JPS6081084A - Synthesis of single crystal of artificial beryl - Google Patents

Synthesis of single crystal of artificial beryl

Info

Publication number
JPS6081084A
JPS6081084A JP58190233A JP19023383A JPS6081084A JP S6081084 A JPS6081084 A JP S6081084A JP 58190233 A JP58190233 A JP 58190233A JP 19023383 A JP19023383 A JP 19023383A JP S6081084 A JPS6081084 A JP S6081084A
Authority
JP
Japan
Prior art keywords
beryl
single crystal
oxide
artificial
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190233A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kasuga
春日 好春
Tadaaki Atomachi
後町 忠昭
Eiji Togawa
戸川 栄司
Masaaki Takeuchi
正明 竹内
Yoshio Morita
喜夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58190233A priority Critical patent/JPS6081084A/en
Publication of JPS6081084A publication Critical patent/JPS6081084A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize single crystal of beryl of good quality economically with high efficiency by charging salts corresponding to the specified compositional ratio of beryl to a vessel separated into three chambers with baffle plates and producing temp. difference in each chamber. CONSTITUTION:Lithium molybdate, molybdenum trioxide, and vanadium pentoxide, as flux, are added to starting materials comprising beryllium oxide, aluminum oxide, and silicon dioxide having almost equal compositional ratio to beryl, with, if necessary, coloring material such as chromium oxide, and the mixture is heated to above the melting temp. of the flux. At least one kind among the above described starting materials is sintered or vitrified previously and added to the molten salts in the vessel separated into three chambers by baffle plates. Single crystal of beryl is thus synthesized or grown by producing temp. difference between each chamber.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は溶剤(フラックス)を用いた人工ベリル単結晶
(六方晶系)の合成方法(溶融塩法)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method (molten salt method) for synthesizing an artificial beryl single crystal (hexagonal system) using a solvent (flux).

〔従来技術〕[Prior art]

溶融塩法は水熱法に較べ使用エネルギーc熱。 The molten salt method uses c heat of energy compared to the hydrothermal method.

圧力)及び育成期間が短かく、装置、使用部材が大巾に
簡略化でき経済的であるという利便をもたらせた。すな
わち溶融塩法は、はぼベリル組成比を示す、酸化ベリリ
ウム、酸化アルミニウム、二酸化ケイ素、必要に応じて
酸化クロム、(これはエメラルドを得る場合のエメラル
ドグリーンの基調色となる不可欠の着色剤もしくはドー
プ剤)及び酸化ニッケル、酸化鉄、酸化コバルト、酸化
マンガンその他の補助着色剤もしくはドープ剤からなる
原料物質に、溶剤としての五酸化バナジウム、三酸化モ
リブデン、モリブデン酸リチウム、水酸化リチウム等の
溶剤の中から選ばれた1穏もしくは2種以上を加え、こ
れを上記溶剤の溶融温度以上に加警して溶融塩を形成し
て、この溶融塩に温度差をつけて長期間保持するか或は
一定時間保持後、ゆるやかな温度勾配をもって徐冷する
かいづれかの操作で溶融塩中にベリル種子結晶を配置す
ることによりこの種子結晶の囲シにへエベリルを生成又
は育成する方法である。
This method is advantageous in that the pressure (pressure) and growth period are short, and the equipment and parts used can be greatly simplified, making it economical. In other words, the molten salt method uses beryllium oxide, aluminum oxide, silicon dioxide, and optionally chromium oxide (this is an essential coloring agent that becomes the base color of emerald green when obtaining emerald), which shows the beryl composition ratio. A solvent such as vanadium pentoxide, molybdenum trioxide, lithium molybdate, lithium hydroxide, etc. is added to the raw material consisting of nickel oxide, iron oxide, cobalt oxide, manganese oxide, and other auxiliary colorants or doping agents. Add one or more selected from the above, heat the mixture to a temperature higher than the melting temperature of the solvent to form a molten salt, and hold the molten salt for a long period of time with a temperature difference. This is a method in which beryl seed crystals are placed in a molten salt by holding for a certain period of time and then slowly cooling with a gentle temperature gradient, thereby producing or growing everyl around the seed crystals.

〔発明の目的〕[Purpose of the invention]

本発明の目的とする所は結晶成長スピードをコントロー
ルすることにより良質なベリル単結晶を効率良く且つ経
済的に合成することである。
An object of the present invention is to efficiently and economically synthesize high-quality beryl single crystals by controlling the crystal growth speed.

