋼板の炭素含有量をXc(重量%)どし、かつ該
鋼板をAcIf−9i点以上に加熱した後Ar+変態点
までの冷却における最大オーステナイト変態率をYγ(
%)とするとき、 5≦Yr(Xc) ≦50 なる関係式を満足するように前記焼鈍工程を制御するこ
とを%徴とする絞りカn工件の良好な薄鋼板の製造方法
(1) In a method for manufacturing a thin steel sheet including a continuous annealing process,
The carbon content of the thin steel sheet is Xc (wt%), and the maximum austenite transformation rate when the steel sheet is heated to the AcIf-9i point or higher and then cooled to the Ar+ transformation point is Yγ (
%), a method for producing a thin steel sheet with good drawing work, comprising controlling the annealing process so as to satisfy the following relational expression: 5≦Yr(Xc)≦50.
JP18969283A 1983-10-11 1983-10-11 Production of steel sheet having high drawability Granted JPS6082615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18969283A JPS6082615A (en) 1983-10-11 1983-10-11 Production of steel sheet having high drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18969283A JPS6082615A (en) 1983-10-11 1983-10-11 Production of steel sheet having high drawability

Publications (2)

Publication Number Publication Date
JPS6082615A true JPS6082615A (en) 1985-05-10
JPH0133536B2 JPH0133536B2 (en) 1989-07-13

Family

ID=16245586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18969283A Granted JPS6082615A (en) 1983-10-11 1983-10-11 Production of steel sheet having high drawability

Country Status (1)

Country Link
JP (1) JPS6082615A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713123A (en) * 1980-06-23 1982-01-23 Nippon Steel Corp Production of cold rolled steel plate for deep drawing
JPS5773132A (en) * 1980-10-24 1982-05-07 Nippon Kokan Kk <Nkk> Production of cold rolled mild steel plate of superior deep drawability and aging resistance by continuous annealing
JPS5831034A (en) * 1981-08-17 1983-02-23 Sumitomo Metal Ind Ltd Production of cold rolled steel plate for drawing
JPS5852435A (en) * 1981-09-21 1983-03-28 Nippon Steel Corp Production of cold rolled steel plate of high ductility for deep drawing by continuous annealing
JPS58107414A (en) * 1981-12-22 1983-06-27 Nippon Steel Corp Manufacture of super deep drawing steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713123A (en) * 1980-06-23 1982-01-23 Nippon Steel Corp Production of cold rolled steel plate for deep drawing
JPS5773132A (en) * 1980-10-24 1982-05-07 Nippon Kokan Kk <Nkk> Production of cold rolled mild steel plate of superior deep drawability and aging resistance by continuous annealing
JPS5831034A (en) * 1981-08-17 1983-02-23 Sumitomo Metal Ind Ltd Production of cold rolled steel plate for drawing
JPS5852435A (en) * 1981-09-21 1983-03-28 Nippon Steel Corp Production of cold rolled steel plate of high ductility for deep drawing by continuous annealing
JPS58107414A (en) * 1981-12-22 1983-06-27 Nippon Steel Corp Manufacture of super deep drawing steel sheet

Also Published As

Publication number Publication date
JPH0133536B2 (en) 1989-07-13

Similar Documents

Publication Publication Date Title
JPS5842752A (en) Cold rolled steel plate with superior press formability
JPH05112831A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in workability
JPS6082615A (en) Production of steel sheet having high drawability
JPS6111294B2 (en)
JPS5910414B2 (en) Method for producing cold-rolled steel sheets with excellent deep drawability
JPS5856023B2 (en) Cold-rolled steel sheet with excellent deep drawability
JPH0541687B2 (en)
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPS5830931B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretchability
JPS6179731A (en) Manufacture of hot-rolled high-tension steel sheet
JPS61266556A (en) Cold rolled steel sheet having superior press formability for continuous annealing including roll cooling
JPS5817811B2 (en) Fukashiboriseino Sugretakouchiyouriyoreienkohanno Seizouhouhou
JP3403637B2 (en) Hot rolled steel sheet excellent in workability and method for producing the same
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH0657336A (en) Production of high strength galvannealed steel sheet for high working
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPH075989B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability
JPH07173575A (en) High workability high strength thin steel sheet having baking curability at low coating and baking temperature and production thereof
JPS6077957A (en) High-tension cold-rolled steel sheet with superior deep drawability
JPH0693376A (en) Cold rolled sheet of ferrite single phase for deep drawing having nonaging characteristic at ordinary temperature and its production
JPH06240363A (en) Production of high strength cold rolled steel sheet excellent in workability
JPH06306465A (en) Production of cold rolled steel sheet excellent in deep drawability and baking hardenability
JPH05239555A (en) Production of cold rolled steel sheet for extra deep drawing