JPS6081095A - Synthesis method of single crystal of artificial beryl - Google Patents

Synthesis method of single crystal of artificial beryl

Info

Publication number
JPS6081095A
JPS6081095A JP58187297A JP18729783A JPS6081095A JP S6081095 A JPS6081095 A JP S6081095A JP 58187297 A JP58187297 A JP 58187297A JP 18729783 A JP18729783 A JP 18729783A JP S6081095 A JPS6081095 A JP S6081095A
Authority
JP
Japan
Prior art keywords
beryl
molten salt
seed
single crystal
artificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58187297A
Other languages
Japanese (ja)
Inventor
Yoshio Morita
喜夫 森田
Eiji Togawa
戸川 栄司
Masaaki Takeuchi
正明 竹内
Tadaaki Atomachi
後町 忠昭
Koji Kasuga
春日 好治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58187297A priority Critical patent/JPS6081095A/en
Publication of JPS6081095A publication Critical patent/JPS6081095A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable growth of crystal of high quality on the surface of seed by sintering a material for flux on the surface of a seed having the compsn. of beryl. CONSTITUTION:At least one kind of flux material among lithium molybdate, molybdenum trioxide, lithium hydroxide, and vanadium pentoxide is added to a starting material consisting of beryllium oxide, aluminum oxide, and SiO2 having compositional ratio corresponding to beryl, and a single crystal of artificial beryl is synthesized by forming a molten salt by heating the mixture to above the melting temp. of the flux. In this case, one or >= two kinds of the flux material is sintered on the surface of the seed having the compsn. corresponding to beryl and charging it to the molten salt saturated with the starting material, and by producing temp. difference in the molten salt.

Description

【発明の詳細な説明】 本発明は溶剤(フラックス)を用いた人工ベリル単結晶
(大方晶系)の合成方法に関するものであり、溶融塩か
ら従来よりも良質なベリル単結晶を効率よく且つ経済的
に合成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing artificial beryl single crystals (orthogonal crystal system) using a solvent (flux), and is an efficient and economical method for producing beryl single crystals of better quality than before from molten salt. It is related to a method of synthetic synthesis.

エメラルド圧代表される宝石部材或はマイクロウェーブ
部材その他工業部材への応用としての人工ベリルは、近
時その需要も増大の傾向にあるところで、これまでの人
工ベリルの合成方法としては、水熱法、溶剤を用いた溶
融塩法が知られているか、本発明の指向するところは、
この溶融塩法の改良に属するものであり、特にベリルシ
ードの投入方法の改良に関するものである。
The demand for artificial beryl for use in jewelry parts such as emerald pressure, microwave parts, and other industrial parts has recently been on the rise. Is the molten salt method using a solvent known?The present invention is directed to:
This invention belongs to the improvement of the molten salt method, and particularly relates to the improvement of the method of adding beryl seeds.

