JPS6028276B2 - How to operate an anaerobic globe box - Google Patents

How to operate an anaerobic globe box

Info

Publication number
JPS6028276B2
JPS6028276B2 JP17878281A JP17878281A JPS6028276B2 JP S6028276 B2 JPS6028276 B2 JP S6028276B2 JP 17878281 A JP17878281 A JP 17878281A JP 17878281 A JP17878281 A JP 17878281A JP S6028276 B2 JPS6028276 B2 JP S6028276B2
Authority
JP
Japan
Prior art keywords
glove box
oxygen
anaerobic
electrochemical
deoxidizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17878281A
Other languages
Japanese (ja)
Other versions
JPS5881776A (en
Inventor
雄耕 藤田
寿士 工藤
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP17878281A priority Critical patent/JPS6028276B2/en
Publication of JPS5881776A publication Critical patent/JPS5881776A/en
Publication of JPS6028276B2 publication Critical patent/JPS6028276B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J21/00Chambers provided with manipulation devices
    • B25J21/02Glove-boxes, i.e. chambers in which manipulations are performed by the human hands in gloves built into the chamber walls; Gloves therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Devices For Use In Laboratory Experiments (AREA)

Description

【発明の詳細な説明】 本発明は嫌気性菌を処理したり培養するための嫌気性グ
ローブボックスの作動方法に関し、その目的とするとこ
ろは、安全性および操作性の改善を図らんとするにある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating an anaerobic glove box for treating or culturing anaerobic bacteria, and its purpose is to improve safety and operability. be.

従釆の嫌気性菌を処理したり培養したりするための嫌気
性グローブボックスでは、嫌気雰囲気をつくるために、
窒素と炭酸ガスと水素との混合ガスで、グローブボック
ス内の空気を置換したのち残余酸素あるいは外部からわ
ずかずつ侵入してくる酸素を加熱したパラジウム触媒で
水素と酸素とを結合して水にするという方法で除去して
いた。
In an anaerobic glove box for treating or culturing secondary anaerobic bacteria, in order to create an anaerobic atmosphere,
After replacing the air in the glove box with a mixture of nitrogen, carbon dioxide, and hydrogen, the residual oxygen or the oxygen that gradually enters from the outside is combined with hydrogen and oxygen using a heated palladium catalyst to form water. It was removed using this method.

ところが水素を含む混合ガスは危険性があるし、パラジ
ウム触媒は寿命が短かいため絶えず再処理を施さなけれ
ばならないといった煩雑さがある。本発明はか)る欠点
を除去せんとするものである。
However, mixed gases containing hydrogen are dangerous, and palladium catalysts have a short lifespan, so they must be constantly reprocessed. The present invention seeks to eliminate these drawbacks.

すなわち本発明は、嫌気性グローブボックスに電気化学
的脱酸素装置を適用することにより、水素およびパラジ
ウム触媒の使用を回避するものである。まず、電気化学
的脱酸素装置について説明すると、燃料電池で用いられ
るガス拡散電極を陰極とし、陽極として不活性電極を用
い、硫酸あるいは腸イオン交換膜を電解質とした電解槽
のガス拡散電極に酸素を含む混合ガスを接触させつつ、
陰、陽両極間に直流電圧を印加すると、陰極および陽極
で次のような反応が起る。
That is, the present invention avoids the use of hydrogen and palladium catalysts by applying an electrochemical deoxygenation device to an anaerobic glove box. First, to explain the electrochemical deoxidizer, the gas diffusion electrode used in fuel cells is used as the cathode, the anode is an inert electrode, and the gas diffusion electrode of the electrolytic cell is used with sulfuric acid or intestinal ion exchange membrane as the electrolyte. While contacting a mixed gas containing
When a DC voltage is applied between the negative and anode electrodes, the following reactions occur at the cathode and anode.

陰極:02十4H+十傘‐→がLO 陽極:2LO→02十4日十十傘‐ つまり、陰極で酸素だけが選択的に消費され、陽極で酸
素が発生する。
Cathode: 0214H + Juukasa - → is LO Anode: 2LO → 0214 day Jujukasa - In other words, only oxygen is selectively consumed at the cathode, and oxygen is generated at the anode.

