JPS6082186A - Desalting method of high silica-containing water - Google Patents

Desalting method of high silica-containing water

Info

Publication number
JPS6082186A
JPS6082186A JP58190865A JP19086583A JPS6082186A JP S6082186 A JPS6082186 A JP S6082186A JP 58190865 A JP58190865 A JP 58190865A JP 19086583 A JP19086583 A JP 19086583A JP S6082186 A JPS6082186 A JP S6082186A
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
silica
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190865A
Other languages
Japanese (ja)
Inventor
Kenji Kosaka
小坂 謙治
Tadashi Nakamura
忠 中村
Katsumi Koike
勝美 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP58190865A priority Critical patent/JPS6082186A/en
Publication of JPS6082186A publication Critical patent/JPS6082186A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To obtain permeated water at a high yield by treating raw water contg. >=40mg/l silica with a reverse osmosis membrane device having a specific silica removing rate and a rate of removing bivalent ion of a strong electrolyte then subjecting the water to an ion exchange resin treatment. CONSTITUTION:Raw water 6 contg. >=40mg/l silica is supplied under pressure to a reverse osmosis membrane device 1 mounted with a reverse osmosis membrane having performance of <=50% removing rate of silica and at least >=80% removing rate of bivalent ion of a strong electrolyte by a high pressure pump 7. Non- permeated water 8 in which salts and colloidal material ars thickened and permeated water 9 from which the colloidal material is removed and in which the salts are decreased are obtd. The water 9 is then admitted into a K column 2 where the residual cation is subjected to an ion exchange and acidic soft water 10 is obtd. The soft water is treated in a deoxidizing column 3. The treated water is admitted into an A column 4 where the residual anion is subjected to an ion exchange and pure water 12 is obtd.

Description

【発明の詳細な説明】 本発明に]、シリカをao 111g/1以上含有する
高7リカ含有水を逆浸透膜装置とイオン交換装置とで脱
塩する方法(・こ関するものであり・逆浸透膜装置の非
透過水仙にシリカを析出させることなく・高収率で透過
水を得ることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desalinating water containing high 7 lye containing silica at an ao of 111 g/1 or more using a reverse osmosis membrane device and an ion exchange device. The purpose is to obtain permeated water in a high yield without precipitating silica in the non-permeated water of the osmotic membrane device.

1、S【や超1,81などを製造する電子工業において
は・その製品の洗浄にコロイド状物質およびイオンのh
l、をppbオーダーまで減少させた・いわゆる超純水
を必要とする。このような超純水を製造する場合・近年
において逆浸透膜装置が用いられることが多い。すなわ
ち凝東沈殿濾過などの除濁処理・活性炭濾過などの適当
な前処理をした原水を逆浸透膜装置ハ゛で脱Jスにし・
9次いで当該脱塩水に残留する塩類・不純物等を純水製
造装置・精密濾過装置e′l゛、ポリンヤーなどで処理
するのが一般的である。
1. In the electronics industry that manufactures S[ and Super 1,81, etc., colloidal substances and ion h are used to clean the products.
It requires so-called ultra-pure water that has reduced the amount of l, down to ppb order. When producing such ultrapure water, reverse osmosis membrane devices are often used in recent years. In other words, raw water that has undergone appropriate pretreatment such as turbidity removal treatment such as coagulation sedimentation filtration and activated carbon filtration is de-jetized using a reverse osmosis membrane device.
9. Next, salts, impurities, etc. remaining in the demineralized water are generally treated with a pure water production device, a precision filtration device e'l', a polisher, etc.