溶融塩法は水熱法に較べ使用エネルギー(熱、圧力)及
び育成時間が短かく、装置、使用部材が大巾に簡略化で
き経済的であるという利便をもたらした。すなわち、溶
融塩法は、はぼベリルの組成比を示す、酸化ベリリウム
、酸化アルミニウム及び二酸化ケイ素、必要に応じて酸
化クロム(これはエメラルドを得る場合のエメラルドグ
リーンの基調色となる不可欠の着色剤もしくはドープ剤
)及び酸化ニッケル、酸化鉄、酸化コバルト、酸化マン
ガンその他の補助着色剤もしくはドープ剤からなる原料
物質に、溶剤としての五酸化/くナジウム、三酸化モ/
ブデン、モリブデン酸リチウム、水酸化リチウム等の溶
剤から選ばれた1種もしくは2種以上を加え、これを上
記溶剤の溶融温度以上に加熱して溶融塩を形成して、こ
の溶融塩に温度差をつけて長時間保持するか或は一定時
間保持後、ゆるやかな温度勾配をもって徐冷するかいず
れかの操作で溶融塩中に配置したベリル種子結晶の囲り
に人工べIJ )しを生成又は育成する方法である0 この様に溶融塩法は融点以上、通常700℃〜1100
℃の温度範囲において生成又は育成することができるが
、結晶中にインクルージヨンを含まない良質のベリル単
結晶育成となると、ルツボ炉の温度プロファイル、成長
速度、溶剤の種類、シード品質等いくつもの管理すべき
ポイントがある。これらの制御因子の中で良質のベリル
単結晶を育成する場合において最も重要なことは、シー
ドの最表面に可能な限り良質の結晶成長を開始させるこ
とである。しかしながら、人工単結晶合成において、良
質の結晶成長を開始させるために現在用いられている手
段は、主に初期の成長速度を小さくする方法であり、具
体的には温度差法において、溶融塩中の育成ゾーンとそ
の他の部分との湿度差を可能な限り小さくする方法、あ
るいは徐冷法による結晶育成を行う場合には、その冷却
速度を可能な限り小さくする方法が利用されてきた0し
かしながらこれらの方法においては、ベリルシードを投
入した直後に17−ドと溶融塩との間の温度差が700
 ’O〜1000℃以上つくため熱ショックによりシー
ド自体にマイクロクランクか入りやすく、又シード表面
の溶融塩が急冷され、原料がかなりの過飽和状態となり
急速な成長が開始してしまう。その際に生ずる結晶中の
内部応力によって割れが発生し、その割れに侵入した溶
融塩がとじ込められてフェザ−状インクルージヨンが発
生するものである。
The molten salt method uses less energy (heat, pressure) and growth time than the hydrothermal method, and has the advantage of being economical because the equipment and parts used can be greatly simplified. That is, the molten salt method shows the composition ratio of beryl, beryllium oxide, aluminum oxide and silicon dioxide, and optionally chromium oxide (this is an essential coloring agent that is the base color of emerald green when obtaining emerald). (or doping agent) and nickel oxide, iron oxide, cobalt oxide, manganese oxide, or other auxiliary colorant or doping agent, and a solvent such as pentoxide/nadium, trioxide, or
One or more solvents selected from buden, lithium molybdate, lithium hydroxide, etc. are added, and this is heated to a temperature higher than the melting temperature of the above solvent to form a molten salt, and the temperature difference between the molten salt and An artificial beryl (IJ) is formed around the beryl seed crystals placed in the molten salt by either holding it for a long period of time or holding it for a certain period of time and then slowly cooling it with a gentle temperature gradient. In this way, the molten salt method is a method of growing
Although it can be produced or grown in the temperature range of 30°F, in order to grow high-quality beryl single crystals that do not contain inclusions in the crystal, there are many controls such as the temperature profile of the crucible furnace, growth rate, type of solvent, seed quality, etc. There are points to be made. Among these control factors, the most important thing in growing high quality beryl single crystals is to start crystal growth as high as possible on the outermost surface of the seed. However, in artificial single crystal synthesis, the means currently used to initiate high-quality crystal growth are mainly methods of reducing the initial growth rate, and specifically, in the temperature difference method, However, methods have been used to minimize the humidity difference between the growth zone and other parts of the crystal, or to reduce the cooling rate as much as possible when growing crystals by slow cooling. , the temperature difference between the 17-d and the molten salt was 700°C immediately after the beryl seed was added.
Because the temperature is above 0 to 1000°C, microcranks tend to enter the seeds themselves due to thermal shock, and the molten salt on the seed surface is rapidly cooled, resulting in a considerably supersaturated state of the raw material and the initiation of rapid growth. Cracks occur due to internal stress in the crystal, and the molten salt that has entered the cracks is trapped, resulting in feather-like inclusions.

本発明は上記の問題を解決するもので、ベリル組成シー
ドの表面に、溶剤原料を焼結することにより、シード表
面に良質の結晶を育成しようというものである。
The present invention is intended to solve the above-mentioned problem, and aims to grow high-quality crystals on the surface of the seed by sintering a solvent raw material onto the surface of the beryl composition seed.

本発明の特徴とするところを、下記に述べる。The features of the present invention will be described below.

ベリルシードの表面温度を溶融塩の湿度とほぼ等しくす
ることによりシードベリルの急速な加熱によるシードの
クラックの発生を防出し又、初期の成長速度を抑制でき
るため良質の結晶を得ることができる。しかしながら、
シードをあらかじめ溶融塩と同じ温度如保ったまま、溶
融塩中に入れるということは、実際の作業としては困碇
であった。
By making the surface temperature of the beryl seeds almost equal to the humidity of the molten salt, it is possible to prevent cracking of the seeds due to rapid heating of the beryl seeds, and to suppress the initial growth rate, thereby making it possible to obtain crystals of good quality. however,
In practice, it is difficult to place seeds into molten salt while maintaining the same temperature as the molten salt.

