JP2000068604A - Vertical resonator type surface emitting laser element - Google Patents

Vertical resonator type surface emitting laser element

Info

Publication number
JP2000068604A
JP2000068604A JP10239946A JP23994698A JP2000068604A JP 2000068604 A JP2000068604 A JP 2000068604A JP 10239946 A JP10239946 A JP 10239946A JP 23994698 A JP23994698 A JP 23994698A JP 2000068604 A JP2000068604 A JP 2000068604A
Authority
JP
Japan
Prior art keywords
emitting laser
mirror
substrate
surface emitting
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10239946A
Other languages
Japanese (ja)
Inventor
Noriyuki Yokouchi
則之 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP10239946A priority Critical patent/JP2000068604A/en
Publication of JP2000068604A publication Critical patent/JP2000068604A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vertical resonator type surface emitting laser element, which can oscillate at a low threshold value and in a multi-longitudinal mode. SOLUTION: A surface emitting laser 40 is provided with an n-type buffer layer 14, a lower semiconductor multilayer film reflecting mirror 44, a luminous layer structure 18 and an upper semiconductor multilayer film reflecting mirror 20 in order on a GaAs substrate 12 and moreover, is provided with a surface electrode 22 on the upper surface thereof and is provided with a rear side electrode 24 and a rear multilayer film reflecting mirror 42 on the rear thereof. One part of the mirror 20, one part of the structure 18 and the upper layer of one part of the mirror 44 are processed into a cylindrical mesa type by cylindrical grooves 32. A polyimide film is formed on the whole surface over the substrate excluding a light emitting window 38 in the center of the upper surface of the one part, which is processed into the mesa type, of the mirror 20 and the grooves 32 are filled with the polyimide film. The mirror 42 consisting of three pairs of Si films and SiO2 films and the electrode 24 are respectively provided at the position, which opposes to the window 38, on the rear of the substrate and at the region excepting the mirror 42 of the rear of the substrate. Moreover, the electrode 22 is formed on the upper surface excepting the window 38 over the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、垂直共振器型面発
光レーザ素子に関し、更に詳細には低しきい値でマルチ
縦モード発振できる、光データ伝送分野に最適な垂直共
振器型面発光レーザ素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity surface emitting laser device, and more particularly, to a vertical cavity surface emitting laser which is capable of multi-longitudinal mode oscillation at a low threshold and is most suitable for the optical data transmission field. It relates to an element.

【0002】[0002]

【従来の技術】垂直共振器型面発光レーザ素子(以下、
面発光レーザと称す)とマルチモード光ファイバを組み
合わせた光データ伝送技術、いわゆる光インターコネク
ション技術が、近年注目されている。光インターコネク
ション技術によれば、数100mに達する伝送距離を1
Gb/s程度のビットレートでデータ伝送を行うことが
できる。光インターコネクション技術では、面発光レー
ザをマルチ横モード発振させて使用することにより、モ
ーダル雑音を低減できることが、エレクトロニクス・レ
ターズ(Electronics Letters)、29巻(1993
年)、1482ページに示されている。
2. Description of the Related Art A vertical cavity surface emitting laser device (hereinafter, referred to as a vertical cavity surface emitting laser device)
In recent years, an optical data transmission technology in which a surface emitting laser is combined with a multimode optical fiber, that is, an optical interconnection technology, has attracted attention. According to the optical interconnection technology, the transmission distance reaching several hundred meters is one.
Data transmission can be performed at a bit rate of about Gb / s. In optical interconnection technology, it has been reported that modal noise can be reduced by using a surface emitting laser by oscillating in multiple transverse modes, see Electronics Letters, Vol. 29, 1993 (1993).
Year), p. 1482.

【0003】図4を参照して、従来のGa As 系面発光
レーザの代表的な構成例を説明する。図4は従来の面発
光レーザ10の層構造を示す基板断面図である。従来の
面発光レーザ10は、図4に示すように、厚さ約100
μm程度のGaAs 基板12上に、順次、形成されたn
−GaAsバッファ層14、下部半導体多層膜反射鏡1
6、発光層構造18、及び、上部半導体多層膜反射鏡2
0を備え、更に、上面に表面側電極22、及び裏面に裏
面側電極24を備えている。
Referring to FIG. 4, a typical configuration example of a conventional GaAs surface emitting laser will be described. FIG. 4 is a sectional view of a substrate showing a layer structure of the conventional surface emitting laser 10. As shown in FIG. The conventional surface emitting laser 10 has a thickness of about 100, as shown in FIG.
n formed sequentially on a GaAs substrate 12 of about μm.
-GaAs buffer layer 14, lower semiconductor multilayer mirror 1
6, light emitting layer structure 18, and upper semiconductor multilayer mirror 2
0, and a front surface electrode 22 on the top surface and a back surface electrode 24 on the back surface.