逆浸透膜装置は逆浸透膜に原水を溶解塩類の浸透圧以上
の加圧下で供給し、塩類の大半を逆浸透膜で阻止して塩
類を減少させた透過水を処理水として得るとともに・塩
類を濃縮した非透過水を排出するものであるが・この処
理中に原水に含まれているコロイド状物質も逆浸透膜で
阻止することができるので・前記超純水の製造には好都
合である。逆浸透膜装置は以上のような操作で原水を処
理するのであるから・原水の濃縮倍率を太きぐずればす
る程・一定の供給原水から多量の透過水を得ろことかで
き・=Iスト的に有利となる。
The reverse osmosis membrane device supplies raw water to the reverse osmosis membrane under pressure higher than the osmotic pressure of dissolved salts, and the reverse osmosis membrane blocks most of the salts to obtain permeated water with reduced salts as treated water.・Salts During this treatment, the colloidal substances contained in the raw water can also be blocked by the reverse osmosis membrane, which is convenient for the production of ultrapure water. . Since reverse osmosis membrane equipment processes raw water through the operations described above, the higher the concentration ratio of the raw water, the more permeated water can be obtained from a constant supply of raw water. be advantageous to

しかしながら当j核濃縮倍率をあまり大きくすると比較
的溶解度の小さいシリカが濃縮系・特に逆浸透膜の膜面
に析出し・その性能を低−1・させる。たとえば原水の
7リカ含有計が約20+ng/I以下の場合はあまり問
題とならないが。
However, if the nuclear concentration magnification is increased too much, silica with relatively low solubility will precipitate on the membrane surface of the concentration system, especially the reverse osmosis membrane, lowering its performance. For example, if the raw water has a total 7 Lika content of about 20+ ng/I or less, it will not be much of a problem.

その含有量が4(l mg/lを越えるとシリカの溶解
度が障害となって透過水の回収率を低くせざるを得なく
なり・そのため甚だしく不経済となる。この点をさらに
詳しく説明すると・従来における逆浸透膜装置とイオン
交換装置の組み合せによる脱塩においては・後段のイオ
ン交換装置の負荷をなるべく小さくするため・前段の逆
浸透膜装置によって原水中の塩類をできるだけ脱塩する
ことが行なわれており。
If the content exceeds 4 (l mg/l), the solubility of silica becomes an obstacle and the recovery rate of permeated water has to be lowered, resulting in extremely uneconomical results.To explain this point in more detail: In desalination using a combination of a reverse osmosis membrane device and an ion exchange device in I'm here.

従来から当該逆浸透膜装置には・ソリ力の排除率が80
係以ト・および塩素イオン・ナトリウノ、イオンなどの
強電解質の1価イオンの排除41が90%以上・および
硫酸イオン、カルシウムイオ7などの強電解質の2価イ
オンの排除率が95%以上の性能を有する逆浸透膜が用
いられていた。
Conventionally, this reverse osmosis membrane device has a warping force rejection rate of 80.
The removal rate of monovalent ions of strong electrolytes such as chlorine ions, sodium ions, and ions is 90% or more, and the rejection rate of divalent ions of strong electrolytes such as sulfate ions and calcium ions is 95% or more. A reverse osmosis membrane with high performance was used.

一方ソリカの溶解度は常温および中性丁で120+y/
x前後であり・たとえばシリカ濃度が4 o ny7r
の原水を上記した従来の逆浸透膜を用いて透過水回収率
75%で処理せんとすると・非透過水側の平均シリカ濃
度は40XO、8X100/25の式により128mg
/jという数値となり・非透過水イ1(すにおいてシリ
カが析出することとなる。
On the other hand, the solubility of solica is 120+y/at room temperature and neutral temperature.
For example, the silica concentration is 4 o ny7r
When raw water is treated with the above-mentioned conventional reverse osmosis membrane with a permeate recovery rate of 75%, the average silica concentration on the non-permeate side is 40XO, 128mg according to the formula 8X100/25.
/j, and silica will precipitate in the non-permeable water.

したがって原水のシリカ濃度が40mg/を以上の場合
は透過水回収率を75チ以下とせざるを得なくなり・甚
だ不経済であった。
Therefore, when the silica concentration of raw water is 40 mg/or more, the permeate recovery rate has to be set to 75 mg or less, which is extremely uneconomical.