本発明の方法は、ベリルシードの表面に溶剤層を焼結し
て、それを溶融塩中に投入する。そうすると、溶剤層が
溶融塩中に完全に溶解するに一定の時間がかかり、その
溶解時間中にベリルシードが加熱され、溶剤の溶解が完
了した際K、シー ド周囲の溶融塩とシードがほぼ同温
度になるため、良質の結晶を初期に成長させることがで
きる。そのためそれに引き続いて成長する結晶の算を大
幅に向上することができる。
In the method of the present invention, a solvent layer is sintered on the surface of beryl seeds, and the solvent layer is poured into a molten salt. Then, it takes a certain amount of time for the solvent layer to completely dissolve in the molten salt, and during that dissolution time, the beryl seeds are heated, and when the solvent is completely dissolved, the molten salt around the seeds and the seeds are approximately the same. Because of the high temperature, high-quality crystals can be grown at an early stage. Therefore, it is possible to greatly improve calculation of the crystal that is subsequently grown.

以下に実施例を述べる。Examples will be described below.

実施例1゜ (1)原料 酸化ベリリウム 41グ 酸化アルミニウム 5.51i+ 酸化クロム 032 上記原料物質を混合焼結した。Example 1゜ (1) Raw materials Beryllium oxide 41g Aluminum oxide 5.51i+ Chromium oxide 032 The above raw materials were mixed and sintered.

二酸化ケイ素は当初51を切断して用いた0溶剤はモリ
ブデン酸リチウムと三酸化モリブデンを1:1あ割合で
4001用いた。
Silicon dioxide was initially used by cutting 51, and the solvent used was lithium molybdate and molybdenum trioxide 4001 in a 1:1 ratio.

第1図の如くベリルシード1を2 cm角で・厚み11
11に切り出し、その上に上記の溶剤組成の粉末2を片
側ずつ乗せて1400℃で5hrの焼結を行った0シー
ド上の溶剤の厚みは、05〜2 Haの層を形成した0
このベリルシードを、上記溶剤組成の溶融塩中に原料物
質を飽和させた時点でシードの投入を行った0加熱温度
は、シードの成長領域が850℃、原料保持ゾーンが9
80℃とした。
As shown in Figure 1, Beryl Seed 1 is 2 cm square / Thickness 11
Powder 2 with the above solvent composition was placed on each side and sintered at 1400°C for 5 hours. The thickness of the solvent on the 0 seed was 0.5 to 2.
The beryl seeds were added at a heating temperature of 850°C in the seed growth region and 9°C in the raw material holding zone at the time when the seeds were saturated with the raw material in the molten salt having the above solvent composition.
The temperature was 80°C.

この結果、ベリルシード上に成長したベリル単結晶にお
いて、インクルージヨンの発生は従来と比較して115
に減少した。
As a result, the occurrence of inclusions in beryl single crystals grown on beryl seeds was 115% lower than in the conventional method.
decreased to

実施例2 (1)原料 原料物質は実施例、と同じ 溶剤は、水酸化リチウム・三酸化モリブデン、五酸化バ
ナジウムを1=1:1の割合で4007用いた。
Example 2 (1) The raw material was the same as in Example, and the solvent used was 4007 lithium hydroxide, molybdenum trioxide, and vanadium pentoxide in a ratio of 1=1:1.

次にベリルシードを同様に1 cm角で厚み1謁に切り
出し、そのベリルシードの両側如上記の溶剤組成の粉末
を圧粉し、1400℃ 1Qhrで仮焼結を行った。加
熱温度は成長ゾーンが900℃、原料ゾーンが925℃
に設定した。
Next, beryl seed was similarly cut into 1 cm square pieces with a thickness of 1 cm, powder having the above solvent composition was pressed onto both sides of the beryl seed, and pre-sintering was performed at 1400° C. for 1 Qhr. The heating temperature is 900℃ in the growth zone and 925℃ in the raw material zone.
It was set to