従来の方法により合成したベリル単結晶は、その育成過
程において、フェザ−インクルージヨン、ツェナサイト
等の微結晶が入シやすく、その為に、外観品質や収率等
を低下させていた。
Beryl single crystals synthesized by conventional methods tend to contain microcrystals such as feather inclusions and zenasite during the growth process, which reduces appearance quality and yield.

フェザ−インクルージヨンやツェナサイト等の微結晶の
発生を防止するには、現状の胃酸方法(原料物質の用い
方、温度管理の仕方等をよシ精密に行い、結晶成長スピ
ードをコントロールしなければならない、しかしながら
現在寸での方法では不充分であった。
In order to prevent the generation of microcrystals such as feather inclusions and zenasite, the current gastric acid method (how to use raw materials, how to control temperature, etc.) must be carefully controlled and the speed of crystal growth must be controlled. However, the current method was insufficient.

〔発明の要約〕[Summary of the invention]

本発明は特に結晶成長スピードをコントロールする為に
、あらかじめガラス化又は焼結化させた原料物質(酸化
ベリリウム、酸化アルミニウム、二酸化ケイ素、着色剤
としての酸化クロム等)と石英を用いるとともに、さら
にルツボ内をノくソフルで3つに仕切フ、種子結晶育成
ゾーン(2ケ所)、原料物質2石英溶解ゾーン(1ケ所
)に分けそのいずれのゾーンも温度管理を行うことによ
って溶解量をコントロールするとともに、種子結晶ゾー
ンへの原料物質の輸送量もコントロールすることを特徴
としたものである。
In particular, in order to control the crystal growth speed, the present invention uses raw materials that have been vitrified or sintered in advance (beryllium oxide, aluminum oxide, silicon dioxide, chromium oxide as a coloring agent, etc.) and quartz, and also uses a crucible. The inside is divided into 3 sections with a nokusoful, a seed crystal growth zone (2 locations), a raw material 2 quartz melting zone (1 location), and the amount of melting is controlled by controlling the temperature of each zone. This method is characterized in that it also controls the amount of raw materials transported to the seed crystal zone.

く実施例1〉 ill原料 酸化ベリリウム4.1 r 、酸化アルミニウム5.5
y、酸化クロム0.39を秤量し混合粉末を作製する。
Example 1 ill raw material beryllium oxide 4.1 r, aluminum oxide 5.5
y, weigh 0.39 chromium oxide to prepare a mixed powder.

次にこの混合粉末をボールミルにより混合粉砕を5時間
以上行う、この際ボット及びボールの材質は高純度アル
ミナの焼結材である。次に、この混合粉末を球状に圧粉
成形し、焼結する二酸化ケイ素は石英全当初52切断し
て用いた。その後1週間に22の割合で追加する。
Next, this mixed powder is mixed and pulverized in a ball mill for 5 hours or more, and the material of the bot and ball is a sintered material of high-purity alumina. Next, this mixed powder was compacted into a spherical shape, and the silicon dioxide to be sintered was prepared by cutting 52 pieces of quartz. Thereafter, add at a rate of 22 per week.

121溶剤 次にフラックスとして、モリブデン酸リチウム、三酸化
モリブデン、五酸化バナジウムの粉末を1: 2 :’
 7の割合で4001秤量し混合する。
121 solvent Next, as a flux, powders of lithium molybdate, molybdenum trioxide, and vanadium pentoxide were added in a ratio of 1:2:'
Weigh and mix 4001 at a ratio of 7.

【3)装置 上記の物質を投入する容器には白金ルツボを使用した。[3) Equipment A platinum crucible was used as a container for charging the above substances.

加熱は第1図の装置を使用した。■は加熱装置であシ、
■は加熱ヒータ、■はヒーターをコントロールする熱電
対温度時の測定端子であフそれぞれヒーターについて温
度コントロールを行う。■はルツボ内を仕切るパンフル
である。
For heating, the apparatus shown in FIG. 1 was used. ■ is a heating device,
■ is a heating heater, and ■ is a thermocouple temperature measuring terminal that controls the heater.The temperature is controlled for each heater. ■ is a panful that partitions the inside of the crucible.

(4)方法 溶剤粉末を白金ルツボに入れ、加熱装置の温度を950
℃に設定し、溶解する。次に■ゾーンの底部に焼結体(
酸化ベリリウム、酸化アルミニウム、酸化クロム)を投
入し、上部には、石英片を投入する。次に、加熱装置の
設定温度を、種子結晶育成ゾーン(■、Oの2ケ所)9
20℃、原料物質2石英ゾーン(■)950℃は変更す
る。
(4) Method: Put the solvent powder into a platinum crucible and set the temperature of the heating device to 950.
Set to ℃ and dissolve. Next, place the sintered body (
Beryllium oxide, aluminum oxide, chromium oxide) are added, and quartz pieces are added to the top. Next, set the temperature of the heating device at 9 in the seed crystal growth zone (2 places, ■ and O).
20°C, raw material 2 quartz zone (■) 950°C is changed.

