JPS6081888A - Surface light emitting laser and manufacture thereof - Google Patents

Surface light emitting laser and manufacture thereof

Info

Publication number
JPS6081888A
JPS6081888A JP19137083A JP19137083A JPS6081888A JP S6081888 A JPS6081888 A JP S6081888A JP 19137083 A JP19137083 A JP 19137083A JP 19137083 A JP19137083 A JP 19137083A JP S6081888 A JPS6081888 A JP S6081888A
Authority
JP
Japan
Prior art keywords
layer
referred
cap
cladding
emitting laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19137083A
Other languages
Japanese (ja)
Inventor
Haruo Tanaka
田中 治夫
Masahito Mushigami
雅人 虫上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP19137083A priority Critical patent/JPS6081888A/en
Publication of JPS6081888A publication Critical patent/JPS6081888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement

Abstract

PURPOSE:To reduce a threshold current by minimizing the loss range by composing a Fabry-Perot reflecting mirror of a cap layer and a reflecting film layer. CONSTITUTION:A reflecting film layer 2 in which N type (or P type)-AlxGa1-xAs layers 21 and N type (or P type)-AlyGa1-yAs layer 22 are alternately laminated in multilayers in provided in the first clad layer 3. The thickness of the layers 21, 22 for forming the layer 2 are set to lambda/4n (lambda represents the central emitting light wavelength, and n represents its refractive index). The compositions of aluminums are different from each other, the layer in which the thickness is set to lambda/4n is thus formed to laminate many layers, and then the wavelength of the prescribed range with the central emitting light wavelength is selectively reflected. Accordingly, in a surface light emitting laser having such a reflecting film layer 2, a Fabry-Perot reflecting mirror is composed of the layers 6 and the layers 2.

Description

【発明の詳細な説明】 本発明は、n(またはp)−GaAs基板」二に、n(
またはp)−AlxGa、−xAs層(第1クラッド層
という)と、AlyGa1−yAs層(活性層という)
と、p(またはn) −A 1zGal−zAs層(第
2クラッド層という)と、p”(またはn”)−GaA
s層(キャップ層という)を形成してなる面発光レーザ
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an n (or p)-GaAs substrate.
or p) -AlxGa, -xAs layer (referred to as first cladding layer) and AlyGa1-yAs layer (referred to as active layer)
, p (or n) -A 1zGal-zAs layer (referred to as second cladding layer), p" (or n") -GaA
The present invention relates to a surface-emitting laser formed with an s-layer (referred to as a cap layer) and a method for manufacturing the same.

従来、半導体レーザには光の共振器を作るため電荷が反
転分布状態になる励起層、即も活性層の両端をへ鰺かい
して、一対の平行平滑な反射面からなるファブリ・ペロ
反射鏡が使用されていた。
Conventionally, semiconductor lasers have a Fabry-Perot reflector consisting of a pair of parallel smooth reflecting surfaces with both ends of the excitation layer, in other words, the active layer, in which the charges are in an inverted population state to create an optical cavity. was used.

ところが、このようなヘトかい面の製作は非常に高い製
作精度が要求され、このため半導体レーザの製造上にお
ける量産性を著しく低下させる要因となっていた。また
、最近では面発光レーザも試作されているが、エツチン
グによりキャビティ長を短くする方法がとられでいる。
However, manufacturing such a deep surface requires extremely high manufacturing precision, which has been a factor that significantly reduces mass productivity in manufacturing semiconductor lasers. Recently, surface emitting lasers have also been prototyped, but a method of shortening the cavity length by etching has not been used.

ところで、活性3一 層においでは、キャリアーのみを閉じ込めて反転分布を
作れば良いが前記の方法では必要基−にに幅の広いキャ
ビティ長を持ち光損失領域が大部分を占めるためスレッ
シュホールド電流が大きくなり、その結果77Kにおけ
るパルス動作が確認されているのみである。
By the way, in the active 3 layer, it is sufficient to confine only the carriers and create a population inversion, but in the above method, the threshold current is large because the cavity length is required to be wide and the optical loss region occupies most of the cavity. As a result, only pulse operation at 77K has been confirmed.

