JPS6081005A - Operating method of electrochemical oxygen separator - Google Patents
Operating method of electrochemical oxygen separatorInfo
- Publication number
- JPS6081005A JPS6081005A JP18800183A JP18800183A JPS6081005A JP S6081005 A JPS6081005 A JP S6081005A JP 18800183 A JP18800183 A JP 18800183A JP 18800183 A JP18800183 A JP 18800183A JP S6081005 A JPS6081005 A JP S6081005A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- water
- cathode
- gas
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、イオン交換闇脂膜を電解質とする電気イし学
的酸素分離装置の作動方法に関するものであり、その目
的とするところは、電気化学的酸素に、陰極の安定作動
を因らんとするにあろう空気などの酸素を含む混合ガス
から酸素を分離する1こめの電気化学的酸素分離装置は
、例えば特公昭4B−2500L号あるいは特公昭56
−25848号に記載されていて公知である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating an electrochemical oxygen separator using an ion exchange dark fat membrane as an electrolyte, and its purpose is to provide electrochemical oxygen to a cathode. An example of an electrochemical oxygen separation device for separating oxygen from a mixed gas containing oxygen such as air, which would affect the stable operation of the device, is the Japanese Patent Publication No. 4B-2500L or the Japanese Patent Publication No. 56
-25848 and is publicly known.
すなわち、電気化学的酸素分離装置は、!1112素の
7に解還元に葡効なガス拡散゛シ極からなるli3極と
酸素発生電極からなる陽極と電解液もしくは固体電解質
とから構成される。電解液としては水酸化アルカリ水浴
液あるいは酸性水浴液が用いられ、固体電解′αとして
は、イオン交換樹脂膜、ヘテロポリ酸、セリウム酸、ス
トロンチウムなどが用いられ得ろ。That is, an electrochemical oxygen separation device! It is composed of an Li3 electrode consisting of a gas diffusion electrode effective for dereduction of 7 of 1112 elements, an anode consisting of an oxygen generating electrode, and an electrolytic solution or solid electrolyte. As the electrolytic solution, an alkaline hydroxide water bath solution or an acidic water bath solution may be used, and as the solid electrolyte 'α, an ion exchange resin membrane, heteropolyacid, ceric acid, strontium, etc. may be used.
本発明はイオン交換樹脂膜、殊に水素イオン伝導性のカ
チオン交換樹脂膜を′l[解′6とする+[%化素分離
装置においては、r;i & a崗顕とはそれぞ几カチ
オン交換模に一体に接合され、lafM側から水水素イ
オン伝導性をもつようになっている。このタイプの′電
気化学的酸素分離装置においては、陰極に酸素を含む混
合ガスを供給しながら、陰・陽画極間に直流電流を通電
すると、欠の反応が起る。The present invention uses an ion exchange resin membrane, especially a hydrogen ion conductive cation exchange resin membrane, to be used in a hydrogen ion separation device. It is integrally bonded to the cation exchange model and has water hydrogen ion conductivity from the lafM side. In this type of electrochemical oxygen separation device, when a direct current is passed between the negative and positive electrodes while supplying a mixed gas containing oxygen to the cathode, a deficiency reaction occurs.
陰極: 02 + 4u + 4e −e LI120
全反応は陰極側から陽極側へ酸素が、陽極側から陰極へ
水が移行するといつへ応になる。Cathode: 02 + 4u + 4e -e LI120
The entire reaction begins when oxygen moves from the cathode side to the anode side, and water moves from the anode side to the cathode side.
カチオン交換膜を電解質とする電気化学的酸素分離装置
においては、一般に陰極の背向に陰極ガス室が、陽極の
背面に陽:極水室力j付設されている。In an electrochemical oxygen separation device using a cation exchange membrane as an electrolyte, a cathode gas chamber is generally attached to the back side of the cathode, and an anode:electrode water chamber is attached to the back side of the anode.