育成状態になったら、■、■ゾーンに種子結晶を投入す
る。用いる親子結晶の表面は、ポリを仕上面とする。
When it is in the growing state, put seed crystals into the ■ and ■ zones. The surfaces of the parent and child crystals used are finished with poly.

【51結果 種子結晶成長スピードを長時間一定に保持することがで
き、育成したベリル単結晶においてインクルージヨンの
発生をきわめて少なくすることかできだ、また、非常に
美しい緑色(エメラルドグリーン)の結晶が得られた。
[51] As a result, the seed crystal growth speed could be kept constant for a long time, and the occurrence of inclusions in the grown beryl single crystals could be extremely reduced.Also, very beautiful green (emerald green) crystals could be produced. Obtained.

〈実施例2〉 Ill原料 実施例1と同じ 12)溶剤 フラックスとして、モリブデン酸リチウム、三酸化モリ
ブデン、五酸化バナジウムの粉末全1:3二6の割合で
4002秤量し混合する。
<Example 2> Same as Example 1 12) As a solvent flux, powders of lithium molybdate, molybdenum trioxide, and vanadium pentoxide were weighed and mixed in a total ratio of 1:326.

【3)装置 実施例1と同じ 〔4)方法 実施例1と同じ (5)結果 種子結晶成長スピードを長時間一定に保持することがで
き、育成したベリル単結晶においてインクルージヨンの
発生をきわめて少なくすることができた。また非常に美
しい緑色(エメラルドグリーン)の結晶が得られた。
[3) Apparatus Same as Example 1 [4) Method Same as Example 1 (5) Results The seed crystal growth speed can be kept constant for a long time, and the occurrence of inclusions in the grown beryl single crystal is extremely reduced. We were able to. Also, very beautiful green (emerald green) crystals were obtained.

〈実施例3〉 il+原刺 原料例1と同じ (2)溶剤 フラックスとして、モリブデン酸リチウム、三酸化モリ
ブデン、五酸化バナジウムの粉末を1=1=8の割合で
4002秤量し混合する。
<Example 3> Same as in Example 1 for il+raw material (2) As a solvent flux, 4002 powders of lithium molybdate, molybdenum trioxide, and vanadium pentoxide are weighed and mixed in a ratio of 1=1=8.

(3)装置 実施例1と同じ (4)方法 実施例1と同じ (5)結果 種子結晶成長スピードを長期間一定に保持でき育成した
ベリル凰結晶においてインクルージヨンの発生をきわめ
て少なくすることができた。寸た非常に美しい緑色(エ
メラルドグリーン)の結晶が得られた。
(3) Apparatus Same as Example 1 (4) Method Same as Example 1 (5) Result The seed crystal growth speed can be maintained constant for a long period of time, and the occurrence of inclusions in the grown beryl crystals can be extremely reduced. Ta. Very beautiful green (emerald green) crystals were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の効果は、以上の実施例にて説明した如くに、従
来の溶融塩法の有する本質的利益を確保した上で、品質
向上ならびに歩留向上が可能となり大巾なコストダウン
が図れるので本発明は人工ベリル単結晶の合成方法とし
て極めて有用である。
As explained in the examples above, the effects of the present invention are that, while securing the essential benefits of the conventional molten salt method, it is possible to improve quality and yield, resulting in a significant cost reduction. The present invention is extremely useful as a method for synthesizing artificial beryl single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る加熱装置の概要を尽す図であり
、第1図【αlは本装置の上面図、第1図1b1は本装
置の正面図を示す。■は加熱装置、■は加熱装置のフタ
、■はヒーター、■は熱電対温度計の測定端子、■は種
子結晶、■は原料物質、のけ石英、■は種子結晶育成ゾ
ーン、■は原料物質、石英ゾーン、■は種子結晶育成ゾ
ーン、Oは白金ルツボ、■は溶融塩測定用熱電対端子、
■はバッフル。 以 上 出願人 株式会社趣訪精工舎 代理人 弁理士最 上 務
FIG. 1 is a diagram showing an overview of the heating device according to the present invention, and FIG. 1 [αl shows a top view of the device, and FIG. ■ is the heating device, ■ is the lid of the heating device, ■ is the heater, ■ is the measurement terminal of the thermocouple thermometer, ■ is the seed crystal, ■ is the raw material, silica, ■ is the seed crystal growth zone, ■ is the raw material Material, quartz zone, ■ is seed crystal growth zone, O is platinum crucible, ■ is thermocouple terminal for molten salt measurement,
■ is a baffle. Applicant: Shuwa Seikosha Co., Ltd. Agent: Patent Attorney Mogami