【0004】下部半導体多層膜反射鏡16は30ペアの
n−AlGaAs層/ GaAs層の対から構成され、発
光層構造18はn−AlGaAsクラッド層26、発光
層としてノンドープGaAs/ InGaAs歪量子井戸
構造28及びp−AlGaAsクラッド層30とから構
成され、上部半導体多層膜反射鏡20は20ペアのp−
AlGaAs層/ GaAs層の対から構成されている。
但し、上部半導体多層膜反射鏡20のうち最もp−Al
GaAsクラッド層に近いAlGaAs層はAlAs層
となっている。
The lower semiconductor multilayer mirror 16 is composed of 30 pairs of n-AlGaAs / GaAs layers, the light-emitting layer structure 18 is an n-AlGaAs cladding layer 26, and the light-emitting layer is a non-doped GaAs / InGaAs strained quantum well structure. 28 and a p-AlGaAs cladding layer 30. The upper semiconductor multilayer film reflecting mirror 20 has 20 pairs of p-type layers.
It is composed of an AlGaAs layer / GaAs layer pair.
However, the most p-Al
The AlGaAs layer near the GaAs cladding layer is an AlAs layer.

【0005】上部半導体多層膜反射鏡20、発光層構造
18及び下部半導体多層膜反射鏡18の一部上層は、円
筒状溝32により円柱状のメサ型に形成されている。上
部半導体多層膜反射鏡20の上面には、SiNX などの
誘電体膜がパッシベーション膜34として成膜されてい
る。また、メサの上部半導体多層膜反射鏡20中のAl
As層の露出端部36は酸化され、電流ブロッキング構
造を構成している。この結果、酸化されずに上部半導体
多層膜反射鏡20に残っている電流注入可能な領域は直
径約10μmの円形領域である。メサの上部半導体多層
膜反射鏡20の上面中央の直径15μm程度の光出射窓
38を除く基板全面には、ポリイミド膜が成膜され円筒
状溝32を埋め込んでいる。また、光出射窓34を除く
基板上面には表面側電極(p側電極)22が形成されて
いる。
The upper layer of the upper semiconductor multilayer reflector 20, the light emitting layer structure 18, and the lower semiconductor multilayer reflector 18 is formed in a cylindrical mesa shape by a cylindrical groove 32. On the upper surface of the upper semiconductor multilayer film reflecting mirror 20, a dielectric film such as SiN x is formed as a passivation film. Also, the Al in the upper semiconductor multilayer film reflecting mirror 20 of the mesa
The exposed end 36 of the As layer is oxidized to form a current blocking structure. As a result, the current injectable region remaining in the upper semiconductor multilayer film reflecting mirror 20 without being oxidized is a circular region having a diameter of about 10 μm. A polyimide film is formed on the entire surface of the substrate except for the light exit window 38 having a diameter of about 15 μm at the center of the upper surface of the upper semiconductor multilayer film reflecting mirror 20 of the mesa, and the cylindrical groove 32 is buried. A surface-side electrode (p-side electrode) 22 is formed on the upper surface of the substrate except for the light exit window 34.

【0006】[0006]