なおノリ力の溶解度12o+ng/+という数値は理論
値であり・逆浸透膜の膜面における極部濃縮の影響を考
慮すると・現状では非透過水の平均シリカ濃度がloo
mg/lを越えないような運転が必要となり・従来用い
られている逆浸透膜装置においては原水シリカ濃度が4
0 mg/lの場合は透過水回収率を68%以内とぜね
ばならず・また原水シリカ濃度が40mg/1以上の場
合はさらに回収率を低下する必要があった。
The solubility value of 12o + ng/+ is a theoretical value. Considering the influence of local concentration on the membrane surface of the reverse osmosis membrane, the average silica concentration in non-permeated water is loo.
It is necessary to operate in such a way that the silica concentration in the raw water does not exceed 4 mg/l.
In the case of 0 mg/l, the permeated water recovery rate had to be kept within 68%, and if the raw water silica concentration was 40 mg/1 or more, the recovery rate had to be further reduced.

従来の逆浸透膜装置とイオン交換装置の組合せKよる脱
塩においては前述した点が最大の欠点となっているが・
逆浸透膜装置の後段にイオン交換装置が設置されている
ので・前段の逆浸透膜装置6で原水の7リカを従来より
多く透過させるようにし・透過しだシリカを後段のイオ
ン交換装置で除去することにより・非透過水仙の7リ力
濃度を小さくすることができ・0・いては透過水回収率
を太きくしても非透過水制にシリカが析出するのを防止
することができる。
The above-mentioned point is the biggest drawback in desalination using the conventional reverse osmosis membrane device and ion exchange device combination K.
Since the ion exchange device is installed after the reverse osmosis membrane device, the reverse osmosis membrane device 6 in the front stage allows more 7 liqium of raw water to permeate than before, and the silica that has permeated is removed with the ion exchange device in the latter stage. By doing so, it is possible to reduce the concentration of 7-liquid water in the non-permeable water system, and it is possible to prevent silica from precipitating in the non-permeable water system even if the permeate recovery rate is increased.

このようにすると後段のイオン交換装置の負荷は若1−
大きくなるか・全体的に考えた場合・より経済的である
In this way, the load on the subsequent ion exchange device is reduced to 1-
Is it larger? Considering the whole thing, it is more economical.

本発明は上記したような知見に基づくもので・ノリ力の
排除率が従来のものより小さい逆浸透膜を装着した逆浸
透膜装置を用いることにより・非透過水側にシリカを析
出させることなく高収率下で透過水を得ようとするもの
で・シリカを40■/1以上含有する原水を・7リカの
排除率が50%以下で・すくなくとも強電解質の2価イ
オンの排除率がso%以上の性能を有する逆浸透膜を装
着した逆浸透膜装置で処理し・次いでカチオン交換樹脂
とアニオン交換樹脂を用いるイオン交換装置で処理する
ことを特薇とする高7リカ含有水の脱塩方l〕、VC関
するものである。
The present invention is based on the above-mentioned knowledge. By using a reverse osmosis membrane device equipped with a reverse osmosis membrane that has a lower rejection rate of glue force than conventional ones, it is possible to eliminate silica from being deposited on the non-permeated water side. The purpose is to obtain permeated water at a high yield. Raw water containing 40 μ/1 or more of silica. The rejection rate of 7 silica is less than 50%. At least the rejection rate of divalent ions of the strong electrolyte is so. Desalination of water containing high 7 Lika, which is characterized in that it is treated with a reverse osmosis membrane device equipped with a reverse osmosis membrane with a performance of % or more, and then treated with an ion exchange device that uses a cation exchange resin and an anion exchange resin. [1], relates to VC.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては逆浸透膜装置に装着す2)逆浸透膜と
してシリカの排除率が50チ以下のものを用いるが・こ
の理由は前述したごとく原水のシリカをなるべく透過水
側に透過させ・非透過水側のシリカ濃度を低下させるだ
めである。たとえば7リカの排除率が50係以1fの逆
浸透膜では非透過水側のシリカ濃度が大きくなりすぎ本
発明の目的を達することが困卸である。
In the present invention, a reverse osmosis membrane with a silica rejection rate of 50 cm or less is used as the reverse osmosis membrane installed in the reverse osmosis membrane device.As mentioned above, the reason for this is that as much as possible of the silica in the raw water is permeated to the permeated water side and This is to reduce the silica concentration on the permeate side. For example, in a reverse osmosis membrane with a 1f rejection rate of 70% or more, the silica concentration on the non-permeated water side becomes too high, making it difficult to achieve the object of the present invention.

