JPS6086099A - Synthesis of artificial beryl single crystal - Google Patents

Synthesis of artificial beryl single crystal

Info

Publication number
JPS6086099A
JPS6086099A JP58191539A JP19153983A JPS6086099A JP S6086099 A JPS6086099 A JP S6086099A JP 58191539 A JP58191539 A JP 58191539A JP 19153983 A JP19153983 A JP 19153983A JP S6086099 A JPS6086099 A JP S6086099A
Authority
JP
Japan
Prior art keywords
raw material
beryl
zone
solvent
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58191539A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kasuga
春日 好春
Tadaaki Atomachi
後町 忠昭
Eiji Togawa
戸川 栄司
Yoshio Morita
喜夫 森田
Masaaki Takeuchi
正明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP58191539A priority Critical patent/JPS6086099A/en
Publication of JPS6086099A publication Critical patent/JPS6086099A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/34Silicates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:In the titled synthesis by fused salt method using a solvent, to obtain high-quality beryl single crystal efficiently, by carrying out the use of raw material substance and temperature control more accurately, regulating crystal growth rate. CONSTITUTION:A raw material substance showing almost beryl composition, comprising BeO, Al2O3, SiO2, and, if necessary, Cr oxide, and other colorant, is mixed with one or more of lithium molybdate, MoO3, LiOH, V2O5, etc. as a solvent. The mixture is heated at >= the melting temperature of the solvent, a fused salt is formed to synthesize or to grow artificial beryl single crystal. In order to regulate crystal growth rate, lithium molybdate is premixed with MoO3 in powder to give a fused salt, one or more of the raw material substances are sintered or made into glass to give a raw material substance, and the fused salt, the raw material substance and quartz are used. Further the crucible 5 is divided by the buffle 7 into the seed crystal growth zone 12 and the zone 13 of the raw material and quartz, temperature is controlled in each zone, an amount of dissolution is regulated, and an amount of transportation of the raw material substance to the zone 12 is controlled.

Description

【発明の詳細な説明】 く技術分野〉 本発明は溶剤(フラックス)を用いた人工ベリル単結晶
(六方晶系)の合成方法(溶融塩法)に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method (molten salt method) for synthesizing an artificial beryl single crystal (hexagonal system) using a solvent (flux).

〈従来技術〉 溶融塩法は水熱法に較べ使用エネルギー(熱。<Conventional technology> The molten salt method uses less energy (heat) than the hydrothermal method.

圧力)及び育成期間が短かく、装置、使用部材が大巾に
fitj略化でき経済的であるという利便をもたらせた
、すなわち溶融塩法は、はぼベリル組成比を示す。酸化
ベリリウム、酸化アルミニウム、二酸化ケイ素、必要に
応じて酸化クロム、(これはエメラルドを得る場合のエ
メラルドグリーンの基調色となる不可欠の着色剤もしく
はドープ剤)及び酸化ニッケル、酸化鉄、酸化コバルト
、酸化マンガンその他の補助着色剤もしくはドープ剤か
らなる原料物質に、溶剤としての五酸化パナジウム、三
酸化モリブデン、モリブデン酸リチウム、水酸化リチウ
ム等の溶剤の中から選ばれた1種もしくは2種以上を加
え、これを上記溶剤の溶融温度以上に加熱して溶融塩を
形成して、この溶融塩に温度差をつけて長期間保持する
か或は一定時間保持後、ゆるやかな温度勾配をもって徐
冷するかいづれかの操作で溶融塩中にベリル°種子結晶
を配置することによりこの種子結晶の囲りに人工ベリル
を生成又は育成する方法である。
In other words, the molten salt method exhibits the beryl composition ratio. Beryllium oxide, aluminum oxide, silicon dioxide, optionally chromium oxide (this is an essential coloring agent or doping agent that provides the emerald green base color when obtaining emeralds) and nickel oxide, iron oxide, cobalt oxide, oxide Adding one or more solvents selected from panadium pentoxide, molybdenum trioxide, lithium molybdate, lithium hydroxide, etc. as a solvent to a raw material consisting of manganese and other auxiliary colorants or doping agents. , to form a molten salt by heating it to a temperature higher than the melting temperature of the above solvent, and to hold this molten salt for a long period of time with a temperature difference, or to cool it slowly with a gentle temperature gradient after holding it for a certain period of time. This is a method in which beryl seed crystals are placed in molten salt in one of the operations, and artificial beryl is generated or grown around the seed crystals.

〈発明の目的〉 本発明の目的とする所は結晶成長スピードをコントロー
ルすることにより良質なベリル単結晶を効率良く且つ経
済的に合成することである。
<Objective of the Invention> The object of the present invention is to efficiently and economically synthesize high-quality beryl single crystals by controlling the crystal growth speed.