【発明が解決しようとする課題】ところで、面発光レー
ザをマルチ横モードで発振させるためには、発光領域の
直径を10μm程度以上にする必要がある。一方、面発
光レーザが発振するのに必要なしきい値電流の大きさ
は、発光領域の面積に比例するので、発光領域の直径を
10μm程度以上にする必要がある以上、マルチ横モー
ドで発振する面発光レーザのしきい値電流の低減化には
限界がある。例えば、単一横モードで発振する面発光レ
ーザでは、0.5mA以下のしきい値電流で発振する面
発光レーザが実現されているにもかかわらず、マルチ横
モード発振する面発光レーザのしきい値電流は、一般
に、1mA以上である。この結果、レーザ駆動に必要な
消費電力が大きくなるという問題がある上に、変調時の
消費電力を低減するのに必要なゼロバイアス変調を行う
場合に、発振遅延時間が長くなる結果、データ伝送の一
層の高速化を図ることが難しいという問題があった。
By the way, in order to oscillate the surface emitting laser in the multi-transverse mode, it is necessary to make the diameter of the light emitting region about 10 μm or more. On the other hand, since the magnitude of the threshold current required for the surface emitting laser to oscillate is proportional to the area of the light emitting region, the oscillation in the multi-transverse mode is necessary since the diameter of the light emitting region needs to be about 10 μm or more. There is a limit in reducing the threshold current of a surface emitting laser. For example, in the case of a surface emitting laser that oscillates in a single transverse mode, a surface emitting laser that oscillates with a threshold current of 0.5 mA or less has been realized, but the threshold of a surface emitting laser that oscillates in a multi transverse mode. The value current is generally greater than or equal to 1 mA. As a result, in addition to the problem that the power consumption required for driving the laser increases, the oscillation delay time increases when performing zero-bias modulation required to reduce the power consumption during modulation. There is a problem that it is difficult to further increase the speed.

【0007】以上のように、従来の面発光レーザの構成
では、低しきい値でマルチ縦モード発振させることが難
しかった。そこで、本発明の目的は、低しきい値でマル
チ縦モード発振できる面発光レーザを提供することであ
る。
As described above, in the configuration of the conventional surface emitting laser, it was difficult to oscillate in multiple longitudinal modes at a low threshold. Therefore, an object of the present invention is to provide a surface emitting laser that can oscillate in multiple longitudinal modes at a low threshold.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る垂直共振器型面発光レーザ素子は、半
導体基板上に形成された一対のレーザ反射鏡と、1対の
反射鏡の間に設けられた発光層とを有する垂直共振器型
面発光レーザ素子において、半導体基板が発振波長に対
して透明であり、かつ光出射窓に対向する半導体基板裏
面の位置に第3の反射鏡を備えていることを特徴として
いる。
In order to achieve the above object, a vertical cavity surface emitting laser device according to the present invention comprises a pair of laser reflectors formed on a semiconductor substrate and a pair of reflectors. A vertical cavity surface emitting laser device having a light-emitting layer provided between the semiconductor substrate and the semiconductor substrate, the semiconductor substrate being transparent to the oscillation wavelength, and a third reflective surface located at a position on the back surface of the semiconductor substrate facing the light exit window. It is characterized by having a mirror.

【0009】本発明では、発光層から出射され、下部半
導体多層膜反射鏡を透過した光を第3の反射鏡で反射し
て、光出射窓から出射させることにより、マルチ縦モー
ド発振でも、しきい値を低くすることができる。従っ
て、第3の反射鏡の構成は、発光層からの光を反射する
ことができる限り制約はなく、例えば第3の反射鏡がS
i膜/SiO2 膜の多層膜で構成されている。この他に
も、Si膜/Al2 3 膜、Si膜/MgO膜、TiO
2 膜/SiO2 膜等がある。
According to the present invention, the light emitted from the light emitting layer and transmitted through the lower semiconductor multilayer film reflecting mirror is reflected by the third reflecting mirror and emitted from the light emitting window, so that the multi-longitudinal mode oscillation can be performed. The threshold can be lowered. Therefore, the configuration of the third reflecting mirror is not limited as long as the light from the light emitting layer can be reflected.
It is composed of a multilayer film of an i-film / SiO 2 film. In addition, Si film / Al 2 O 3 film, Si film / MgO film, TiO
2 film / SiO 2 film.

【0010】[0010]