しかしシリカの排除率があまり小さな逆浸透膜を用いる
と後段のイオン交換装置のf′i荷が大きくなりすき゛
・したがってすくなくとも当該排除率は20係以」二の
ものを用いることが望ましい。
However, if a reverse osmosis membrane with a silica rejection rate that is too low is used, the f'i load of the subsequent ion exchange device will become large.Therefore, it is desirable to use a reverse osmosis membrane with a rejection rate of at least 20 factors or higher.

一方ノリカ以外の塩類については逆浸透膜装置でできる
だけ除去することが望ましく・本発明に用いる逆浸透膜
としてはすくなくとも強電解質の2価イオンの排除率が
80係以上の性能を有するものが好″ましい。このよう
に強電解質の2価イオノの排除率が8o%以上の性能を
有する逆浸透膜を用いることにより、後段のイオン交換
において再生の際に脱着しずらいカルシウムイオ/lマ
グネシウムイオン・硫酸イオンの透過水濃度を低下させ
ることができ・後段のイオン交換装置の負荷を小さくす
ることができる。
On the other hand, it is desirable to remove salts other than Norica as much as possible using a reverse osmosis membrane device.It is preferable that the reverse osmosis membrane used in the present invention has at least a strong electrolyte with a rejection rate of 80 or higher. By using a reverse osmosis membrane that has a strong electrolyte divalent ion rejection rate of 80% or more, calcium ions/l magnesium ions are difficult to desorb during regeneration in the subsequent ion exchange.・The concentration of sulfate ions in permeated water can be reduced. ・The load on the subsequent ion exchange device can be reduced.

なおナトリウムイオンや塩素イオンなどのような強電解
質の1価イオノについてもできるだけ除去できるような
逆浸透膜を用いることが有利であり・当該1価イオノの
排除率としてはすくなくとも40%以上の性能を有する
もの4使用することが望ましい。
It is advantageous to use a reverse osmosis membrane that can remove monovalent ions of strong electrolytes such as sodium ions and chloride ions as much as possible. It is desirable to use those with 4.

なお本発明において云うシリカの排除率が50%Jソー
1−ですくなくとも強電解質の2価イオノの4j1除率
が80%以上の性能を有する逆浸透膜と帽・たとえばシ
リカ濃度40IIIg/Lの原水を透過圧力20 kg
/(1?l ’・温度25℃で透過処理した場合・透過
水のシリカ濃度が2omg/を以上となる逆浸透膜を指
し・またたとえば硫酸イオノ濃度50111g/lの原
水を透過圧力20kg/c+M 、温度25”に−C透
過処理した場合・透過水の硫酸イオン濃度が10mg/
を以下となる逆浸透膜を指す0以上のような本発明に用
いるシリカの排除率が50チ以下で・ずくなくとも強電
解質の2価イオンの排除率が80%以上の性能を有する
逆浸透膜としては・日東電工■製NTルーフ250・N
i、’1L−1550r N’l’1L−1530+ 
N’ll’R−1510(イずれも商品名)・住友化学
■製ソルロソクス5o−5000(商品名)・デザリネ
ーション社製0−5・G−10(商品名)・フィルムチ
ック社製1i’T−4o (商品名)などがある。
In addition, in the present invention, a reverse osmosis membrane and a cap having a silica rejection rate of 50% and a 4j1 division rate of at least 80% of divalent ion of the strong electrolyte, for example, raw water with a silica concentration of 40IIIg/L. The permeation pressure is 20 kg
/(1?l'・When permeation treatment is carried out at a temperature of 25℃・Refers to a reverse osmosis membrane in which the silica concentration of permeated water is 2 omg/ or more・For example, when raw water with a sulfuric acid ion concentration of 50111 g/l is permeated at a permeation pressure of 20 kg/c+M , when -C permeation treatment is carried out at a temperature of 25”・The sulfate ion concentration of the permeated water is 10mg/
Refers to a reverse osmosis membrane with a silica rejection rate of 50% or less used in the present invention, such as 0 or more, and a reverse osmosis membrane with the performance of at least 80% or more of strong electrolyte divalent ion rejection rate. The membrane is Nitto Denko's NT Roof 250/N.
i, '1L-1550r N'l'1L-1530+
N'll'R-1510 (all product names), Sumitomo Chemical Sollosox 5o-5000 (product name), Desalination Co., Ltd. 0-5, G-10 (product name), Filmtic Co., Ltd. 1i 'T-4o (product name) etc.