しfコがって酸素分離反応が進むと、陽極氷室の水が不
足し、陰極ガス室に水が溜まろうこのような事態になる
と、カチオン交換膜の陽極に近い部分での水素イオンの
伝導性が低下するとともに、陰極への酸素の拡散が妨害
されるので、電気化学的酸素分離装置が首尾よく機能し
なくなる、本発明は、かかる問題を解決せんとするもの
であり、電気化学的酸素分離装置の作動によって陰極ガ
ス室に溜まる水を再び陽極氷室に戻すようにするもので
ある、すなわち、かかる方法を採1月すると、本来、陽
極側から1)A愼側に移行するだけであって消耗するわ
けではない水の有効利用を図ることができるし、陰極で
の酸素の拡散の妨害を回避することが可能となる。As the oxygen separation reaction progresses, water in the anode ice chamber becomes insufficient and water accumulates in the cathode gas chamber. In this situation, hydrogen ion conduction occurs in the part of the cation exchange membrane near the anode. The present invention seeks to solve such problems, as the electrochemical oxygen separator fails to function successfully as the oxygen diffusion to the cathode is impeded. The water accumulated in the cathode gas chamber is returned to the anode ice chamber by the operation of the separation device.In other words, if such a method is adopted, the water will normally only be transferred from the anode side to the A side. In addition, it is possible to effectively utilize water that is not wasted in the process, and it is also possible to avoid interference with oxygen diffusion at the cathode.
陰極ガス室に溜まる水は、面接陽極水室へ戻してもよい
し、水タンクを別途に用意し、この水タンクに一旦戻し
、この水タンクから水を陽極水室に供給するようにして
もよい。なお、陰極ガス室の一部もしくは、陰極で1悦
酸素されfコ残余ガスの840部分に水の貯溜室を設け
ておき、この水の貯溜室に水が溜チつrことしても、こ
の水が直接陰極に接噛しないようにすれば、+1.I+
;πカス室の水を隠顕水室もしくは水タンクに戻すとい
う操作を間歇的にす11ばよいので、一層効果的である
1以下、本発明の一実施例について詳述する。The water accumulated in the cathode gas chamber may be returned to the anode water chamber, or a separate water tank may be prepared, the water may be returned to this water tank, and water may be supplied from this water tank to the anode water chamber. good. In addition, if a water storage chamber is provided in a part of the cathode gas chamber or in the 840 part of the residual gas that is oxygenated at the cathode, even if water accumulates in this water storage chamber, this +1 if you prevent water from directly contacting the cathode. I+
An embodiment of the present invention will be described below in detail, which is even more effective since the operation of returning the water in the π waste chamber to the hidden water chamber or water tank only needs to be carried out intermittently.
実施例:
第1図は、電気化学的酸素分離装置直の断面構造を示す
。電気化学的酸素性I!!装置本体+11は、パーフロ
ロカーボンにスルフォン酸基を導入しfこ−t オン交
換樹脂膜(2)、白金ブラック粉末とスチレンージビ擦
ンセンにスルフォン酸へを導入してなるイオン交換樹脂
粉末と結着剤としてのポリテトラフルオロエチレンとの
混合物層からなるガス拡散[+’Mとしての陰極(8)
l酸化イリジウムとポリテトラフルオロエチレンとの混
合物1−からなる酸素発生電極としての陽極+4+、臼
メッキしfこエキスバンドチタンからなる陰極集電体(
5)、白金メッキし1こエキスバンドチタンからなる絹
極集電停(6)、陰極集電体(5)の間隙に形成される
陰極ガス室(7r、m極集電体(6)の間隙に形成さf
’Lろ陽極水室(8)、チタン板からなる陰極端子板(
9)、チタン板からなる陽極端子板(LO)、セルフレ
ーム(IIJ 、酸素を含む混合ガス人口(12)およ
び酸素導出口(■3)から形成される。陰極(3)およ
び陽極(4)は、イオン交換樹脂膜(2)に一体に接合
されている。Example: FIG. 1 shows the sectional structure of an electrochemical oxygen separator. Electrochemical Oxygen I! ! The device body +11 consists of an ion-exchange resin membrane (2) made by introducing sulfonic acid groups into perfluorocarbon, an ion-exchange resin powder made by introducing sulfonic acid into platinum black powder, styrene, and styrene, and a binder. Gas diffusion consisting of a mixture layer with polytetrafluoroethylene as [+'M cathode (8)
An anode as an oxygen generating electrode made of a mixture of iridium oxide and polytetrafluoroethylene; a cathode current collector made of ex-banded titanium plated with a mortar plate;
5), a silk electrode current collector (6) made of platinum-plated and extracted band titanium, and a cathode gas chamber (7r, m electrode current collector (6) formed in the gap between the cathode current collector (5)). f formed in the gap
'L filter anode water chamber (8), cathode terminal plate made of titanium plate (
9), an anode terminal plate (LO) made of a titanium plate, a cell frame (IIJ), a mixed gas population containing oxygen (12), and an oxygen outlet (■3). A cathode (3) and an anode (4). is integrally joined to the ion exchange resin membrane (2).