【発明の実施の形態】以下に、実施形態例を挙げ、添付
図面を参照して、本発明の実施の形態を具体的かつ詳細
に説明する。実施形態例 本実施形態例は、本発明に係る垂直共振器型面発光レー
ザ素子(以下、簡単に面発光レーザと言う)の実施形態
の一例であって、図1は本実施形態例の面発光レーザの
層構造を示す断面図である。図1に示すもののうち図4
と同じものには同じ符号を付している。本実施形態例の
面発光レーザ40は、図1に示すように、厚さ約100
μm程度のGa As 基板12上に、順次、形成された膜
厚0.5μmのn−GaAsバッファ層14、下部半導
体多層膜反射鏡44、発光層構造18、及び上部半導体
多層膜反射鏡20を備え、更に、上面に表面側電極2
2、及び裏面に裏面側電極24と裏面多層膜反射鏡42
を備えている。下部半導体多層膜反射鏡44は5ペアの
n−Al0.9 Ga0.1 As層/ GaAs層の対から構成
され、発光層構造18はn−Al0.3 Ga0.7 Asクラ
ッド層26、発光層としてノンドープGaAs/ In
0.2 Ga0.8 As歪量子井戸構造28及びp−Al0.3
Ga0.7 Asクラッド層30とから構成され、上部半導
体多層膜反射鏡20は20ペアのp−Al0.9 Ga0.1
As層/ GaAs層の対で構成されている。但し、上部
半導体多層膜反射鏡20のうち最もp−AlGaAsク
ラッド層に近いAlGaAs層はAlAs層となってい
る。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Embodiment Example This embodiment is an example of an embodiment of a vertical cavity surface emitting laser device (hereinafter, simply referred to as a surface emitting laser) according to the present invention, and FIG. It is sectional drawing which shows the layer structure of a light emitting laser. 4 shown in FIG.
The same reference numerals are given to the same components. As shown in FIG. 1, the surface emitting laser 40 of this embodiment has a thickness of about 100 mm.
A 0.5 μm-thick n-GaAs buffer layer 14, a lower semiconductor multilayer reflector 44, a light emitting layer structure 18, and an upper semiconductor multilayer reflector 20 are sequentially formed on a GaAs substrate 12 of about μm thickness. And a surface-side electrode 2 on the upper surface.
2, and the back surface side electrode 24 and the back surface multilayer film reflection mirror 42 on the back surface
It has. Lower semiconductor multilayer reflection mirror 44 is composed of a pair of n-Al 0.9 Ga 0.1 As layer / GaAs layer of 5 pairs, the light emitting layer structure 18 n-Al 0.3 Ga 0.7 As cladding layer 26, an undoped GaAs as a light emitting layer / In
0.2 Ga 0.8 As strained quantum well structure 28 and p-Al 0.3
Ga 0.7 As consists cladding layer 30., p-Al 0.9 Ga 0.1 of the upper semiconductor multilayer reflection mirror 20 is 20 pairs
It is composed of a pair of As layer / GaAs layer. However, the AlGaAs layer closest to the p-AlGaAs clad layer in the upper semiconductor multilayer mirror 20 is an AlAs layer.

【0011】上部半導体多層膜反射鏡20、発光層構造
18及び下部半導体多層膜反射鏡18の一部上層は、円
筒状溝32により円柱状のメサ型に形成されている。上
部半導体多層膜反射鏡20の上面には、SiNX などの
誘電体膜がパッシベーション膜34として成膜されてい
る。また、メサの上部半導体多層膜反射鏡20中のAl
As層の露出端部36は酸化され、電流ブロッキング構
造を構成している。この結果、酸化されずに上部半導体
多層膜反射鏡20に残っている電流注入可能な領域は直
径約3μmの円形領域である。メサの上部半導体多層膜
反射鏡20の上面中央の直径15μm程度の光出射窓3
8を除く基板全面には、ポリイミド膜が成膜され円筒状
溝32を埋め込んでいる。また、光出射窓34を除く基
板上面には表面側電極(p側電極)22が形成されてい
る。Ga As 基板12の裏面には、光出射窓38と対向
する位置に3ペアのSi膜/SiO2 膜の対からなる裏
面多層膜反射鏡42を備えている。裏面多層膜反射鏡4
2の領域を除くGa As 基板12の裏面には裏面側電極
24が設けてある。裏面多層膜反射鏡42を構成するS
i膜及びSiO2 膜の厚さは、それぞれ、約80nm、
及び約170nmである。
Partially upper layers of the upper semiconductor multilayer reflector 20, the light emitting layer structure 18, and the lower semiconductor multilayer reflector 18 are formed in a cylindrical mesa shape by a cylindrical groove 32. On the upper surface of the upper semiconductor multilayer film reflecting mirror 20, a dielectric film such as SiN x is formed as a passivation film. Also, the Al in the upper semiconductor multilayer film reflecting mirror 20 of the mesa
The exposed end 36 of the As layer is oxidized to form a current blocking structure. As a result, the current injectable region remaining in the upper semiconductor multilayer film reflecting mirror 20 without being oxidized is a circular region having a diameter of about 3 μm. A light exit window 3 having a diameter of about 15 μm at the center of the upper surface of the upper semiconductor multilayer reflector 20 of the mesa.
A polyimide film is formed on the entire surface of the substrate except for the surface 8, and the cylindrical groove 32 is buried. A surface-side electrode (p-side electrode) 22 is formed on the upper surface of the substrate except for the light exit window 34. On the back surface of the GaAs substrate 12, a back surface multilayer film reflecting mirror 42 composed of three pairs of Si film / SiO 2 film is provided at a position facing the light exit window 38. Back multilayer mirror 4
A backside electrode 24 is provided on the backside of the GaAs substrate 12 excluding the region 2. S constituting the back multilayer reflection mirror 42
The thickness of the i film and the SiO 2 film is about 80 nm, respectively.
And about 170 nm.

