JPS6082220A - Method for controlling stretching rate of stretcher leveler - Google Patents

Method for controlling stretching rate of stretcher leveler

Info

Publication number
JPS6082220A
JPS6082220A JP18960883A JP18960883A JPS6082220A JP S6082220 A JPS6082220 A JP S6082220A JP 18960883 A JP18960883 A JP 18960883A JP 18960883 A JP18960883 A JP 18960883A JP S6082220 A JPS6082220 A JP S6082220A
Authority
JP
Japan
Prior art keywords
stress
amount
stretched
epsilon
stretching rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18960883A
Other languages
Japanese (ja)
Other versions
JPS6230043B2 (en
Inventor
Haruhiko Yoshikawa
晴彦 芳川
Yasuo Uragami
浦上 康雄
Suketoki Odani
雄谷 助十紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Furukawa Aluminum Co Ltd
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Furukawa Aluminum Co Ltd
Priority to JP18960883A priority Critical patent/JPS6082220A/en
Publication of JPS6082220A publication Critical patent/JPS6082220A/en
Publication of JPS6230043B2 publication Critical patent/JPS6230043B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/05Stretching combined with rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

PURPOSE:To control stretching rate to an optimum value by detecting the stress- strain characteristic of a material to be stretched in the stretching process of said material. CONSTITUTION:The output signals X1, X2 of position detectors 1, 2 are added in an adding part 6 and thereafter a tension amt. epsilon' is determined in a divider part 7. Pressure sensors 9, 10 are provided to a hydraulic circuit for driving cylinders 1, 2 and the output signals P1, P2 therefrom are added in an adder part 11. The stress sigma generated in a material 8 to be stretched is determined in an integrating part 12. An arithmetic processing part 12 stores the coefft. E of longitudinal elasticity of the material 8, determines the initial deflection rate epsilonc from epsilon' and sigma within the elastic limit, determines the spring back amt. from sigma, epsilon' exceeding the elastic limit and determines finally the stretching rate epsilon. The stretching rate is determined at the point of said time and therefore the control of the stretching rate is made easy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明はストレッチヤレペ2のストレッチ量制御方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for controlling the amount of stretch of a stretch yarepe 2.

〔発明の背景〕[Background of the invention]

ストレッチャレベラはアルミニウム板などに引張応力を
与えて伸延し、そのひずみを除去するものであシ、アル
ミニウム板などには適正なストレッチ1ick与える必
要がある。しかしアルミニウム板などはその応力−ひす
み特性が均一ではなく、しかも−回の伸延ごとにアルミ
ニウム板などの応力−ひすみ特性を把握することL容易
でない。このため従来は、アルミニウム板などの規格値
に基づいてその応力−ひすみ特性を推定しつつ伸延を行
っておシ、必ずしも適正なストレッチ量が得られるとは
限らなかった。
A stretcher leveler applies tensile stress to an aluminum plate, stretches it, and removes the strain, and it is necessary to apply an appropriate stretch to the aluminum plate. However, the stress-strain characteristics of aluminum plates and the like are not uniform, and furthermore, it is not easy to understand the stress-strain characteristics of the aluminum plate and the like every time it is stretched. For this reason, in the past, stretching was performed while estimating the stress-strain characteristics of an aluminum plate based on standard values, and it was not always possible to obtain an appropriate amount of stretch.

〔発明の目的〕[Purpose of the invention]

この発明はこのような従来の問題点を解消すべく創案さ
れたもので、ストレッチitt最適値に制御するための
ストレッチ量制御方法を提供することを目的とする。
The present invention was devised to solve these conventional problems, and an object of the present invention is to provide a stretch amount control method for controlling the stretch itt to the optimum value.

〔発明の概要〕[Summary of the invention]

この発明に係るストレッチヤレベラのストレッチ量制御
方法は、ストレッチャレペラによる皺伸砥料の伸延過程
で被伸延材の応力−ひすみ特性會把握するものである。
A method for controlling the amount of stretch of a stretcher leveler according to the present invention is to grasp the stress-strain characteristics of a material to be stretched during the stretching process of wrinkle elongation abrasive by a stretcher leveler.