この方法により、実施例1と同様な良質のベリル単結晶
の成長を行うことができた。
By this method, a high-quality beryl single crystal similar to that in Example 1 could be grown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ベリルシード1を溶剤粉末2で包んで焼結し
た部分断面図である。 i 1 凹
FIG. 1 is a partial cross-sectional view of beryl seed 1 wrapped in solvent powder 2 and sintered. i 1 concave

Claims (1)

【特許請求の範囲】[Claims] はぼベリル組成比を示す酸化べIJ IJウム、酸化ア
ルミニウム、二酸化ケイ素及び必要に応じて酸化クロム
その他の着色剤を加えてなる原料物質に溶剤としてのモ
リブデン酸リチウム、三酸化モリブデン、水酸化リチウ
ム、五酸化バナジウム等の中から選ばれた1種又は2種
以上を加えて、これを上記溶剤の溶融温度以上に加熱し
て溶融塩を形成して人工ベリル単結晶を合成する方法に
おいて、ベリル組成シードの表面に、上記溶剤原料の1
種又は2種以上を焼結した後、原料物質を飽和させた溶
融塩中に投入し、溶融塩に温度差をつけることにより、
ベリルシード上にベリル単結晶を合成せしめることを特
徴とする人工ベリル単結晶の合成方法。
Lithium molybdate, molybdenum trioxide, lithium hydroxide as a solvent to a raw material obtained by adding beryl oxide, aluminum oxide, silicon dioxide and, if necessary, chromium oxide and other coloring agents. , vanadium pentoxide, etc., and heating this above the melting temperature of the solvent to form a molten salt to synthesize an artificial beryl single crystal. 1 of the above solvent raw materials on the surface of the composition seed.
After sintering the seed or two or more, the raw material is poured into a saturated molten salt and a temperature difference is applied to the molten salt.
A method for synthesizing an artificial beryl single crystal, which comprises synthesizing a beryl single crystal on a beryl seed.
JP58187297A 1983-10-06 1983-10-06 Synthesis method of single crystal of artificial beryl Pending JPS6081095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58187297A JPS6081095A (en) 1983-10-06 1983-10-06 Synthesis method of single crystal of artificial beryl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58187297A JPS6081095A (en) 1983-10-06 1983-10-06 Synthesis method of single crystal of artificial beryl

Publications (1)

Publication Number Publication Date
JPS6081095A true JPS6081095A (en) 1985-05-09

Family

ID=16203530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58187297A Pending JPS6081095A (en) 1983-10-06 1983-10-06 Synthesis method of single crystal of artificial beryl

Country Status (1)

Country Link
JP (1) JPS6081095A (en)

Similar Documents

Publication Publication Date Title
JPS58204896A (en) Method and device for manufacturing strain-free single crystal comprising crystalline high dielectric compound
JPS6081095A (en) Synthesis method of single crystal of artificial beryl
CA1079613A (en) Process for synthesizing and growing single crystalline beryl out of a molten salt
JP3770082B2 (en) Method for producing potassium niobate
JPS59111992A (en) Synthesis of single crystal of artificial beryl
JPS6081097A (en) Synthesis method of single crystal of artificial beryl
JPH0250080B2 (en)
JPH0250079B2 (en)
JPS6081096A (en) Synthesis method of single crystal of artificial beryl
JP3681441B2 (en) Method for producing CsLiB6O10 single crystal
JPH0353278B2 (en)
RU2075559C1 (en) Method of preparing colored beryl crystals
JPH0235719B2 (en) JINKOBERIRUTANKETSUSHONOGOSEIHOHO
JPS6131398A (en) Method for synthesizing chrysoberyl single crystal
JPS59141486A (en) Synthesis of single crystal of artificial turquois
JPS6081084A (en) Synthesis of single crystal of artificial beryl
JPS6278196A (en) Production of lithium niobate single crystal
JPS5997591A (en) Method and apparatus for growing single crystal
CN117049494A (en) Negative thermal expansion material and preparation method thereof
JPH08295507A (en) Optical crystal and its production
JPS62167213A (en) Production of silicon polycrystalline ingot
JPS58115094A (en) Synthesis of artificial beryl single crystal
JPS59141485A (en) Synthesis of artificial zoisite single crystal
JPH0458438B2 (en)
JPS63265896A (en) Production of lithium tantalate single crystal