水タンク(14)から水を陽極氷室(8)に供給し、酸
素を含む混合ガスを酸素を含む混合ガス入口(12)か
ら供給し、陰極端子板(9)と陽極端子板(10)との
間に直流W流を通電すると、陰極(8)で脱酸素反応が
起り、説i′ll!累され1こ残金ガスは貯水室(15
)を経て、残余ガス導出口(16)から導出されろと同
時に陰極(8)で生成する水および水素イオンの1濁極
(4)側から陰極(8)側への移動に前体して移行する
水が貯水室(15)に溜められろ。一方、陽極(4)で
は酸素発生反応が起り、酸素は気泡状になって陽極氷室
(8)内の水をくぐり抜けて、酸素導出口(ta)から
導出される。Water is supplied from the water tank (14) to the anode ice chamber (8), a mixed gas containing oxygen is supplied from the mixed gas inlet containing oxygen (12), and the cathode terminal plate (9) and the anode terminal plate (10) are connected to each other. When a DC W current is applied during this period, a deoxidizing reaction occurs at the cathode (8), and the theory i'll! The remaining gas is stored in the water storage chamber (15
), the remaining gas is discharged from the outlet (16), and at the same time, water and hydrogen ions generated at the cathode (8) are transferred from the turbidity electrode (4) side to the cathode (8) side. The migrating water is stored in the water storage chamber (15). On the other hand, an oxygen generation reaction occurs at the anode (4), and oxygen becomes bubbles, passes through the water in the anode ice chamber (8), and is led out from the oxygen outlet (ta).
貯水室(L5)に溜められfこ水は、ポンプ(17)に
よって水タンク(14)に戻さオル1再び利用さj、ろ
。The water stored in the water storage chamber (L5) is returned to the water tank (14) by the pump (17) and used again.
かかる方法を採用すると、本来、消耗するイつけではな
い水の有効利用5図ることが可能となる。If such a method is adopted, it becomes possible to effectively utilize water that is not normally consumed.
さらにま1こ、貯水室(15)が用意されなければ、陰
極カス室(7)内に水が溜まり酸素の陰極(3)への拡
散を妨害するのに対し、上述の構成の採用によって、陰
極i x室(7]内での水のii/Niがl01aヨれ
ろ。Furthermore, if a water storage chamber (15) is not provided, water would accumulate in the cathode waste chamber (7) and obstruct the diffusion of oxygen to the cathode (3), but by adopting the above-mentioned configuration, The water ii/Ni in the cathode ix chamber (7) is l01a.
以上、詳述せる如く、本究明は、特にイオン交換樹脂膜
を電解質とする゛電気化学的酸素分離装置を効果的に作
動し得る一%ffiを堤供するもので、その工業的価値
、極めて大である。As detailed above, this study provides a 1% ffi that can effectively operate an electrochemical oxygen separation device using an ion exchange resin membrane as an electrolyte, and its industrial value is extremely large. It is.
第1図は、ηを気化学的酸素分離装置の断面構造を示す
、
■・・・・・・C匡気化学的酸素分、喋装置本体、 2
・・・・・・イオン交換樹脂膜、 3・・・・・・陰極
、 4・・・・・・陽極。
5・・・・・・陰極集電体、 6・・・・・・陽11巣
電停。
7・・・・・陰極ガス室、 8・・・・・・陽鑞水室。
9・・・・・・1喋咀端子板、10・・・・・・陽極端
子板。
11・・・・・・セルフレーム、 12・・・・・管索
を含む混合ガス入口、13・・・・・・酸素導出口、1
4・・・・・・ボタ。
ンク、15・・・・・・貯水室、16・・・・・・残余
カス導出口、17・・・・・・ポンプ。Figure 1 shows the cross-sectional structure of the vapor chemical oxygen separation device, where η is the chemical oxygen content, the main body of the device, 2
...Ion exchange resin membrane, 3...Cathode, 4...Anode. 5...Cathode current collector, 6...Positive 11th power outage. 7... Cathode gas chamber, 8... Positive water chamber. 9...1 terminal plate, 10...anode terminal plate. 11...Cell frame, 12...Mixed gas inlet including tube cable, 13...Oxygen outlet, 1
4... Buta. 15...Water storage chamber, 16...Residual waste outlet, 17...Pump.
Claims (1)
と酸素発生電極からなる陽極とイオン交換樹脂膜からな
る電解質と陰極背向に形成され1こ陰極ガス室と陽極背
面に形成され1コ陽極水室とからなる電気化学的酸素分
離装置において、陰極ガス室の一部もしくは脱酸素され
1こ残余ガスの導出部にタンクに戻し、該水タンクから
陽極氷室に供給することを特徴とする電気化学的酸素分
離装置の作動方法。A device consisting of a gas diffusion electrode that is effective for the direct reduction of oxygen.