〔発明の実施例〕[Embodiments of the invention]

次にこの発明に係るストレッチ量制御方法の第一実施例
を図面に基づいて説明する1、第1図はこの実施例に用
いる制御装置を示すものであシ、この制御装置はストレ
ッチヤレベラの各シリンダ1.2の位@を検出する位置
検出器3.4と、シリンダ1の速度全検出する速度検出
器5を備えている。位UtL検出器1.2の出力信号X
1、X2は加算部6で加算され、その後除算部7で被伸
延材8の全長の2倍、2Lで前記fl](xi:+x2
)を割る。ここでめられた(xl+x2)/2Lは一般
に引張量ε′と呼ばれるものである。
Next, a first embodiment of the stretch amount control method according to the present invention will be explained based on the drawings. 1. FIG. 1 shows a control device used in this embodiment, and this control device is a stretch leveler. It is provided with a position detector 3.4 for detecting the position of each cylinder 1.2, and a speed detector 5 for detecting the entire speed of the cylinder 1. Output signal X of position UtL detector 1.2
1,
). (xl+x2)/2L determined here is generally called the tensile amount ε'.

前記シリンダ1.2を駆動する油圧回路には圧力センザ
9、lOが設けられ、各圧力センサ9.10の出力信号
P1、P2は加算部11で加算されている。シリンダ1
.2の有効断面ffl’!rA−1被伸延材の横断面積
f Apとするとき、加算部11でめられた和(P1+
P2)には、積算部12においてA/Apが掛けられる
。ここでめられた(P1+P2)XA/Ap は被伸延
材8に生じる応力σとなる。
The hydraulic circuit for driving the cylinder 1.2 is provided with pressure sensors 9 and 10, and the output signals P1 and P2 of each pressure sensor 9.10 are added in an adding section 11. cylinder 1
.. Effective cross section of 2 ffl'! When rA-1 is the cross-sectional area of the stretched material f Ap, the sum determined by the adding section 11 (P1+
P2) is multiplied by A/Ap in the integrating section 12. (P1+P2)XA/Ap determined here becomes the stress σ generated in the stretched material 8.

前記引張量ε′および応力σは演算処理部12に入力さ
れ、演算処理部12はε′およびσに基づいてストレッ
チ量6をめる。
The tensile amount ε' and the stress σ are input to the arithmetic processing section 12, and the arithmetic processing section 12 calculates the stretch amount 6 based on ε' and σ.

第3図に示すように、被伸延材8が弾性限度を越えてD
点までのひずみが生じているとき、被伸延材8の初期た
るみ針全ε。、スプリングバンク針金εEとすると、 6−ε′−(εC+6E) ・・・・・・・・・・・・
・・・(1)ここに初期たるみ惜εCは、弾性限度内で
の直線的な応力−ひすみ線図B−Cのひずみε′の座標
軸との交点Aにおけるε′の値である。またスプリング
バック量εgは、点りから直線B−Cに平行にひいた直
線とひずみε′の座標軸との交点Fと、点りからこの座
標軸に下した垂線の足D′との距離に対応するひずみ値
である。
As shown in FIG. 3, the material to be stretched 8 exceeds its elastic limit and
The initial slack needle total ε of the material to be distracted 8 when strained up to the point. , spring bank wire εE, 6−ε′−(εC+6E) ・・・・・・・・・・・・
(1) Here, the initial slack εC is the value of ε' at the intersection A with the coordinate axis of the strain ε' of the linear stress-strain diagram B-C within the elastic limit. Also, the springback amount εg corresponds to the distance between the intersection point F of a straight line drawn parallel to the straight line B-C from the point and the coordinate axis of strain ε', and the foot D' of the perpendicular line drawn from the point to this coordinate axis. is the strain value.

演算処理部12は被伸延材8の縦弾性係数Ek記憶して
お9、弾性限度内の6′とびから初期たるみ量εCをめ
、その後弾性限度を越えたび、ε′、例えばD点のσ、
ε′から 請求 量6全求める。
The arithmetic processing unit 12 stores the longitudinal elastic modulus Ek of the stretched material 8, calculates the initial slack amount εC from every 6' jump within the elastic limit, and calculates ε', for example, σ at point D, every time the elastic limit is exceeded. ,
Calculate the total billing amount from ε′.