本発明は、キャビティ長を発光波長にまで短縮できるレ
ーザ構造およびその製造方法を提供し、より室温に近い
温度で発振する面発光レーザを得ることを目的とする。
An object of the present invention is to provide a laser structure in which the cavity length can be shortened to the emission wavelength and a method for manufacturing the same, and to obtain a surface emitting laser that oscillates at a temperature closer to room temperature.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。第1図は、この実施例の構造断面図である。第1
図においで、符号1はn(または1))−GaAs基板
(以下、略して基板という。)。2は、後記第1クラッ
ド層3内に、n(またはp) −A 1xGat−xA
s層21と、n(またはp) −A 1yGa1−yA
s層22(ただし、Il+Q+X+y+2 < 1、p
 < 2% D <4% ×≠y1X≧p、 y≧p)
とを交互に多層積層してなる反射膜層である。3は、n
(またはp)−AIzGa、−zAs層(第1クラッド
層という)である。4はA 1pGa1−pAs−4= 層(活性層という、ただし、p<z、)、5はp(また
はn)−AlqGa、qAs層(第2クラッド層という
、ただしp<q、 p+Q< 1 )、6はp”(また
はn”)−GaAs層(キャップ層)である。前記キャ
ップ層6は局部的にエツチング除去され、このエツチン
グ除去部61に対向する第2クラッド層5の中間部51
までと前記キャップ層6の非エツチング除去部62では
該キャップ層6の中間部63までとにn+(またはp”
 )−GaAsの拡散層7が形成されるとともに該拡散
層7により電流通過制限層が形成される。8.9はコン
タクトとなるメタル層である。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 1 is a structural sectional view of this embodiment. 1st
In the figure, the reference numeral 1 indicates an n (or 1)-GaAs substrate (hereinafter simply referred to as the substrate). 2 is n (or p) -A 1xGat-xA in the first cladding layer 3 described later.
s layer 21 and n (or p) -A 1yGa1-yA
s layer 22 (Il+Q+X+y+2 < 1, p
<2% D <4% ×≠y1X≧p, y≧p)
This is a reflective film layer formed by laminating multiple layers alternately. 3 is n
(or p)-AIzGa, -zAs layer (referred to as first cladding layer). 4 is an A1pGa1-pAs-4= layer (referred to as an active layer, where p<z,), and 5 is a p (or n)-AlqGa, qAs layer (referred to as a second cladding layer, where p<q, p+Q<1) ), 6 is a p'' (or n'')-GaAs layer (cap layer). The cap layer 6 is partially etched away, and the middle part 51 of the second cladding layer 5 facing the etched part 61 is removed.
In the non-etched portion 62 of the cap layer 6, n+ (or p''
)-GaAs diffusion layer 7 is formed, and the diffusion layer 7 forms a current passage limiting layer. 8.9 is a metal layer serving as a contact.

ここで、前記反射膜層2を構成する各層21゜22のそ
れぞれの膜厚はλ/4n(ただし、λは中心発光波長、
nは屈折率)に設定される。A)の組成が互いに異なり
、かつ膜厚がλ/4nに設定された層がこのように多数
積層されると中心発光波長λを中心とした一定域の波長
が選択的に反射される。したがってこのような反射膜層
2を有する面発光レーザではキャップ層6と前記反射膜
層2とで7アプリ・ペロ反射鏡が構成されることになる
。第2図は、縦軸に反射率を、横軸に波長をそれぞれと
り、AlxGa、−xAs層およびAlyGa1−yA
s層における組成をx=0.35(屈折率n1=3゜6
)、膜厚570オングストロームおよび、y=0゜7(
屈折率n2=3.3)、膜厚620オングストロームよ
りなる49層積層したと外の波長に対する反射率を示す
図である。第2図からあとらかなように波長λが820
オングストロームのときに反射率が94%程度になる。
Here, the thickness of each of the layers 21 and 22 constituting the reflective film layer 2 is λ/4n (where λ is the center emission wavelength,
n is a refractive index). When a large number of layers A) having mutually different compositions and a film thickness set to λ/4n are laminated in this way, wavelengths in a certain range around the central emission wavelength λ are selectively reflected. Therefore, in a surface emitting laser having such a reflective film layer 2, the cap layer 6 and the reflective film layer 2 constitute a 7-application-Perot reflector. Figure 2 shows the reflectance on the vertical axis and the wavelength on the horizontal axis, and shows the AlxGa, -xAs layers and AlyGa1-yA
The composition in the s layer is x = 0.35 (refractive index n1 = 3°6
), film thickness 570 angstroms, and y=0°7(
FIG. 4 is a diagram showing the reflectance for outside wavelengths when 49 layers are laminated, each having a refractive index (n2=3.3) and a film thickness of 620 angstroms. As is clear from Figure 2, the wavelength λ is 820.
When the thickness is angstrom, the reflectance is about 94%.