従来の方法により合成したベリル単結晶は、その育成過
程において、フェザ−イングルージョン、ツェナサイト
等の微結晶が入りやすく、その為に、外観品質や収率等
を低下させていた。
Beryl single crystals synthesized by conventional methods tend to contain feather inclusions and microcrystals such as zenasite during the growth process, which reduces appearance quality and yield.

フェザ−インクルージヨンやツェナサイト等の微結晶の
発生を防止する。には、現状の育成方法(原料物質の用
い方、温度管理の仕方等をより精密に行い、結晶成長ス
ピードをコントロールしなければならない。しかしなが
ら現在までの方法では不充分である。
Prevents the generation of microcrystals such as feather inclusions and zenasite. To achieve this, the current growth methods (use of raw materials, temperature control, etc.) must be more precisely controlled to control the crystal growth speed. However, the current methods are insufficient.

〈発明の要約〉 本発明は特に結晶成長スピードをコントロールする為に
、あらかじめガラス化又は焼結化させた原料物質(酸化
ベリリウム、酸化アルミニウム。
<Summary of the Invention> In particular, the present invention uses raw materials (beryllium oxide, aluminum oxide) that have been vitrified or sintered in advance in order to control the crystal growth speed.

二酸化ケイ素9着色剤としての酸化クロム等)と石英を
用いるとともに、さらにルツボ内をバックルで2つに仕
切り、種子結晶育成ゾーン、原料物質1石英溶解ゾーン
に分けそのいずれのゾーンも温度管理を行うことによっ
て溶解量をコントロールするとともに、種子結晶ゾーン
への原料物質の輸送社もコントロールすることを特徴と
したものである。
In addition to using silicon dioxide, chromium oxide, etc. as a coloring agent, and quartz, the inside of the crucible is further divided into two with a buckle, and divided into a seed crystal growth zone and a raw material 1 quartz dissolution zone, and the temperature of both zones is controlled. This method is characterized in that it not only controls the amount of dissolution, but also controls the transportation of raw materials to the seed crystal zone.

〈実施例1〉 (1)原料 酸化ベリリウム4. I P 、酸化アルミニウム5,
51、酸化クロム0.31を秤量し混合粉末を作成する
。次にこの混合粉末をボールミルにより混合粉砕を5時
間以上行う。この際ポット及びボールの材質は高純度ア
ルミナの焼結材である。次に、この混合粉末を球状に圧
粉成形し、焼結する。二酸化ケイ素は石英を当初52切
断して用いた。その後1週間に2fの割合で追加する。
<Example 1> (1) Raw material beryllium oxide 4. I P , aluminum oxide 5,
51. Weigh 0.31 of chromium oxide to create a mixed powder. Next, this mixed powder is mixed and pulverized using a ball mill for 5 hours or more. In this case, the material of the pot and ball is a sintered material of high purity alumina. Next, this mixed powder is compacted into a spherical shape and sintered. Silicon dioxide was initially used by cutting 52 pieces of quartz. After that, add 2f per week.

(2)溶剤 次に7ラツクスとして、モリブデン酸リチウム、三酸化
モリブデンを1:1の割合で40Of秤量し混合する。
(2) Solvent Next, as 7 lacs, 40Of lithium molybdate and molybdenum trioxide were weighed and mixed in a 1:1 ratio.

(3)装置 上記の物質を投入する容器には白金ルツボを使用した。(3) Equipment A platinum crucible was used as a container for charging the above substances.

加熱は第1図の装置を使用した。■は加熱装置であり、
■は加熱ヒーター、■はヒーターをコントロールする熱
電対温度計の測定端子でありそれぞれのヒーターについ
て温度コントロールを行う。■はルツボ内を仕切るバッ
フルである。
For heating, the apparatus shown in FIG. 1 was used. ■ is a heating device,
■ is a heating heater, ■ is a measurement terminal of a thermocouple thermometer that controls the heater, and controls the temperature of each heater. ■ is a baffle that partitions the inside of the crucible.

(4)方法 溶剤粉末を白金ルツボに入れ、加熱装置の温度を890
℃に設定し溶解する。次に0ゾーンの底部に焼結体(酸
化ベリリウム、酸化アルミニウム、酸化クロム)を投入
し、上部には石英片を投入する。次に加熱装置の設定温
度を、@ゾーン(種子結晶育成ゾーン)850℃、0ゾ
ーン(原料物質1石英ゾーン)890℃に変更する。
(4) Method: Put the solvent powder into a platinum crucible and set the temperature of the heating device to 890℃.
Set to ℃ and dissolve. Next, sintered bodies (beryllium oxide, aluminum oxide, chromium oxide) are placed at the bottom of the 0 zone, and quartz pieces are placed at the top. Next, the set temperature of the heating device is changed to 850° C. for the @ zone (seed crystal growth zone) and 890° C. for the 0 zone (raw material 1 quartz zone).