【0012】以下に、図1を参照しつつ、本実施形態例
の面発光レーザ40の作製方法を説明する。先ず、n−
GaAs基板12上に、順次、分子線エピタキシー法に
よって、膜厚0.5μmのn−GaAsバッファ層、下
部半導体多層膜反射鏡16を構成する10ペアのn−A
0.9 Ga0.1 As層/ GaAs層の対からなる多層膜
を成長させる。次いで、下部半導体多層膜反射鏡16上
に、同じく分子線エピタキシー法によって、n−Al
0.3 Ga0.7 Asクラッド層26、ノンドープGaAs
/ In0. 2 Ga0.8 As歪量子井戸構造28、及びp−
Al0.3 Ga0.7 Asクラッド層30を成長させる。次
に、クラッド層30上に、上部半導体多層膜反射鏡20
を構成する24ペアのp−Al0.9 Ga0.1 As層/ G
aAs層の対からなる多層膜を成長させる。但し、最も
p−Al0.3 Ga0.7 Asクラッド層30に近いAl
0.9 Ga0.1 As層では、これにに代えて、AlAs層
を成長させる。
Hereinafter, a method for fabricating the surface emitting laser 40 of this embodiment will be described with reference to FIG. First, n-
An n-GaAs buffer layer having a thickness of 0.5 μm and 10 pairs of nA constituting a lower semiconductor multilayer mirror 16 are sequentially formed on the GaAs substrate 12 by molecular beam epitaxy.
A multilayer film composed of a pair of l 0.9 Ga 0.1 As layer / GaAs layer is grown. Next, on the lower semiconductor multilayer film reflecting mirror 16, n-Al
0.3 Ga 0.7 As clad layer 26, undoped GaAs
/ In 0. 2 Ga 0.8 As strained quantum well structure 28, and p-
An Al 0.3 Ga 0.7 As clad layer 30 is grown. Next, the upper semiconductor multilayer mirror 20 is placed on the cladding layer 30.
24 pairs of p-Al 0.9 Ga 0.1 As layers / G
A multilayer film consisting of a pair of aAs layers is grown. However, the Al closest to the p-Al 0.3 Ga 0.7 As clad layer 30
For the 0.9 Ga 0.1 As layer, an AlAs layer is grown instead.

【0013】上部半導体多層膜反射鏡20を形成した基
板上にSiNX などの誘電体膜を推積し、フォトリソグ
ラフィ技術を用いて直径15μmの円形パターンを中央
に有するマスクを形成する。これをマスクとして、塩素
系ガスを用いた反応性イオンビームエッチングで下部半
導体多層膜反射鏡16の上部に達するまで上部半導体多
層膜反射鏡20、発光層構造18及び下部半導体多層膜
反射鏡16をエッチングし、円筒状溝32に取り囲まれ
たメサに加工する。
A dielectric film such as SiN x is deposited on the substrate on which the upper semiconductor multilayer film reflecting mirror 20 is formed, and a mask having a circular pattern having a diameter of 15 μm at the center is formed by photolithography. Using this as a mask, the upper semiconductor multilayer reflector 20, the light-emitting layer structure 18, and the lower semiconductor multilayer reflector 16 are reactive ion beam etching using a chlorine-based gas until they reach the upper portion of the lower semiconductor multilayer reflector 16. Etching is performed to form a mesa surrounded by the cylindrical groove 32.