また、電流は拡散層7により電流方向が制限されて第1
図中、破線10で示すように流れるので活性層4では、
反転分布状態が得られ、これによりレーザ発振をするこ
とがでとる。11は、発光面である。
Further, the direction of the current is limited by the diffusion layer 7, and the current direction is limited by the diffusion layer 7.
In the active layer 4, the flow is as shown by the broken line 10 in the figure.
A population inversion state is obtained, and this can be achieved by laser oscillation. 11 is a light emitting surface.

以上のように本発明によればn(またはp)−GaAs
基板」二に、n(またはp)−AlzGa、−zAs層
(第1クラッド層という)と、A l p G a I
−p A s m (活性層という)と、p(またはn
)−AlqGal−qAsM(第2クラッド層という)
と、ρ箕またはn”)−GaAs層(キャップ層という
)とが形成される面発光レーザにおいて、前記第1クラ
ッド層内に、n(またはp)−AlxGa、−xAs層
と、n(またはp ) −A l y G a 1−y
As層(ただし、11.q+X+V+2 < 1 、+
1 <zs p <q、 X≠y、 x≧p、 y≧p
)とを交互に多層積層してなる反射膜層が形成され、前
記キャップ層は局部的にエツチング除去され、二のエツ
チング除去部に対向する第2クラッド層の中間部までと
前記キャップ層の非エツチング除去部では該キャップ層
の中間部までとにn + (またはp” )−GaAs
の拡散層が形成されるとともに該拡散層により電流通過
制限層が形成され、前記キャップ層の非エツチング除去
部にはフンタクトが形成され、このキャップ層と前記反
射膜層とでファブリ・ペロ反射鏡が構成されてなるので
、活性層の両端をヘトかいして光共振器を作るために、
非常に高い製作精度が要求されていた従来のようなファ
ブリ・ペロ反射鏡を製作する必要がなくなり、極めて簡
単にこのファブリ・ペロ反射鏡を最低必要長、即ち損失
領域を最小限にして作ることが可能となり、このため面
発光ダイオードのスレッシュホールド電流を著しく低下
させることがでトる。
As described above, according to the present invention, n (or p)-GaAs
Second, an n (or p)-AlzGa, -zAs layer (referred to as a first cladding layer) and an Al p Ga I
−p A s m (referred to as active layer) and p (or n
)-AlqGal-qAsM (referred to as second cladding layer)
In the surface emitting laser, in which an n(or p)-AlxGa, -xAs layer and an n(or p)-AlxGa, -xAs layer are formed in the first cladding layer. p) -AlyGa1-y
As layer (11.q+X+V+2 < 1, +
1 <zs p <q, X≠y, x≧p, y≧p
), and the cap layer is locally etched and removed, and the cap layer is removed up to the middle part of the second cladding layer facing the second etching removal part and the non-etched part of the cap layer. In the etching removal part, n + (or p")-GaAs is removed up to the middle part of the cap layer.
A diffusion layer is formed, and a current passage limiting layer is formed by the diffusion layer, a hole is formed in the non-etched portion of the cap layer, and the cap layer and the reflective film layer form a Fabry-Perot reflector. In order to create an optical resonator by weakening both ends of the active layer,
It is no longer necessary to manufacture conventional Fabry-Perot reflectors that require extremely high manufacturing precision, and it is now possible to extremely easily manufacture this Fabry-Perot reflector with the minimum required length, that is, the minimum loss area. This makes it possible to significantly reduce the threshold current of the surface emitting diode.

7−7-

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構造断面図、第2図は前記実
施例による反射膜の波長に対する反AJ率を示す図であ
る。 1はn(またはp ) −G a A s基板、2は反
射膜層、3はn(またはp) −A 1zGa1−zA
s層(第1クラッド層)、4はA l p G a 、
 −p A s層(活性層)、5はp(またはn)−A
lqGa+−qAs層(第2クラッド層)、6はp責ま
たはn”)−GaAs層(キャップ層)、7は拡散層、
8,9はメタル層 出願人 ローム株式会社 代理人 弁理士 岡田和秀 8− (0(’J (] () 期鷲じ止−
FIG. 1 is a cross-sectional view of the structure of an embodiment of the present invention, and FIG. 2 is a diagram showing the anti-AJ ratio with respect to wavelength of the reflective film according to the embodiment. 1 is an n (or p)-Ga As substrate, 2 is a reflective film layer, and 3 is an n (or p)-A 1zGa1-zA
s layer (first cladding layer), 4 is Al p Ga,
-p A s layer (active layer), 5 is p (or n) -A
lqGa+-qAs layer (second cladding layer), 6 is a p-type or n'')-GaAs layer (cap layer), 7 is a diffusion layer,
8 and 9 are metal layer applicants ROHM Co., Ltd. agent Patent attorney Kazuhide Okada 8- (0('J () () period)

Claims (2)