育成状態になったら、[相]ゾーンに種子結晶を投入す
る。用いる種子結晶の表面は、ボリシ仕上面とする。
Once it is in the growing state, put the seed crystal in the [phase] zone. The surface of the seed crystal used is a polished surface.

(5)結果 種子結晶成長スピードを長時間一定に保持でき育成した
ベリル単結晶においてインクルージヨンの発生を少なく
することができた、又、育成温度が低いArのコストが
安くできるとともに、ヒーター寿命が長い等の効果が得
られた。
(5) As a result, we were able to maintain the seed crystal growth speed constant for a long time, reducing the occurrence of inclusions in the grown beryl single crystals, reducing the cost of Ar, which has a low growth temperature, and shortening the heater life. Long-lasting effects were obtained.

〈実施例2〉 (1)原料 実施例1と同じ (2)溶剤 フラックスとして、モリブデン酸リチウム、三酸化モリ
ブデンの粉末を1:1.2の割合で4002秤量し混合
する。
<Example 2> (1) Raw materials Same as Example 1 (2) Solvent As a flux, 4002 powders of lithium molybdate and molybdenum trioxide are weighed and mixed at a ratio of 1:1.2.

(3)装置 実施例1と同じ (4)方法 実施例1と同じ (5)結果 種子結晶成長スピードを長時間一定に保持でき育成した
ベリル単結晶においてインクルージヨンの発生を少なく
することができた。又、育成温度が低い為、炉のコスト
が安くできるとともにヒーター寿命が長い等の効果が得
られた。
(3) Apparatus Same as Example 1 (4) Method Same as Example 1 (5) Results The seed crystal growth speed could be kept constant for a long time and the occurrence of inclusions in the grown beryl single crystal could be reduced. . In addition, since the growth temperature is low, the cost of the furnace can be reduced and the life of the heater can be extended.

〈実施例3〉 (す原料 実施例1と同じ (2)溶剤 フラックスとして、モリブデン酸リチウム、三酸化モリ
ブデンの粉末を1 : 0.8の割合で4002秤量し
混合する。
<Example 3> (Same raw materials as Example 1) (2) As a solvent flux, 4002 powders of lithium molybdate and molybdenum trioxide were weighed and mixed at a ratio of 1:0.8.

(3)装置 実施例1と同じ (4)方法 実施例1と同じ (5)結果 種子結晶成長スピードを長時間一定に保持でき育成した
ベリル単結晶においてインクルージヨンの発生を少なく
することができた。又、育成温度が低いArのコストが
安くできるとともにヒーター寿命が長い等の効果が得ら
れた。
(3) Apparatus Same as Example 1 (4) Method Same as Example 1 (5) Results The seed crystal growth speed could be kept constant for a long time and the occurrence of inclusions in the grown beryl single crystal could be reduced. . Furthermore, the cost of Ar, which has a low growth temperature, can be reduced and the life of the heater can be extended.

〈発明の効果〉 本発明の効果は、以上の実施例にて説明した如くに、従
来の溶融塩法の有する本質的利益を確保した上で、品質
向上ならびに歩留向上が可能となり大巾なコストダウン
が図れるので本発明は人工ベリル単結晶の合成方法とし
て極めて有用である
<Effects of the Invention> As explained in the above embodiments, the effects of the present invention are that, while securing the essential benefits of the conventional molten salt method, it is possible to improve quality and yield, and to achieve significant improvements. The present invention is extremely useful as a method for synthesizing artificial beryl single crystals because it can reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る加熱装置のlJC要を示す図で
あり、第1図(α)は本装置の上面図、第1図Cb)は
本装置の正面図を示す。 ■・・・・・・加熱装置 ■・・・・・・加熱装置のフタ ■・・・・・・ヒーター ■・・・・・・熱n対温置針の測定端子■・・・・・・
白金ルツボ ■・・・・・・溶融塩測定用熱電対端子■・・・・・・
バッフル ■・・・・・・溶融塩(フラックス) ■・・・・・・石英片 [相]・・・・・・原料物質 @・・・・・・種子結晶 0・・・・・・種子結晶育成ゾーン 0・・・・・・原料物質1石英ゾーン 以 上 出願人 株式会社諏訪精工舎 代理人 弁理士 最上 務
FIG. 1 is a diagram showing the main components of the heating device according to the present invention, FIG. 1 (α) is a top view of the device, and FIG. 1 Cb) is a front view of the device. ■・・・Heating device■・・・Lid of heating device■・・・Heater■・・・Measuring terminal of heat n vs. warming needle■・・・・・・
Platinum crucible ■・・・Thermocouple terminal for measuring molten salt■・・・・・・
Baffle ■... Molten salt (flux) ■... Quartz piece [phase]... Raw material @... Seed crystal 0... Seed Crystal growth zone 0...Raw material 1 quartz zone or above Applicant Suwa Seikosha Co., Ltd. Agent Patent attorney Tsutomu Mogami