演算処理部12 ”、(ブロック図で示せば第2図のよ
うになり、酸カニ処理部12は弾性限度内の0点全記憶
する記憶部13.14を備え、記憶部■3.14には、
スイッチ15.16奮介しでσ、ε′が入力される。ス
イッチ15、■6はコンパレータ17によって駆動され
、コンパレータ17は、σがあらかじめ設定されたσ。
Arithmetic processing section 12'' (The block diagram is as shown in Fig. 2, and the acid crab processing section 12 is equipped with a storage section 13.14 that stores all 0 points within the elastic limit, and a storage section 3.14. teeth,
σ and ε' are inputted through switches 15 and 16. The switches 15 and 6 are driven by a comparator 17, and the comparator 17 has σ set in advance.

0に等しくなったときにスイッチェ5.16を閉じる。Close switch 5.16 when equal to 0.

σeoは弾性限度内に確実に含まれる応力値σの値であ
り、このときのσ、ε′がσ 、 116として記憶部
13.14に記憶される。
σeo is the stress value σ that is definitely included within the elastic limit, and σ and ε′ at this time are stored as σ and 116 in the storage unit 13.14.

σCは減算部18忙おいてσがら減算され、さらにここ
でめられた(σ−σC)には積算部工9tsニーおい−
c1/mが掛けられる。この(σ−σc ) /Eは減
算部20においてε′から減算されて、ε′−(σ−σ
c ) / E が得られ、さらに減n部2oでこの値からε′Cが減算
され、 ε′−(σ−σc ) / E g ’(=ε′−(ε
′C−σc/E)−σ/E−ε′−(εC+6g)=t
(ストレッチ量)が得られる。
σC is subtracted from σ in the subtraction section 18, and the value determined here (σ-σC) is calculated by the quantity surveying section 9ts knee.
Multiplied by c1/m. This (σ-σc)/E is subtracted from ε' in the subtractor 20 to obtain ε'-(σ-σ
c) / E is obtained, and ε'C is further subtracted from this value in the subtraction n part 2o, giving ε'-(σ-σc)/E g'(=ε'-(ε
'C-σc/E)-σ/E-ε'-(εC+6g)=t
(stretch amount) is obtained.

このようにその時点でのストレッチ量ε會求めることが
できるので、ストレッチ量の制御は容易になる。ここで
所要ストレッチ量ヲ60とすると、ス)L/ツチ量6は
、この所要ストレンチ量60を記憶した関数発生器21
に入力され(第1図)、関数発生器21は、(’(+’
)に対応した関数f(ε)を出力する。関数f(ε)は
積算部22においてに倍され、シリンダ1.2の所要移
動速度vo=Kf(t)が与えらレル。コノv0は、F
liI記速度検出器5からの出力信号Vと比較部23に
おいて比較され、差(Vo V、)が出力される。差(
vo−V)はPI演算部24に入力され、PI演算部2
4は、シリンダ2.1を駆動する油圧ポンプ25.26
の吐出量を制御するための信号s2出力する。この信号
Sは、減aニ部27、増幅部28を介して油圧ポンプ2
5に入力され、また加算部29、増幅部30を介して油
圧ポンプ26に入力されている。前記位置検出器3.4
の出力信号xt、x2は減算部31に入力されて差ΔX
=(X2−xl)がめられ、この差(X2−Xi)はP
I演算部32で演算処理された後に前記減算部27、加
算部29に入力される。PI演算処理された差(x2−
xl)は前記出力信号Sを補正する信号となシ。
In this way, since the stretch amount ε at that point can be determined, the stretch amount can be easily controlled. Here, if the required stretch amount is 60, then the L/Tti amount 6 is calculated by the function generator 21 that stores this required stretch amount 60.
(Fig. 1), and the function generator 21 inputs ('(+'
) is output. The function f(ε) is multiplied by the integrating unit 22 to give the required moving speed vo=Kf(t) of the cylinder 1.2. Kono v0 is F
It is compared with the output signal V from the speed detector 5 in the comparator 23, and the difference (Vo V, ) is output. difference(
vo-V) is input to the PI calculation unit 24, and the PI calculation unit 2
4 is a hydraulic pump 25.26 driving the cylinder 2.1;
A signal s2 for controlling the discharge amount is output. This signal S is transmitted to the hydraulic pump 2 via the a reduction section 27 and the amplification section 28.
5, and is also input to the hydraulic pump 26 via an adder 29 and an amplifier 30. Said position detector 3.4
The output signals xt and x2 are input to the subtraction unit 31 and the difference ΔX
= (X2-xl), and this difference (X2-Xi) is P
After being subjected to arithmetic processing in the I calculation section 32, it is input to the subtraction section 27 and addition section 29. Difference processed by PI calculation (x2-
xl) is a signal for correcting the output signal S.