次に本発明においては逆浸透膜装置の後段にイオン交換
装置を設fitするが・当該イオン交換装置としては強
酸性カチオン交換樹脂単独あるいは弱酸性カチオン交換
樹脂と強酸性力チオ/交換樹脂の複層床を充填したIく
塔と・強塩基性アニオン交換樹脂単独あるいは弱塩基性
アニオン交換樹脂と強塩基性アニオン交換樹脂の複層床
を充填したA塔を用いた2床式あるいは2床3塔式純水
製造装置・または強酸性力チオ/交換樹脂と強塩基性ア
ニオン交換樹脂を同一塔内で用いる混床式純水製造装置
など従来から用いられている通常の純水製造装置を用い
るとよい。
Next, in the present invention, an ion exchange device is installed after the reverse osmosis membrane device, but the ion exchange device may be a strong acid cation exchange resin alone or a combination of a weak acid cation exchange resin and a strong acid thio/exchange resin. A two-bed type or two-bed type using a column I packed with a layered bed and a column A packed with a strong basic anion exchange resin alone or a multilayer bed of a weak basic anion exchange resin and a strong basic anion exchange resin. Use conventional pure water production equipment such as column type pure water production equipment or mixed bed type water production equipment that uses a strong acidic thio/exchange resin and a strong anion exchange resin in the same column. Good.

次に本発明の実M11態様を図面に基づいて説明する。Next, an actual M11 aspect of the present invention will be explained based on the drawings.

図面1は本発明の実施態様の一例であるフローの説、四
国であり・1は逆浸透膜装置、2は強酸11:カチオン
交換樹脂を充填したに塔・3は脱炭酸塔・4は強塩基性
アニオン交換樹脂をf1介したA塔・5は強酸性カチオ
ン交換樹脂と強塩基性アニオン交換樹脂を充填したモノ
ベットポリシャーである。
Drawing 1 shows a flow diagram that is an example of an embodiment of the present invention, and is located in Shikoku. 1 is a reverse osmosis membrane device, 2 is a strong acid 11: a tower filled with cation exchange resin, 3 is a decarboxylation tower, and 4 is a strong acid Tower A/5, in which the basic anion exchange resin is passed through f1, is a monobet polisher filled with a strong acidic cation exchange resin and a strong basic anion exchange resin.

本発明においては凝集沈殿や濾過などの適当な前処理装
置(図示せず)で処理したソリ力を40 mg/1以上
含有する原水6を・高圧ボンシフvζよりシリカの排除
率が50%以下ですくなくとも強電解質の2価イオンの
排除率が80係以上の性能を有する逆浸透膜を装着した
逆浸透膜装置1に加圧下で供給し・塩類およびコロイド
状物質が濃縮された非透過水8と・コロイド状物質が除
去され、かつ塩類が減少した透過水9をイ4する。次い
で当該透過水9を1く塔2に流入して残留するカチオン
をイオン交換し・酸性軟水10を得・当該酸性軟水]0
を脱炭酸塔3で処理して脱炭酸を行なう。次に脱炭酸ポ
ンプ11により酸性軟水10をA塔4に流入して残留す
るアニオンをイオン交換し・純水12を得・当該純水を
モノベットボリン−1′−5でさらに処理し・高純度の
純水を得・さらに必要であれば精密準過あるいは紫外線
殺1衷(図示せず)などして超純水を製造する。
In the present invention, raw water 6 containing a warping force of 40 mg/1 or more, which has been treated with an appropriate pre-treatment device (not shown) such as coagulation sedimentation or filtration, is treated with a silica removal rate of 50% or less than a high-pressure Bonschiff vζ. The non-permeated water 8 in which salts and colloidal substances are concentrated is supplied under pressure to a reverse osmosis membrane device 1 equipped with a reverse osmosis membrane having a performance with a rejection rate of at least 80 factors for divalent ions of a strong electrolyte. - The permeated water 9 from which colloidal substances have been removed and salts have been reduced is a4. Next, the permeated water 9 flows into the column 2, and the remaining cations are ion-exchanged, and acidic soft water 10 is obtained.The acidic soft water] 0
is treated in a decarboxylation tower 3 to perform decarboxylation. Next, the acidic soft water 10 flows into the A column 4 using the decarboxylation pump 11, and the remaining anions are ion-exchanged to obtain pure water 12. The pure water is further treated with Monobetbolin-1'-5, and the remaining anions are ion-exchanged. Pure water of high purity is obtained, and if necessary, ultrapure water is produced by performing precision semi-filtration or ultraviolet sterilization (not shown).