したがって、陽極で発生する酸素を系外に排出すれば、
上述の電解槽は脱酸素装置として働く。この電気化学的
脱酸素装置と従来の嫌気性グローブボックスに接続し、
グローブボックス中の酸素を除去すれば、水素が不要に
なるばかりかパラジウム触媒を使用しなくてすむ。しか
しグローブボックス内の酸素を電気化学的脱酸素装燈だ
けで除去するとすれば、IAhの電気量で210ccの
酸素しか除去できないので、一般に脱酸素に要する時間
が長くなりすぎるという難点がある。逆に脱酸素スピー
ドを速くしようとすると、数多〈の電解槽を用いなけれ
ばならないので、電気化学的脱酸素装置が大きくなりす
ぎるという問題がある。か)る問題に対処するために、
本発明では、予め炭酸ガスあるいは炭酸ガスと不活性ガ
スとの混合ガスで、グローブボックス内の空気を置換し
てから残余酸素を電気化学的脱酸素装置で除去するとい
う方法を採用している。すなわち、このような方法を採
用することによって、グローブボックス内の大半の酸素
は炭酸ガスあるいは炭酸ガスと不活性ガスとの混合ガス
によって遠かに除去されるので、電気化学的脱酸素装層
のみで脱酸素する場合よりも脱酸素スピードが遠くなる
Therefore, if the oxygen generated at the anode is discharged to the outside of the system,
The electrolyzer described above acts as an oxygen scavenger. Connect this electrochemical oxygen deoxidizer to a conventional anaerobic glove box,
Removing the oxygen in the glove box not only eliminates the need for hydrogen but also eliminates the need for palladium catalysts. However, if the oxygen in the glove box were to be removed only by an electrochemical deoxidizing light, only 210 cc of oxygen could be removed with the amount of electricity of the IAh, so there is a problem that the time required for deoxidizing is generally too long. On the other hand, if an attempt is made to increase the deoxidation speed, a large number of electrolytic cells must be used, resulting in the problem that the electrochemical deoxidation device becomes too large. In order to deal with the problem of
The present invention employs a method in which the air in the glove box is replaced in advance with carbon dioxide gas or a mixed gas of carbon dioxide gas and an inert gas, and then residual oxygen is removed using an electrochemical deoxidizer. In other words, by adopting this method, most of the oxygen in the glove box is removed remotely by carbon dioxide gas or a mixture of carbon dioxide gas and inert gas, so only electrochemical deoxidation layer can be used. The deoxidation speed will be faster than when deoxidizing with .

また同時に嫌気性菌の培養に必要な炭酸ガスが供給され
る。電気化学的脱酸素装置の作動は、ガス置換の開始と
同時に開始してもよい。一方、嫌気性グローブボックス
の気密性は、一般に必ずしも完全なものではなく、一且
、脱酸素状態にしたとしても、時間の経過とともにグロ
ーブボックスの外部から酸素が侵入してくる。
At the same time, carbon dioxide gas necessary for culturing anaerobic bacteria is supplied. Activation of the electrochemical deoxidizer may begin simultaneously with the initiation of gas replacement. On the other hand, the airtightness of an anaerobic glove box is generally not necessarily perfect, and even if the glove box is deoxidized, oxygen will enter from outside the glove box over time.

この点については、電気化学的脱酸素装置の電源スイッ
チを常時入れつばなしにしておけば解決される。すなわ
ち、電気化学的脱酸素装置は、電源スイッチを常時ON
にしておきさえすれば、酸素が存在するに限り、陰極と
陽極との間に電流がれ、自動的に酸素が除去される。こ
の点も本発明の重要な特徴のひとつである。以下本発明
の一実施例について詳述する。
This problem can be solved by leaving the power switch of the electrochemical deoxidizer on all the time. In other words, the electrochemical deoxidizer requires the power switch to be turned on at all times.
As long as oxygen is present, current will flow between the cathode and anode and oxygen will be automatically removed. This point is also one of the important features of the present invention. An embodiment of the present invention will be described in detail below.

実施例 1 第1図は本発明の一実施例にか)る嫌気性グローブボッ
クスの断面構造の略図を示す。
Embodiment 1 FIG. 1 shows a schematic diagram of the cross-sectional structure of an anaerobic glove box according to an embodiment of the present invention.

第1図にいて、1はグローブボックス、2は予備室、3
は電気化学的脱酸素装置、4炭酸ガスと窒素ガスとの混
合ガスボンベ(炭酸ガス5%)である。電気化学的脱酸
素装置3は、ガス拡散電極からなる陰極5、チタン板に
イリジウムと白金をコートしてなる酸素発生電極として
の陽極6、5規定の硫酸からなる電解液7、ガス室8、
酸素導出口9から構成されている。電気化学的脱酸素装
置3は、循環ポンプ10および減圧補償装置11を介し
て、予備室2に連結されている。
In Figure 1, 1 is the glove box, 2 is the spare room, and 3 is the glove box.
is an electrochemical deoxidizer, a mixed gas cylinder of 4 carbon dioxide gas and nitrogen gas (5% carbon dioxide gas). The electrochemical deoxidizer 3 includes a cathode 5 made of a gas diffusion electrode, an anode 6 made of a titanium plate coated with iridium and platinum as an oxygen generating electrode, an electrolytic solution 7 made of sulfuric acid, a gas chamber 8,
It is composed of an oxygen outlet 9. The electrochemical deoxidizer 3 is connected to the preliminary chamber 2 via a circulation pump 10 and a vacuum compensator 11 .