【0014】その後、水蒸気雰囲気中400℃で約15
分間加熱し、メサ側面の上部半導体多層膜反射鏡20中
のAlAs層露出面を酸化させて、電流ブロッキング構
造を構成する。このとき、酸化されずに上部半導体多層
膜反射鏡20に残った電流注入可能な領域は、約直径3
μmである。SiNX などの誘電体膜であるパッシベー
ション膜34を成膜し、メサ周辺の円筒状溝32をポリ
イミドで埋め込んだ後、電流注入、光取り出しのために
メサ最上部のポリイミドを除去し、リフトオフ技術を用
いて、光取り出し窓38(光出射窓)を有する電極構造
22を形成する。基板厚さが約100μm程度になるよ
うに、Ga As 基板12の裏面を研磨して、裏面を鏡面
に仕上げる。次いで、裏面に3ペアのSi層/SiO2
層の対からなる多層膜からなる裏面多層膜反射鏡42を
形成する。この後、金属を蒸着して裏面側電極24を形
成することにより、面発光レーザ40を完成することが
できる。
Thereafter, at 400.degree.
Then, the exposed surface of the AlAs layer in the upper semiconductor multilayer mirror 20 on the side of the mesa is oxidized to form a current blocking structure. At this time, the current injectable region remaining in the upper semiconductor multilayer film reflecting mirror 20 without being oxidized has a diameter of about 3 mm.
μm. After forming a passivation film 34, which is a dielectric film such as SiN X , and filling the cylindrical groove 32 around the mesa with polyimide, the polyimide at the top of the mesa is removed for current injection and light extraction. Is used to form the electrode structure 22 having the light extraction window 38 (light emission window). The rear surface of the GaAs substrate 12 is polished so that the substrate thickness is about 100 μm, and the rear surface is finished to a mirror surface. Next, three pairs of Si layers / SiO 2
A back-surface multilayer film reflecting mirror made of a multilayer film composed of a pair of layers is formed. Thereafter, the surface emitting laser 40 can be completed by depositing a metal to form the back surface side electrode 24.

【0015】本実施形態例の面発光レーザ40と同じ構
成の面発光レーザを試作し、電流対光出力特性を測定し
たところ、図2に示す電流対光出力特性の測定結果を得
た。図2から判る通り、しきい値電流は0.3mAであ
って、単一モード発振する発光面積の小さい面発光レー
ザと同程度の値が得られた。また、試作した面発光レー
ザの発振スペクトルは、図3に示す通りである。発振波
長は980nmであるが、中心ピーク波長の近傍に約
1.5nm間隔で5本のサブピークが見える。この波長
間隔は、基板の厚さから予想される縦モード間隔に一致
しており、試作した面発光レーザが、マルチ縦モードで
発振していることが確認できた。
A surface-emitting laser having the same configuration as the surface-emitting laser 40 of this embodiment was prototyped, and the current-to-light output characteristics were measured. As a result, the measurement results of the current-to-light output characteristics shown in FIG. 2 were obtained. As can be seen from FIG. 2, the threshold current was 0.3 mA, and the same value as that of the surface emitting laser having a small light emitting area for single mode oscillation was obtained. The oscillation spectrum of the prototype surface emitting laser is as shown in FIG. Although the oscillation wavelength is 980 nm, five subpeaks can be seen near the center peak wavelength at an interval of about 1.5 nm. This wavelength interval matched the longitudinal mode interval expected from the thickness of the substrate, and it was confirmed that the prototype surface emitting laser oscillated in the multi-longitudinal mode.

【0016】本発明に係る面発光レーザの特徴は、基板
裏面に形成した反射鏡の効果によりマルチ縦モード発振
が低しきい値で可能になることである。従って、発振波
長において基板が透明であるような構成の面発光レーザ
であれば、本実施形態例と同様の効果が得られる。例え
ば、波長1.3μmや1.55μmで発振するInP基
板上の面発光レーザや、GaP基板上に形成した波長8
50nm程度のGaAs系面発光レーザなどに、本発明
を適用でき、本実施形態例と同様の効果が奏することが
できる。
A feature of the surface emitting laser according to the present invention is that the multi-longitudinal mode oscillation can be performed at a low threshold value by the effect of the reflecting mirror formed on the back surface of the substrate. Therefore, if the surface emitting laser has a configuration in which the substrate is transparent at the oscillation wavelength, the same effect as that of the embodiment can be obtained. For example, a surface emitting laser on an InP substrate that oscillates at a wavelength of 1.3 μm or 1.55 μm, or a wavelength of 8 μm formed on a GaP substrate.
The present invention can be applied to a GaAs surface emitting laser of about 50 nm or the like, and the same effects as in the present embodiment can be obtained.