【特許請求の範囲】[Claims] (1)n(またはp)−GaAs基板」二に、n(また
はp) −AlzGal−zAs層(第1クラッド層と
いう)と、AlpGal−pAs層(活性層という)と
、p(またはn) −AIqGal−qAs層(第2ク
ラッド層という)と、p+(またはn”)−GaAs層
(キャップ層という)とが形成される面発光レーザにお
いて、前記第1クラッド層内に、n(またはp)−Al
xGa、−xAs層と、n(またはp) −A IyG
al−yAs層(ただし、11+Q+X+V+2<1、
p<z、p<q、x≠Vs X≧p%y≧p)とを交互
に多層積層してなる反射膜層が形成され、前記キャップ
層は局部的にエツチング除去され、このエツチング除去
部に対向する第2クラッド層の中間部までと前記キャッ
プ層の非エツチング除去部では該キャップ層の中間部ま
でとにn + (またはp+)=GaAsの拡散層が形
成されるとともに該拡散層により電流通過制限層が形成
され、前記キャップ層の非エツチング除去部にはコンタ
クトが形成され、このキャップ層と前記反射膜層とで7
アプリ・ペロ反射鏡が構成されてなる面発光レーザ。
(1) n (or p)-GaAs substrate" Second, an n (or p) -AlzGal-zAs layer (referred to as the first cladding layer), an AlpGal-pAs layer (referred to as the active layer), and a p (or n) In a surface emitting laser in which a -AIqGal-qAs layer (referred to as a second cladding layer) and a p+ (or n'')-GaAs layer (referred to as a cap layer) are formed, an n (or p )-Al
xGa, -xAs layer and n (or p) -A IyG
al-yAs layer (however, 11+Q+X+V+2<1,
A reflective film layer is formed by alternately laminating multiple layers of p<z, p<q, x≠Vs A diffusion layer of n + (or p + )=GaAs is formed up to the middle part of the second cladding layer facing the cladding layer and up to the middle part of the cap layer in the non-etched part of the cap layer. A current passage limiting layer is formed, a contact is formed in the non-etched portion of the cap layer, and a contact layer is formed between the cap layer and the reflective film layer.
A surface-emitting laser composed of an Appli-Perot reflector.
(2)n(またはp)−GaAs基板上に、n(または
p) −AlzGa、、−zAs層(第1クラッド層と
いう)と、AlpGa、−pAs層(活性層という)と
、p(またはn)−AlqGal−qAs層(第2クラ
ッド層という)と、p”(またはn”)−GaAs層(
キャップ層という)とを形成して面発光レーザを製造す
る方法において、第1クラッド層内に、■(またはp)
 −A IxGal−xAs層と、n(またはp)−A
lyGa、yAs層(ただし、p+q+x、y、z< 
i、p<z、p<q、x≠5’%X≧p、 y≧p)と
を交互に多層積層してなる反射膜層を形成し、前記キャ
ップ層を局部的にエツチング除去し、このエツチング除
去部に対向する第2クラッド層の中間部までと前記キャ
ップ層の非エツチング除去部では該キャップ層の中間部
までとにn + (またはp+)−GaAsを拡散する
ことにより電流通過制限層を形成し、前記キャップ層の
非エツチング除去部にはコンタクトを形成し、このキャ
ップ層と前記反射膜層とで77ブリ・ペロ反射鏡を構成
することに上り面発光レーザを製造する方法。
(2) On an n (or p) -GaAs substrate, an n (or p) -AlzGa, -zAs layer (referred to as a first cladding layer), an AlpGa, -pAs layer (referred to as an active layer), and a p (or n)-AlqGal-qAs layer (referred to as second cladding layer) and p'' (or n'')-GaAs layer (
In a method of manufacturing a surface emitting laser by forming a first cladding layer (referred to as a cap layer),
-A IxGal-xAs layer and n (or p)-A
lyGa, yAs layer (however, p+q+x, y, z<
i, p<z, p<q, x≠5'% Current passage is restricted by diffusing n + (or p + )-GaAs up to the middle part of the second cladding layer facing this etched removed part and in the non-etched part of the cap layer to the middle part of the cap layer. A method for manufacturing an upward surface emitting laser, comprising: forming a layer, forming a contact in a non-etched portion of the cap layer, and forming a 77 Bri-Perot reflector with the cap layer and the reflective film layer.
JP19137083A 1983-10-12 1983-10-12 Surface light emitting laser and manufacture thereof Pending JPS6081888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19137083A JPS6081888A (en) 1983-10-12 1983-10-12 Surface light emitting laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19137083A JPS6081888A (en) 1983-10-12 1983-10-12 Surface light emitting laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6081888A true JPS6081888A (en) 1985-05-09