Claims (1)

【特許請求の範囲】[Claims] はぼベリル組成比を示す酸化べIJ IJウム、酸化ア
ルミニウム、二酸化ケイ素及び必要に応じて酸化クロム
その他の着色剤を加えてなる原料物質に溶剤としてのモ
リブデン酸リチウム、二酸化モリブデン、水酸化リチウ
ム、五酸化バナジウム等の中から選ばれた1種又は2種
以上を加えて、これを上記溶剤の溶融温度以上に加熱し
溶融塩を形成して人工ベリル単結晶を合成、又は育成す
る方法において、上記溶剤の内、モリブデン酸リチウム
、三酸化モリブデンの2種類を粉末で混合した溶融塩に
、上記原料物質の内1種又は2種以上をあらかじめ焼結
化又はガラス化せしめて、バッフルで2つに仕切った容
器内に投入し、温度差をつけることにより、ベリル単結
晶を合成又は育成せしめることを特徴とする溶融塩法に
よる人工ベリル単結晶の合成方法。
Lithium molybdate, molybdenum dioxide, lithium hydroxide as a solvent to a raw material obtained by adding beryl oxide, aluminum oxide, silicon dioxide and, if necessary, chromium oxide and other coloring agents. In a method of synthesizing or growing an artificial beryl single crystal by adding one or more selected from vanadium pentoxide, etc., and heating this above the melting temperature of the solvent to form a molten salt, One or more of the above raw materials are sintered or vitrified in advance in a molten salt made by mixing two of the above solvents, lithium molybdate and molybdenum trioxide, in powder form, and the two are mixed with a baffle. 1. A method for synthesizing an artificial beryl single crystal by a molten salt method, characterized in that beryl single crystals are synthesized or grown by placing the beryl single crystals in a container partitioned into two compartments and creating a temperature difference.
JP58191539A 1983-10-13 1983-10-13 Synthesis of artificial beryl single crystal Pending JPS6086099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191539A JPS6086099A (en) 1983-10-13 1983-10-13 Synthesis of artificial beryl single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191539A JPS6086099A (en) 1983-10-13 1983-10-13 Synthesis of artificial beryl single crystal

Publications (1)

Publication Number Publication Date
JPS6086099A true JPS6086099A (en) 1985-05-15

Family

ID=16276350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191539A Pending JPS6086099A (en) 1983-10-13 1983-10-13 Synthesis of artificial beryl single crystal

Country Status (1)

Country Link
JP (1) JPS6086099A (en)

Similar Documents

Publication Publication Date Title
EP0004974B1 (en) Process for producing a single crystal of ktiopo4 or its analogues
CN101864598A (en) Preparation method of growing potassium tantalate-niobate series monocrystal materials by fused mass pulling method
CN104294353A (en) Method for improving homogeneity of potassium tantalate niobate crystal through double-crucible real-time material-feeding technology
JPS6086099A (en) Synthesis of artificial beryl single crystal
JPS6081084A (en) Synthesis of single crystal of artificial beryl
US4093502A (en) Process for synthesizing and growing single crystalline beryl
JPS6081100A (en) Synthesis method of single crystal of artificial beryl
JPS59111992A (en) Synthesis of single crystal of artificial beryl
JPS6317297A (en) Production of ruby single crystal
JPS58115095A (en) Synthesis of artificial beryl single crystal
JPS6081097A (en) Synthesis method of single crystal of artificial beryl
JPS6081099A (en) Synthesis method of single crystal of artificial beryl
JPS6081098A (en) Synthesis method of single crystal of artificial beryl
JPS59152286A (en) Synthesis of single crystal of artificial tourmaline
JPS59141482A (en) Synthesis of sugilite single crystal
JPH0250079B2 (en)
JPS6131398A (en) Method for synthesizing chrysoberyl single crystal
JPS5940799B2 (en) LINBO3 Mataha LITAO3 Notanketsushiyouno Seizouhouhou
JPS59141483A (en) Synthesis of sogdianite single crystal
JPS59141486A (en) Synthesis of single crystal of artificial turquois
JPS59107995A (en) Synthesizing method of artificial alexandrite single crystal
JPH0224799B2 (en)
JPS59141481A (en) Production of artificial iolite single crystal
SU1765265A1 (en) Method of preparing liquor-melt for growing monocrystals
JPS58167495A (en) Synthesis of artificial beryl single crystal