【0017】[0017]

【発明の効果】本発明によれば、半導体基板上に形成さ
れた一対のレーザ反射鏡と、1対の反射鏡の間に設けら
れた発光層とを有する垂直共振器型面発光レーザ素子に
おいて、半導体基板が発振波長に対して透明であり、か
つ光出射窓に対向する半導体基板裏面の位置に第3の反
射鏡を備えることにより、0.5mA以下の低しきい値
でマルチ縦モード発振する垂直共振器型面発光レーザ素
子を実現することができる。本発明に係る垂直共振器型
面発光レーザ素子を使用することにより、高速な光イン
ターコネクションを低消費電力で実現することができ
る。
According to the present invention, there is provided a vertical cavity surface emitting laser device having a pair of laser reflectors formed on a semiconductor substrate and a light emitting layer provided between the pair of reflectors. By providing the third reflecting mirror at a position on the back surface of the semiconductor substrate opposite to the light exit window, the multi-longitudinal mode oscillation with a low threshold of 0.5 mA or less is provided. Vertical cavity surface emitting laser device can be realized. By using the vertical cavity surface emitting laser device according to the present invention, high-speed optical interconnection can be realized with low power consumption.

【図面の簡単な説明】[Brief description of the drawings]

【図1】面発光レーザの実施形態例の層構造を示す基板
断面図である。
FIG. 1 is a sectional view of a substrate showing a layer structure of an embodiment of a surface emitting laser.

【図2】実施形態例の面発光レーザの電流対光出力特性
を示すグラフである。
FIG. 2 is a graph showing current versus light output characteristics of the surface emitting laser according to the embodiment.

【図3】実施形態例の面発光レーザの発振スペクトルを
示すグラフである。
FIG. 3 is a graph showing an oscillation spectrum of the surface emitting laser according to the embodiment.

【図4】従来の面発光レーザの層構造を示す基板断面図
である。
FIG. 4 is a sectional view of a substrate showing a layer structure of a conventional surface emitting laser.

【符号の説明】[Explanation of symbols]

10 従来の面発光レーザ 12 Ga As 基板 14 n−GaAsバッファ層 16 30ペアのn−AlGaAs層/ GaAs層から
なる下部半導体多層膜反射鏡 18 発光層構造 20 20ペアのp−AlGaAs層/ GaAs層から
なる上部半導体多層膜反射鏡 22 表面側電極 24 裏面側電極 26 n−AlGaAsクラッド層 28 ノンドープGaAs/ InGaAs歪量子井戸構
造 30 p−AlGaAsクラッド層 32 円筒状溝 34 パッシベーション膜 36 AlAs層の酸化層 38 光出射窓 40 実施形態例の面発光レーザ 42 3ペアのSi膜/SiO2 膜からなる裏面多層膜
反射鏡 44 5ペアのn−AlGaAs層/ GaAs層からな
る下部半導体多層膜反射鏡
DESCRIPTION OF SYMBOLS 10 Conventional surface emitting laser 12 GaAs substrate 14 n-GaAs buffer layer 16 Lower semiconductor multilayer film reflector consisting of 30 pairs of n-AlGaAs layers / GaAs layers 18 Light emitting layer structure 20 20 pairs of p-AlGaAs layers / GaAs layers Upper semiconductor multilayer film reflecting mirror 22 front electrode 24 back electrode 26 n-AlGaAs clad layer 28 undoped GaAs / InGaAs strained quantum well structure 30 p-AlGaAs clad layer 32 cylindrical groove 34 passivation film 36 oxide layer of AlAs layer 38 light exit window 40 embodiment of the surface emitting laser 42 three pairs of Si film / back multilayer film reflecting mirror made of SiO 2 film 44 5 pairs lower semiconductor multilayer reflection mirror made of n-AlGaAs layer / GaAs layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成された一対のレーザ
反射鏡と、1対の反射鏡の間に設けられた発光層とを有
する垂直共振器型面発光レーザ素子において、 半導体基板が発振波長に対して透明であり、かつ光出射
窓に対向する半導体基板裏面の位置に第3の反射鏡を備
えていることを特徴とする垂直共振器型面発光レーザ素
子。
1. A vertical cavity surface emitting laser device having a pair of laser reflectors formed on a semiconductor substrate and a light emitting layer provided between the pair of reflectors, wherein the semiconductor substrate has an oscillation wavelength. A vertical cavity surface emitting laser device characterized by comprising a third reflecting mirror at a position on the back surface of the semiconductor substrate facing the light exit window.
【請求項2】 第3の反射鏡がSi膜/SiO2 膜の対
の多層膜で構成されていることを特徴とする請求項1に
記載の垂直共振器型面発光レーザ素子。
2. The vertical cavity surface emitting laser device according to claim 1, wherein the third reflecting mirror is constituted by a multilayer film of a Si film / SiO 2 film pair.
JP10239946A 1998-08-26 1998-08-26 Vertical resonator type surface emitting laser element Pending JP2000068604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10239946A JP2000068604A (en) 1998-08-26 1998-08-26 Vertical resonator type surface emitting laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10239946A JP2000068604A (en) 1998-08-26 1998-08-26 Vertical resonator type surface emitting laser element