以北説明したごとく本発明はシリカを+o+ng/(以
上含有する高ノリ力含有水を逆浸透膜装置とイオン交換
装置で処理する際に・逆浸透膜装置に使用する逆浸透膜
として・シリカの排除率が50係以下ですくなくとも強
電解質の2価イオンの排除率が80%以上の性能を有す
るものを使用するので・原水中の7す力の50%以上を
透過水仙へ透過せしめることができ・故に非透過水側の
7す力濃度を従来のものより大幅に低ドさせることがで
き、これにより透過水回収率を従来」:り犬としても非
透過水11t11へノリ力が1斤出することがない。
As explained above, the present invention uses silica when treating water containing high adhesive strength of +o+ng/(or more) with a reverse osmosis membrane device and an ion exchange device.As a reverse osmosis membrane used in a reverse osmosis membrane device. Since we use a product with an exclusion rate of less than 50 coefficients and at least an exclusion rate of 80% or more for divalent ions of strong electrolytes, more than 50% of the 7 force in the raw water can be transmitted to the permeated Narcissus.・Therefore, the concentration of force on the non-permeated water side can be significantly lowered than that of the conventional method, and as a result, the permeated water recovery rate can be reduced compared to the conventional method. There's nothing to do.

また本発明をま原水の全量を逆浸透膜装置4で処理する
ので・原水に存在するコロイド状物質を完全に逆浸透膜
装置で排除することができ・しだがって特にLSIや超
LSIなどを製造する電子T業向の脱塩装置として有利
である。さらに/リカ排除率が小さい逆浸透膜を使用し
ているとはいえ・1)if段の逆浸透膜装置で原水中の
塩類を減塩できるのて、後段のイオン交換装置の負荷を
低減することができる。
In addition, in the present invention, since the entire amount of raw water is treated by the reverse osmosis membrane device 4, the colloidal substances present in the raw water can be completely removed by the reverse osmosis membrane device. It is advantageous as a desalination equipment for the electronic T industry that manufactures. Furthermore, even though a reverse osmosis membrane with a low Lika removal rate is used, 1) The if-stage reverse osmosis membrane device can reduce salts in raw water, reducing the load on the subsequent ion exchange device. be able to.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