これによって両シリンダ1.2の移動量の均等化が図ら
れる。
This makes it possible to equalize the amount of movement of both cylinders 1.2.

この実施例では縦弾性係数Eを既知とし、て演算処理を
行つ′P:、が、実際の縦弾性係数Eと異なる縦弾性係
数Elを用いてストレッチ量61をめたとき、実際のス
トレッチ量8との誤差△εは次のとおシになる。(第4
図参照) Δa=a−gl=(σ−σc )X(1−E/El )
、’atこのような誤差の発生を防止するためには第5
図に示す演算処理部を用いた第二実施例を適用すべきで
ある。
In this example, the longitudinal elastic modulus E is known, and the calculation process is performed using 'P:, but when the stretch amount 61 is calculated using the longitudinal elastic modulus El, which is different from the actual longitudinal elastic modulus E, the actual stretch The error Δε with respect to quantity 8 is as follows. (4th
(See figure) Δa=a-gl=(σ-σc)X(1-E/El)
,'atTo prevent such errors from occurring, the fifth
The second embodiment using the arithmetic processing section shown in the figure should be applied.

第5図において、演算処理部はn個のコンパレータ17
−1〜17−71 を備え、各コンパレータ17−1〜
17−n はそれぞれスイッチ15−1〜15−7L、
16−1〜16−?! を駆動し得る。スイッチ15−
l−15−fiはε′の値を記憶部33−1〜33−n
に伝達するものであり、スイッチ16−1〜16−nは
σの@全記憶部33−1〜33−fiに伝達するもので
ある。
In FIG. 5, the arithmetic processing section includes n comparators 17.
-1 to 17-71, each comparator 17-1 to
17-n are switches 15-1 to 15-7L, respectively;
16-1 to 16-? ! can be driven. Switch 15-
l-15-fi stores the value of ε′ in the storage units 33-1 to 33-n.
The switches 16-1 to 16-n transmit the data to all storage units 33-1 to 33-fi of σ.

各コンパレータ17−1〜17−かには被伸延材の弾性
限度内の異なるσの値σ10〜σf%□がそれぞれ入力
されておシ、コンパレータ17−1〜17−nはσの値
がσ10〜σnoVC等しくなったときに、その時点の
び、6′を記憶部33−1〜33−九に入力する。記憶
部33−1〜33−nはσ、ε′の他に(=’)”、6
′×σ 全記憶し、例えば、記憶部33−1はσlOお
よびこれに対応したa(Ol(ε’lo ) ”、ε′
1o×σ10’k、記憶部33−fiは。
Different σ values σ10 to σf%□ within the elastic limit of the stretched material are input to each of the comparators 17-1 to 17-n, and the comparators 17-1 to 17-n have input values of σ10 to σf%□. .about..sigma.noVC, at that point in time, 6' is inputted into the storage units 33-1 to 33-9. In addition to σ and ε', the storage units 33-1 to 33-n also store data such as (=')'', 6
For example, the storage unit 33-1 stores σlO and the corresponding a(Ol(ε'lo)'', ε'
10 x σ10'k, storage section 33-fi.