Publications (1)

Publication Number Publication Date
JP2000068604A true JP2000068604A (en) 2000-03-03

Family

ID=17052184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239946A Pending JP2000068604A (en) 1998-08-26 1998-08-26 Vertical resonator type surface emitting laser element

Country Status (1)

Country Link
JP (1) JP2000068604A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173627A (en) * 2004-12-15 2006-06-29 Truelight Corp Oxide confined type vertical cavity surface emitting semiconductor laser with two stacks
CN1302588C (en) * 2002-04-15 2007-02-28 夏普公司 Semiconductor laser and mfg. method thereof
US7418020B2 (en) 2005-10-31 2008-08-26 The Furukawa Electric Co., Ltd. Surface emitting laser device
JP2011232569A (en) * 2010-04-28 2011-11-17 Seiko Epson Corp Optical article and manufacturing method of the same
US8178364B2 (en) 2005-10-31 2012-05-15 Furukawa Electric Co., Ltd. Testing method of surface-emitting laser device and testing device thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302588C (en) * 2002-04-15 2007-02-28 夏普公司 Semiconductor laser and mfg. method thereof
JP2006173627A (en) * 2004-12-15 2006-06-29 Truelight Corp Oxide confined type vertical cavity surface emitting semiconductor laser with two stacks
US7418020B2 (en) 2005-10-31 2008-08-26 The Furukawa Electric Co., Ltd. Surface emitting laser device
US8178364B2 (en) 2005-10-31 2012-05-15 Furukawa Electric Co., Ltd. Testing method of surface-emitting laser device and testing device thereof
JP2011232569A (en) * 2010-04-28 2011-11-17 Seiko Epson Corp Optical article and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP4594814B2 (en) Photonic crystal laser, photonic crystal laser manufacturing method, surface emitting laser array, optical transmission system, and writing system
KR100827120B1 (en) Vertical cavity surface emitting laser and fabricating method thereof
JP3911551B2 (en) Surface emitting laser
EP1480303A2 (en) Surface-emitting semiconductor laser
JP4872987B2 (en) Surface emitting semiconductor laser
JP2006140446A (en) Surface-emitting laser element, method of producing the same surface emitting laser array, surface emitting laser module, electrophotographic system, optical communication system, and optical interconnection system
JPH06224521A (en) Integrated short-cavity laser
US10461507B1 (en) Substrate emitting vertical-cavity surface-emitting laser
KR20140057536A (en) Laser device
JP3652252B2 (en) Semiconductor optical device
KR100950263B1 (en) Micro-lens integrated single-mode vertical cavity surface emitting laser and method for manufacturing thereof
JP4614040B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
CN111900622B (en) Optically matched Vertical Cavity Surface Emitting Lasers (VCSELs) with passivation
US20090180509A1 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP4748645B2 (en) Light emitting system and optical transmission system
WO2021124967A1 (en) Vertical cavity surface-emitting laser element, vertical cavity surface-emitting laser element array, vertical cavity surface-emitting laser module, and method for manufacturing vertical cavity surface-emitting laser element
JP2000068604A (en) Vertical resonator type surface emitting laser element
KR100795994B1 (en) Single-mode vertical cavity surface emitting lasers and method for manufacturing thereof
US20040233954A1 (en) Surface-emitting semiconductor laser element having selective-oxidation type or ion-injection type current-confinement structure, InGaAsp quantum well, and InGaP or InGaAsp barrier layers
US11362486B2 (en) High speed high bandwidth vertical-cavity surface-emitting laser with controlled overshoot
KR20030033277A (en) Vertically integrated high-power surface-emitting laser diode and method of manufacturing the same
JP2004235339A (en) Semiconductor laser
JP2007227861A (en) Semiconductor light-emitting device
JP2003133639A (en) Surface light-emitting semiconductor laser element
JPH09129979A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081006