実施例−1 全溶解固形物853■/l ・/リカ54■/+ (ン
15S+Oz)の井水を濾過し・その濾過水をpH6−
OVζ調整1して・シリカ排除率25係・強電解質の2
価イオンの排除率92チの性能を有する逆浸透膜である
デサリネーション社製G−5を装着した逆浸透膜装置に
・操作圧力20 kg/jJ・透過水回収率74チ・水
温25°Cで透過処理した1、次いでその透過水をH形
の強酸性力グーオン交換樹脂アンバーライト(登録部所
) l lt−1201+および01−1形の強塩基性
アニオン交換樹脂アンバーライト(登録商標) IRA
−410を用いた2床S塔式純水製造装置に通水したと
ころ第1表に示l−ような水質の透過水およびイオン交
換水が得られた。
Example-1 Well water with total dissolved solids 853 ■/l / 54 ■/+ (15S + Oz) was filtered and the filtered water was adjusted to pH 6-
OVζ adjustment 1, silica rejection rate 25, strong electrolyte 2
A reverse osmosis membrane device equipped with Desalination's G-5, a reverse osmosis membrane with a valent ion rejection rate of 92 cm, an operating pressure of 20 kg/jJ, a permeated water recovery rate of 74 cm, and a water temperature of 25 degrees. 1, which was permeabilized with C, and then the permeated water was treated with the strongly acidic goo-on exchange resin Amberlite (registered trademark) in the H form. IRA
When the water was passed through a two-bed S-tower type pure water production apparatus using A-410, permeated water and ion-exchanged water of the water quality shown in Table 1 were obtained.

一方比較のために・同様の濾過水を従来から用いられて
いるシリカ排除率75係・強電解質の2価イオンの排除
率95%の性能を有する逆浸透膜を装着した逆浸透膜装
置に操作圧力30kg/cJ・透過水回収率74%p水
温20”Cで透過処理したところ・非透過水側にシリカ
が析出し・圧力損失が増大して透過水量が減少すると共
に・脱塩率が低下した。
On the other hand, for comparison, similar filtered water was operated in a reverse osmosis membrane device equipped with a conventionally used reverse osmosis membrane with a silica rejection rate of 75% and a strong electrolyte divalent ion rejection rate of 95%. Pressure: 30 kg/cJ, permeated water recovery rate: 74% p When permeation treatment was performed at a water temperature of 20"C, silica precipitated on the non-permeated water side, the pressure loss increased, the amount of permeated water decreased, and the desalination rate decreased. did.

第1表 実施例−2 全溶解固形物188mg/I 、シリカ6omg/I 
(asSi02)の工業用水を濾過し・その濾過水をp
l+6.5に調整して・シリカ排除率30%・強電W(
質の2価イオンの排除率95%の性能を有する逆浸透膜
である日東電工■製NTR−7250を装着した逆浸透
膜装置に・操作圧力2okg/錨・透過水回収率664
・水温25℃で透過処理した。次いでその透過水をH形
の強酸性カチオン交換樹脂アンバーライト(登録商標)
 IR−1zoBオ、1、びO1l形の強塩基性アニオ
ン交換樹脂アンバーライト(登録商標)■几A−410
を用いた2床3塔式純水製造装置に通水したところ第2
表に示すような水質の透過水およびイオン交換水が得ら
れた。
Table 1 Example-2 Total dissolved solids 188mg/I, silica 6omg/I
(asSi02) industrial water is filtered and the filtered water is p
Adjusted to l+6.5・Silica removal rate 30%・High electric power W (
The reverse osmosis membrane device is equipped with Nitto Denko's NTR-7250, a reverse osmosis membrane with a high quality divalent ion removal rate of 95%.Operating pressure: 20 kg/anchor.Permeated water recovery rate: 664.
・Permeation treatment was carried out at a water temperature of 25°C. Next, the permeated water was treated with H-type strongly acidic cation exchange resin Amberlite (registered trademark).
Strongly basic anion exchange resin Amberlite (registered trademark) A-410 in IR-1zoB O, 1, and O1l types
When water was passed through a two-bed, three-column pure water production equipment using
Permeated water and ion-exchanged water with the quality shown in the table were obtained.