σ′no およびこれに対応したε’?IQ、(t /
ft、 ) l、ε′no×σnoを記憶する。第6図
に示すように、このように記憶されたσlO・・・・・
・σno−”10・・・・・・anoは弾性限度内の応
力−ひすみ線図上の複数の点1.2、・・・・・・フ1
を示す。記憶部33−1〜33−nには演算部34が接
続され、演算部34は点1.2、・・・・・・nの回帰
直線、すなわち応力−ひずみ線図の弾性限度内の部分の
最小二乗近似をめ、これから縦弾性係数Eおよび初期た
るみ量tcを算出する。
σ′no and the corresponding ε′? IQ, (t/
ft, ) l, ε′no×σno are stored. As shown in FIG. 6, σlO stored in this way...
・σno-"10...ano is a plurality of points 1.2,...F1 on the stress-strain diagram within the elastic limit
shows. A calculation unit 34 is connected to the storage units 33-1 to 33-n, and the calculation unit 34 calculates the regression line of points 1.2, . . . n, that is, the portion within the elastic limit of the stress-strain diagram. The longitudinal elastic modulus E and the initial sag amount tc are calculated from the least squares approximation.

このように弾性限度内の複数の実測値を採れば、前述の
ストレッチ量の誤差Δεを最小限に抑えることができ、
ストレッチ蒲、f:よシ適正に制御し得る。
By taking multiple measured values within the elastic limit in this way, it is possible to minimize the error Δε in the amount of stretch described above.
Stretching f: Can be properly controlled.

〔発明の効果〕〔Effect of the invention〕

前述のとおシ、この発明に係るス訃しッチャレベラのス
トレッチ量制御方法は、皺伸砥材の伸延過程で被伸延部
の応力−〇・ずみ特性音把握するので、ストレッチM 
k f&適値に制御し得るという優れた効果を有する。
As mentioned above, the method for controlling the amount of stretch of the scraper leveler according to the present invention grasps the stress-strain characteristic sound of the part to be stretched during the stretching process of the wrinkle-stretched abrasive material, so the stretch M
It has an excellent effect of being able to control k f& to an appropriate value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例に用いる制御装置を示す
ブロック図、第2図は同実施例における演算処理部を示
すブロック図、第3図は同実施例におりる演算過程を説
明ラーるための応力−ひずみ線図、第4■<1は第一実
施例における誤差の発生状況全説明するための応力−ひ
すみヤA図、第5図は第二実施例におりる演9処理部を
示すブロック図、第6図は同実施例における演n過程を
説明するための応力−ひずみ線図である。 1.2・・・シリンダ、3.4・・・位置検出器、5・
・・速度検出器、6・・・加算部、7・・・除算部、8
・・・被伸延部、9.10・・・圧力センサ、11・・
・加算部、12・・・演算処理部、13.14・・・記
憶部、15.16・・・スイッチ、17・・・コンパレ
ータ、18・・・加算部、19・・・積算部、2o、2
0’・・・減算部、21・・・関数発生器、22・・・
積算部、23・・・比較部、24・・・PI演算部52
5.26・・・油圧ポンプ、27・・・減算部、28・
・・増幅部、29・・・加算 部、30・・・増1閣部
、31・−・減算部、32・・・PI演算部、33−1
〜33−n・・・記憶部、34・・・演算部。 代理人 鵜 沼 辰 之 (ほか1名)
Fig. 1 is a block diagram showing a control device used in a first embodiment of the present invention, Fig. 2 is a block diagram showing a calculation processing section in the same embodiment, and Fig. 3 explains the calculation process in the same embodiment. Fig. 4 is a stress-strain diagram for explaining the entire error occurrence situation in the first embodiment, and Fig. 5 is a stress-strain diagram for explaining the entire error occurrence situation in the first embodiment. FIG. 6 is a block diagram showing the processing section 9, and FIG. 6 is a stress-strain diagram for explaining the operation process in the same embodiment. 1.2...Cylinder, 3.4...Position detector, 5.
... Speed detector, 6... Addition section, 7... Division section, 8
...Distracted part, 9.10...Pressure sensor, 11...
- Addition unit, 12... Arithmetic processing unit, 13.14... Storage unit, 15.16... Switch, 17... Comparator, 18... Addition unit, 19... Integration unit, 2o ,2
0'... Subtraction unit, 21... Function generator, 22...
Integration unit, 23... Comparison unit, 24... PI calculation unit 52
5.26...Hydraulic pump, 27...Subtraction section, 28.
... Amplification section, 29... Addition section, 30... Addition section, 31... Subtraction section, 32... PI calculation section, 33-1
~33-n... Storage unit, 34... Arithmetic unit. Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] (1) ストレッチャレペラで被伸延材を伸延する際に
、被伸延材の弾性限度内での応力−ひすみ特性を検出し
、この応力−ひすみ特性を記憶しておくとともにこの応
力−ひすみ特性に基づいて初期たるみf1會求めてお、
き、被伸延材が弾性限度を越えて伸延されるときに前記
応力−ひすみ特性に基づいてスプリングバック量をめ、
このスプリングバック量と前記初期たるみ量からその時
点でのストレッチ量をめ、このようにしてめられたスト
レッチ量に基づいてストレッチ量を制御するストレッチ
ャレベラのストレッチ量制御方法。
(1) When stretching a material to be stretched with a stretcher repeller, detect the stress-strain characteristic within the elastic limit of the material to be stretched, memorize this stress-strain characteristic, and store this stress-strain characteristic. Find the initial slack f1 based on the corner characteristics,
determining the amount of springback based on the stress-strain characteristics when the stretched material is stretched beyond its elastic limit;
A stretch amount control method for a stretcher leveler, which calculates a stretch amount at that point from this springback amount and the initial slack amount, and controls the stretch amount based on the thus determined stretch amount.
JP18960883A 1983-10-11 1983-10-11 Method for controlling stretching rate of stretcher leveler Granted JPS6082220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18960883A JPS6082220A (en) 1983-10-11 1983-10-11 Method for controlling stretching rate of stretcher leveler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18960883A JPS6082220A (en) 1983-10-11 1983-10-11 Method for controlling stretching rate of stretcher leveler