このような嫌気性グローブボックスを動作させるために
は、まず混合ガスボンベ4から炭酸ガスと窒素ガスとの
混合ガスを予備室2に供給し、予備室およびグローブボ
ックス1中の空気と鷹摸する。グローブボックス1中の
酸素濃度が1%以下になった時点で混合ガスの供聯合を
止め循環ポンプ10を作動して予備室2中のガスを循環
すると共に、電気化学的脱酸素装置が3の電源スイッチ
を入れ、陰極5と陽極6との間に1.2Vの直流電圧を
印加する。この直流電圧の印加によって、陰極5で酸素
が選択的に消費され、陽極6から酸素が発生する。この
酸素は酸素導出口9から系外へ排出される。かして予備
室2およびグローブボックス1の中の酸素濃度は、0.
001%程度まで低下する。陰極5で酸素が消費される
と、予備室2およびグローブボックス1を含むガス循環
系が減圧になるが、この減圧になった分だけ減圧補償装
置11から新たに空気が入り、常圧が保たれる。この新
たに入ってくる空気中の酸素もまた電気化学的脱酸素装
置3で除去される。一方嫌気性グローブボックスが使用
されている間は常時陰極5と陽極6との間には1.2V
の直流電圧が印加されたま)にしておく。
In order to operate such an anaerobic glove box, a mixed gas of carbon dioxide and nitrogen gas is first supplied from the mixed gas cylinder 4 to the preliminary chamber 2 and mixed with the air in the preliminary chamber and the glove box 1 . When the oxygen concentration in the glove box 1 becomes 1% or less, the combination of the mixed gas is stopped and the circulation pump 10 is activated to circulate the gas in the preliminary chamber 2. At the same time, the electrochemical deoxidation device 3 The power switch is turned on and a DC voltage of 1.2 V is applied between the cathode 5 and the anode 6. By applying this DC voltage, oxygen is selectively consumed at the cathode 5 and oxygen is generated from the anode 6. This oxygen is discharged from the oxygen outlet 9 to the outside of the system. Thus, the oxygen concentration in the preliminary chamber 2 and the glove box 1 is 0.
It decreases to about 0.001%. When oxygen is consumed at the cathode 5, the pressure in the gas circulation system including the preliminary chamber 2 and the glove box 1 is reduced, but new air enters from the reduced pressure compensator 11 to compensate for this reduced pressure, and normal pressure is maintained. dripping This newly incoming oxygen in the air is also removed in the electrochemical deoxidizer 3. On the other hand, while the anaerobic glove box is in use, the voltage between the cathode 5 and anode 6 is always 1.2V.
DC voltage is applied).

このようにすると、グローブボックスーあるいは予備室
2に外部から空気が入ってまたしても、陰極5と陽極6
との間に電流が流れ、自動的に侵入酸素が除去される。
以上詳述せる如く、本発明は、従来のような水素および
パラジウム触媒の使用に伴なう危険性ならびに操作の煩
雑さを除去するものであり、その工業的価値極めて大で
ある。
In this way, if air enters the glove box or the preliminary chamber 2 from outside, the cathode 5 and anode 6
An electric current is passed between the two and automatically removes the invading oxygen.
As detailed above, the present invention eliminates the risks and operational complexity associated with the conventional use of hydrogen and palladium catalysts, and has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる嫌気性グロ−ブボツ
クスの断面構造略図を示す。 1・・・・・・グローブボックス、2・・・・・・予備
室、3・・・…電気化学的脱酸素装置、4……混合ガス
ボンべ、5・・…・陰極、6・・・・・・陽極、7・・
・・・・電解液、8・・・・・・ガス室、9・・・・・
・酸素導出口、10・・・・・・循環ポンプ、11・・
・・・・減圧補償装置。 第1図
FIG. 1 shows a schematic cross-sectional structure of an anaerobic glove box according to an embodiment of the present invention. 1... Glove box, 2... Preliminary room, 3... Electrochemical deoxidizer, 4... Mixed gas cylinder, 5... Cathode, 6...・・・Anode, 7...
...Electrolyte, 8...Gas chamber, 9...
・Oxygen outlet, 10...Circulation pump, 11...
...Decompression compensation device. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1 酸素を選択的に電解還元し得るガス拡散電極を陰極
とし、酸素発生電極を陽極とし、硫酸あるいは陽イオン
交換膜を電解質としてなる電解槽からなる電気化学的脱
酸素装置と予備室を有するグローブボツクスとを連結し
てなる嫌気性グローブボツクスにおいて、炭酸ガス単独
かまたは炭酸ガスと不活性ガスとの混合ガスで以て、前
記予備室およびグローブボツクス内の空気を置換しなが
らあるいは置換してのち前記電気化学的脱酸素装置を作
動せしめて、前記グローブボツクスおよび予備室の中の
残余酸素を除去するとともに、前記嫌気性グローブボツ
クスの使用中は絶えず電気化学的脱酸素装置を作動せし
め外部からのグローブボツクスあるいは予備室に侵入し
てくる酸素を除去することを特徴とする嫌気性グローブ
ボツクスの作動方法。
1. A glove having an electrochemical deoxidizing device consisting of an electrolytic cell consisting of a gas diffusion electrode capable of selective electrolytic reduction of oxygen as a cathode, an oxygen generating electrode as an anode, and sulfuric acid or a cation exchange membrane as an electrolyte, and a preliminary chamber. In an anaerobic glove box connected to a glove box, the air in the preliminary chamber and the glove box is replaced or replaced with carbon dioxide alone or a mixture of carbon dioxide and an inert gas. The electrochemical deoxidizer is activated to remove residual oxygen in the glovebox and prechamber, and the electrochemical deoxidizer is activated continuously while the anaerobic glovebox is in use to remove any residual oxygen from the outside. A method of operating an anaerobic glove box characterized by removing oxygen entering the glove box or reserve chamber.
JP17878281A 1981-11-06 1981-11-06 How to operate an anaerobic globe box Expired JPS6028276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17878281A JPS6028276B2 (en) 1981-11-06 1981-11-06 How to operate an anaerobic globe box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17878281A JPS6028276B2 (en) 1981-11-06 1981-11-06 How to operate an anaerobic globe box