一方比較のために・同様の濾過水を従来から用いられて
いるシリカ排除率″75%・強電解質の2価イオンの排
除率95チの性能を有する逆浸透膜を装着した逆浸透膜
装置に操作圧力30kg/all・透過水回収率66%
・水温20°Cで透過処理したところ・非透過水側にノ
リ力が析出 コし・圧力損失が増大して透過水けが減少
する 3と共に・脱塩率が低下した。 5 第2表 。
On the other hand, for comparison, similar filtered water was used in a reverse osmosis membrane device equipped with a reverse osmosis membrane that has a silica rejection rate of 75% and a strong electrolyte divalent ion rejection rate of 95%. Operating pressure 30kg/all, permeate recovery rate 66%
・When permeation treatment was carried out at a water temperature of 20°C, ・Glue force was deposited on the non-permeated water side. ・Pressure loss increased and permeate water drainage decreased. Along with 3. ・Demineralization rate decreased. 5 Table 2.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様の一例であるフローの説明図で
ある。。 110.逆浸透膜装置 2.、、、に塔118.脱炭酸
塔 4・・・・A塔 000.モノベノトポリンヤ−600,・原水000.
非透過水 9・・・・透過水
The drawing is an explanatory diagram of a flow that is an example of an embodiment of the present invention. . 110. Reverse osmosis membrane device 2. ,,to tower 118. Decarboxylation tower 4...A tower 000. Monobenotoporinya - 600, raw water 000.
Non-permeable water 9... Permeated water

Claims (1)

【特許請求の範囲】[Claims] /リカを40 mg/1以上含有する原水を、シリ−h
の排除率が50係以下で・すくなくとも強電解質の2価
イ刈ノの排除率が80%以上の性能を有する逆浸透膜を
装着した逆浸透膜装置で処理し・次いてカチオン交換樹
脂とアニオン交換樹脂を用いるイオン交換装置で処理す
/ Raw water containing 40 mg/1 or more of Silica is
Treated with a reverse osmosis membrane device equipped with a reverse osmosis membrane that has a rejection rate of at least 80% or more for strong electrolytes such as divalent oxides.Then, cation exchange resin and anion Treated with an ion exchange device using exchange resin
JP58190865A 1983-10-14 1983-10-14 Desalting method of high silica-containing water Pending JPS6082186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190865A JPS6082186A (en) 1983-10-14 1983-10-14 Desalting method of high silica-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190865A JPS6082186A (en) 1983-10-14 1983-10-14 Desalting method of high silica-containing water

Publications (1)

Publication Number Publication Date
JPS6082186A true JPS6082186A (en) 1985-05-10

Family

ID=16265047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190865A Pending JPS6082186A (en) 1983-10-14 1983-10-14 Desalting method of high silica-containing water

Country Status (1)

Country Link
JP (1) JPS6082186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036605A (en) * 2006-08-10 2008-02-21 Kurita Water Ind Ltd Apparatus for producing purified water and method for producing purified water
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038083A (en) * 1983-08-09 1985-02-27 Kurita Water Ind Ltd Desalting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008036605A (en) * 2006-08-10 2008-02-21 Kurita Water Ind Ltd Apparatus for producing purified water and method for producing purified water
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Similar Documents

Publication Publication Date Title
JP3256545B2 (en) Nanofiltration of concentrated salt solution
US6113797A (en) High water recovery membrane purification process
CN105392552B (en) The treating method and apparatus of boron water
KR20130115785A (en) Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater
JPH10503414A (en) Reverse osmosis for water treatment enhanced by microfiltration
AU2008202302A1 (en) High Water Recovery Membrane Purification Process
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JPS59112890A (en) Desalination by reverse osmosis membrane device
JPH02157090A (en) Treatment of heavy metal-containing waste water
JP2000015257A (en) Apparatus and method for making high purity water
JPH0252088A (en) Apparatus for making desalted water
JP3319053B2 (en) Treatment method for fluoride-containing water
JPS6082186A (en) Desalting method of high silica-containing water
US5338457A (en) Removal of aluminum and sulfate ions from aqueous solutions
JPS63100996A (en) Method for desalting brine
JP3944973B2 (en) Reverse osmosis membrane treatment method
JPS586297A (en) Treatment of raw water of high content of silica
JPH0368758B2 (en)
JP3463761B2 (en) Method for treating water containing fluorine and manganese ions
JPH11165179A (en) Method for treating fluorine-containing water
JP3630126B2 (en) Method of treating water containing fluorine and manganese ions
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method
JPS6336899A (en) Apparatus for producing pure water
JPH02169090A (en) Waste regenerating liquid recovery system for water purifying device
AWADALLA et al. Separation of humic acids from Bayer process liquor by membrane filtration