Publications (2)

Publication Number Publication Date
JPS6082220A true JPS6082220A (en) 1985-05-10
JPS6230043B2 JPS6230043B2 (en) 1987-06-30

Family

ID=16244151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18960883A Granted JPS6082220A (en) 1983-10-11 1983-10-11 Method for controlling stretching rate of stretcher leveler

Country Status (1)

Country Link
JP (1) JPS6082220A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080207A (en) * 1987-07-22 1992-01-14 Zahnradfabrik Friedrichshafen Ag Servo-assisted gear selector

Also Published As

Publication number Publication date
JPS6230043B2 (en) 1987-06-30

Similar Documents

Publication Publication Date Title
JPS6082220A (en) Method for controlling stretching rate of stretcher leveler
CN107695108A (en) A kind of tensile stress dynamic compensation method for improving rolling process stability
Ding et al. Application of probabilistic robustness technique to the fault detection system design
JPH11332097A (en) Demand monitor
JP3078140B2 (en) Motion vector detection circuit
SU952396A1 (en) Apparatus for diagnostics of continuous rolling mill operation according rolling rate
JP2000094023A (en) Method and device for controlling leveling in hot finishing mill
JPS5822925A (en) Twist vibration monitoring method of rotary shaft
JPS603882B2 (en) Control method for plate rolling mill
SU1305756A2 (en) Device for evaluating the working capabilities of operators of automatic control systems
JPS6215121B2 (en)
KR101968689B1 (en) Measurement system and method for ghost images on head-up display
JPH07124615A (en) Operating method of measuring instrument for rolling
SU715172A1 (en) Straightening press control system
JP2606313B2 (en) Control device for material testing machine
JP2549167B2 (en) Tension control device
SU1616738A1 (en) Method of functional diagnosis of dynamometric transducers and system for effecting same
JPH0743295B2 (en) Characteristic test equipment
JPS58221698A (en) Monitoring device for stroke speed of pressing with transfer press machine
JP3146062B2 (en) Diagnostic device
JP2795601B2 (en) Mold vibration device in continuous casting equipment
JPS61164133A (en) Vibration testing method
JPS62127112A (en) Meandering preventing method for rolling stock
JPH05116074A (en) Clamping torque detecting method in torque wrench
JPS5936821A (en) Testing device of earthquake-proof