Publications (2)

Publication Number Publication Date
JPS5881776A JPS5881776A (en) 1983-05-17
JPS6028276B2 true JPS6028276B2 (en) 1985-07-03

Family

ID=16054534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17878281A Expired JPS6028276B2 (en) 1981-11-06 1981-11-06 How to operate an anaerobic globe box

Country Status (1)

Country Link
JP (1) JPS6028276B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435580Y2 (en) * 1985-05-13 1992-08-24
CN108621206A (en) * 2018-05-07 2018-10-09 昆山国显光电有限公司 The maintenance method of glove box system and glove box system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879978B2 (en) * 2005-06-17 2012-02-22 メルツ・ファルマ・ゲーエムベーハー・ウント・コー・カーゲーアーアー Apparatus and method for fermentative production of bioactive compounds
CN104325468B (en) * 2014-10-08 2017-02-08 长沙天创粉末技术有限公司 Using Method of glove box with purification system
JP2020130077A (en) * 2019-02-21 2020-08-31 三菱ケミカルエンジニアリング株式会社 Anaerobic bacterium culture device equipped with mechanism for containing fine bubbles and ultrafine bubbles of gas containing nitrogen gas as main component in culture solution, and anaerobic bacterium culture method using the anaerobic bacterium culture device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435580Y2 (en) * 1985-05-13 1992-08-24
CN108621206A (en) * 2018-05-07 2018-10-09 昆山国显光电有限公司 The maintenance method of glove box system and glove box system

Also Published As

Publication number Publication date
JPS5881776A (en) 1983-05-17

Similar Documents

Publication Publication Date Title
US3294588A (en) Method of operating fuel cell with electrolyte containing quinones or dyes
US3113049A (en) Direct production of electrical energy from liquid fuels
CA1156307A (en) Method for the operation of a fuel cell
US5338412A (en) Electrochemical device for removal and regeneration of oxygen and method
JPH01307173A (en) Electrolyte regenerating device for redox flow battery
KR20100039240A (en) Operation method of ozonizer and ozonizer apparatus used therefor
KR20140064822A (en) Process for in-situ electrochemical oxidative generation and conversion of organosulfur compounds
JPS6028276B2 (en) How to operate an anaerobic globe box
KR102018781B1 (en) Hydrogen recycling apparatus and method of operation
CA2098559A1 (en) Reducing Agent Regeneration System
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
US4478916A (en) Method and apparatus for operating aqueous galvanic high energy cells
RU2342742C1 (en) Device meant for removing carbon dioxide from air used for fuel cell
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
JPS59163770A (en) Method of producing oxygen
JPS6019581Y2 (en) Equipment for treating and culturing anaerobic bacteria
JPS6081005A (en) Operating method of electrochemical oxygen separator
JP2004281268A (en) Operating method of fuel cell and fuel cell system
EP0360536A3 (en) Cell and method of operating a liquid-gas electrochemical cell
JP3408462B2 (en) Method for protecting gas diffusion cathode in alkaline chloride electrolytic cell
EP0789789B1 (en) Electrochemical device for removal and regeneration of oxygen and method
JPH0244908B2 (en)
JP2019073751A (en) Hydrogen production apparatus
JPH03219564A (en) Fuel cell power generator device
JP2004247080A (en) Fuel cell