Family

ID=16273456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19137083A Pending JPS6081888A (en) 1983-10-12 1983-10-12 Surface light emitting laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6081888A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949351A (en) * 1988-04-15 1990-08-14 Omron Tateisi Electronics Co. Surface-emitting semiconductor laser and manufacturing method of same
US4999843A (en) * 1990-01-09 1991-03-12 At&T Bell Laboratories Vertical semiconductor laser with lateral electrode contact
US5012486A (en) * 1990-04-06 1991-04-30 At&T Bell Laboratories Vertical cavity semiconductor laser with lattice-mismatched mirror stack
US5018157A (en) * 1990-01-30 1991-05-21 At&T Bell Laboratories Vertical cavity semiconductor lasers
US5063569A (en) * 1990-12-19 1991-11-05 At&T Bell Laboratories Vertical-cavity surface-emitting laser with non-epitaxial multilayered dielectric reflectors located on both surfaces
US5115441A (en) * 1991-01-03 1992-05-19 At&T Bell Laboratories Vertical cavity surface emmitting lasers with transparent electrodes
US5132750A (en) * 1989-11-22 1992-07-21 Daido Tokushuko Kabushiki Kaisha Light-emitting diode having light reflecting layer
US5226053A (en) * 1991-12-27 1993-07-06 At&T Bell Laboratories Light emitting diode
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
US5260589A (en) * 1990-11-02 1993-11-09 Norikatsu Yamauchi Semiconductor device having reflecting layers made of varying unit semiconductors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949351A (en) * 1988-04-15 1990-08-14 Omron Tateisi Electronics Co. Surface-emitting semiconductor laser and manufacturing method of same
US5132750A (en) * 1989-11-22 1992-07-21 Daido Tokushuko Kabushiki Kaisha Light-emitting diode having light reflecting layer
US4999843A (en) * 1990-01-09 1991-03-12 At&T Bell Laboratories Vertical semiconductor laser with lateral electrode contact
US5018157A (en) * 1990-01-30 1991-05-21 At&T Bell Laboratories Vertical cavity semiconductor lasers
US5012486A (en) * 1990-04-06 1991-04-30 At&T Bell Laboratories Vertical cavity semiconductor laser with lattice-mismatched mirror stack
US5260589A (en) * 1990-11-02 1993-11-09 Norikatsu Yamauchi Semiconductor device having reflecting layers made of varying unit semiconductors
US5063569A (en) * 1990-12-19 1991-11-05 At&T Bell Laboratories Vertical-cavity surface-emitting laser with non-epitaxial multilayered dielectric reflectors located on both surfaces
US5115441A (en) * 1991-01-03 1992-05-19 At&T Bell Laboratories Vertical cavity surface emmitting lasers with transparent electrodes
US5226053A (en) * 1991-12-27 1993-07-06 At&T Bell Laboratories Light emitting diode
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror

Similar Documents

Publication Publication Date Title
CN101355233B (en) Surface-emitting semiconductor laser
JPS6081888A (en) Surface light emitting laser and manufacture thereof
JP3689621B2 (en) Semiconductor light emitting device
KR20030084928A (en) Surface-Emitting Semiconductor Laser
JPH08340149A (en) Surface-luminous laser with improved pumping efficiency
JPH04144183A (en) Surface light emitting type semiconductor laser
JPS6081887A (en) Surface light emitting laser and manufacture thereof
KR20050120483A (en) High efficient surface emitting laser device, laser pumping unit for the laser device and method for fabricating the laser pumping unit
JPS6097684A (en) Surface luminous laser and manufacture thereof
JPH1146036A (en) Surface-emitting type semiconductor laser and manufacture of the same
JPS60124887A (en) Distributed feedback type semiconductor laser
JP2002353562A (en) Surface-emitting laser and manufacturing method therefor
JPH05259508A (en) Light emitting element
US6594295B1 (en) Semiconductor laser with disordered and non-disordered quantum well regions
JPS62291192A (en) Surface emission laser
JPS6095990A (en) Plane luminescent laser and manufacture thereof
JPS62219684A (en) Distributed feedback type semiconductor laser
JP2000068604A (en) Vertical resonator type surface emitting laser element
JPS5911690A (en) Semiconductor laser device
JP2913947B2 (en) Quantum well semiconductor laser
JPS61236187A (en) Semiconductor laser device and its manufacture
JPH0581198B2 (en)
JPH0496381A (en) Light-emitting element
JPH02119285A (en) Manufacture of semiconductor laser
JP2002111129A (en) Semiconductor optical device