Claims (1)

【特許請求の範囲】[Claims] ははベリル組成比を示す酸化ベリリウム、酸化アルミニ
ウム、二酸化ケイ素及び必要に応じて酸化クロムその他
の着色剤を加えてなる原料物質に、溶剤としてのモリブ
デン酸リチウム、三酸化モリブデン、水酸化リチウム、
五酸化バナジウム等の中から選ばれた1種又は2種以上
を加えて、これを上記溶剤の溶融温度以上に加熱し溶融
塩を形成して人工ベリル単結晶を合成又は育成する方法
において、上記溶剤の内、モリブデン酸リチウム、三酸
化モリブデン、五酸化バナジウムの3種類を粉末で混合
した溶融塩に、上記原料物質の内1種又は2種以上をあ
らかじめ焼結化又はガラス化せしめて、バッフルで3つ
に仕切った容器内に投入し、温度差をつけることにより
、ベリル単結晶ちム耐V糾書甜訃1広スとLル銭指り手
入襞馳侑法による人工ベリル単結晶の合成方法。
A raw material consisting of beryllium oxide, aluminum oxide, silicon dioxide and, if necessary, chromium oxide and other coloring agents having a beryl composition ratio, lithium molybdate, molybdenum trioxide, lithium hydroxide as a solvent,
In the method of synthesizing or growing an artificial beryl single crystal by adding one or more selected from vanadium pentoxide, etc. and heating it above the melting temperature of the solvent to form a molten salt, A baffle is created by pre-sintering or vitrifying one or more of the above raw materials in a molten salt that is a powder mixture of three solvents: lithium molybdate, molybdenum trioxide, and vanadium pentoxide. By placing the beryl single crystal in a container divided into three parts and creating a temperature difference, artificial beryl single crystals were produced using the method. synthesis method.
JP58190233A 1983-10-12 1983-10-12 Synthesis of single crystal of artificial beryl Pending JPS6081084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190233A JPS6081084A (en) 1983-10-12 1983-10-12 Synthesis of single crystal of artificial beryl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190233A JPS6081084A (en) 1983-10-12 1983-10-12 Synthesis of single crystal of artificial beryl

Publications (1)

Publication Number Publication Date
JPS6081084A true JPS6081084A (en) 1985-05-09

Family

ID=16254703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190233A Pending JPS6081084A (en) 1983-10-12 1983-10-12 Synthesis of single crystal of artificial beryl

Country Status (1)

Country Link
JP (1) JPS6081084A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111992A (en) * 1982-12-16 1984-06-28 Seiko Epson Corp Synthesis of single crystal of artificial beryl

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111992A (en) * 1982-12-16 1984-06-28 Seiko Epson Corp Synthesis of single crystal of artificial beryl

Similar Documents

Publication Publication Date Title
EP0004974A2 (en) Process for producing a single crystal of KTiOPO4 or its analogues
CN101864598A (en) Preparation method of growing potassium tantalate-niobate series monocrystal materials by fused mass pulling method
JPS6081084A (en) Synthesis of single crystal of artificial beryl
JPS6081097A (en) Synthesis method of single crystal of artificial beryl
US4093502A (en) Process for synthesizing and growing single crystalline beryl
JPS6086099A (en) Synthesis of artificial beryl single crystal
JPS59111992A (en) Synthesis of single crystal of artificial beryl
JPS6081099A (en) Synthesis method of single crystal of artificial beryl
JPS6081100A (en) Synthesis method of single crystal of artificial beryl
JPH0250080B2 (en)
EP0148946B1 (en) Method of producing a chrysoberyl single crystal
JPS6081098A (en) Synthesis method of single crystal of artificial beryl
JPH0478593B2 (en)
JPH0250079B2 (en)
JPS6317297A (en) Production of ruby single crystal
JPH06279174A (en) Production of oxide single crystal
JPS59141486A (en) Synthesis of single crystal of artificial turquois
JPS6131398A (en) Method for synthesizing chrysoberyl single crystal
JPS59152286A (en) Synthesis of single crystal of artificial tourmaline
JPS59141482A (en) Synthesis of sugilite single crystal
US5102834A (en) Vanadium garnet materials in the MnO-CaO-V2 O3 -SiO2 system
JPS6081095A (en) Synthesis method of single crystal of artificial beryl
JPH0723280B2 (en) Single crystal growth method
JPH02279583A (en) Method for growing single crystal
JPH0353278B2 (en)