In an electrochemical oxygen separation device consisting of an anode consisting of an oxygen generating electrode, an electrolyte consisting of an ion exchange resin membrane, one cathode gas chamber formed on the back side of the cathode, and one anode water chamber formed on the back side of the anode, the cathode 1. A method for operating an electrochemical oxygen separation device, characterized in that a portion of a gas chamber or a deoxygenated residual gas is returned to a tank and supplied from the water tank to an anode ice chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18800183A JPH0244764B2 (en) | 1983-10-06 | 1983-10-06 | DENKIKAGAKUTEKISANSOBUNRISOCHINOSADOHOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18800183A JPH0244764B2 (en) | 1983-10-06 | 1983-10-06 | DENKIKAGAKUTEKISANSOBUNRISOCHINOSADOHOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6081005A true JPS6081005A (en) | 1985-05-09 |
JPH0244764B2 JPH0244764B2 (en) | 1990-10-05 |
Family
ID=16215900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18800183A Expired - Lifetime JPH0244764B2 (en) | 1983-10-06 | 1983-10-06 | DENKIKAGAKUTEKISANSOBUNRISOCHINOSADOHOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244764B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105276909A (en) * | 2014-07-16 | 2016-01-27 | Bsh家用电器有限公司 | Household refrigeration appliance having oxygen apparatus for performing water electrolysis in closed loop |
CN105318625A (en) * | 2014-07-16 | 2016-02-10 | Bsh家用电器有限公司 | Household refrigeration appliance having oxygen device with detachable container |
WO2024009858A1 (en) * | 2022-07-06 | 2024-01-11 | 株式会社デンソー | Electrochemical cell |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013067850A (en) * | 2011-09-26 | 2013-04-18 | Toshiba Corp | Oxygen reduction apparatus and refrigerator |
-
1983
- 1983-10-06 JP JP18800183A patent/JPH0244764B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105276909A (en) * | 2014-07-16 | 2016-01-27 | Bsh家用电器有限公司 | Household refrigeration appliance having oxygen apparatus for performing water electrolysis in closed loop |
CN105318625A (en) * | 2014-07-16 | 2016-02-10 | Bsh家用电器有限公司 | Household refrigeration appliance having oxygen device with detachable container |
WO2024009858A1 (en) * | 2022-07-06 | 2024-01-11 | 株式会社デンソー | Electrochemical cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0244764B2 (en) | 1990-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3322574A (en) | Process and apparatus for removing reaction water from galvanic fuel cells | |
MXPA03007923A (en) | Method and apparatus for producing negative and positive oxidative reductive potential (orp) water. | |
JP5422083B2 (en) | Non-flow redox battery | |
JPS6380480A (en) | Fuel battery and generation therewith | |
CN113774417B (en) | Water electrolysis device for producing hydrogen and oxygen by bipolar capacitance instead of ion diaphragm separation | |
GB2392441A (en) | Electrolytic activation of fluids | |
JP3242102U (en) | Hydrogen production system using alkaline anion exchange membrane electrolyzer and electrolyzed water | |
JP2014523092A (en) | Air-breathing fuel cell and battery stack causing oxygen oxidation by oxygen | |
JPS6081005A (en) | Operating method of electrochemical oxygen separator | |
CN114402095A (en) | Cross-flow water electrolysis | |
JPS6259184B2 (en) | ||
JPH0938653A (en) | Production of electrolyzed ionic water and device therefor | |
WO2011093124A1 (en) | Water treatment device | |
CN220223738U (en) | Diaphragm electrolytic device for wastewater treatment | |
CN108149271A (en) | Ozone generating-device based on hydrolysis ozone wound surface therapeutic apparatus | |
JPS6028276B2 (en) | How to operate an anaerobic globe box | |
JP2000070947A (en) | Electrolyzed water forming device | |
JPH11350177A (en) | Apparatus for producing electrolyzed water | |
JPS59162284A (en) | Method for generating hydrogen, oxygen and inert gas | |
JPH0627654Y2 (en) | Water electrolysis device for ozone gas generation | |
JPS61199087A (en) | Apparatus for electrochemically separating oxygen with cation exchange membrane as solid electrolyte | |
JPH03140487A (en) | Electrochemical reactor | |
JPH04169068A (en) | Fuel cell with metal grid | |
JPH09202986A (en) | Three-compartment electrolytic cell | |
CN116970969A (en) | Built-in double-circulation electrolytic tank |