JPS6080779A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPS6080779A
JPS6080779A JP18910483A JP18910483A JPS6080779A JP S6080779 A JPS6080779 A JP S6080779A JP 18910483 A JP18910483 A JP 18910483A JP 18910483 A JP18910483 A JP 18910483A JP S6080779 A JPS6080779 A JP S6080779A
Authority
JP
Japan
Prior art keywords
magnetic field
field sensor
polycrystal
compds
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18910483A
Other languages
Japanese (ja)
Inventor
Yoshiaki Hayashi
義明 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18910483A priority Critical patent/JPS6080779A/en
Publication of JPS6080779A publication Critical patent/JPS6080779A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect

Abstract

PURPOSE:To obtain inexpensively a magnetic field sensor which has high sensitivity and small temp. dependency in a large amt. by using a polycrystal of II-VI group compds. semiconductor as a magnetooptic material having a Faraday effect. CONSTITUTION:Both opposite end faces of a polycrystal 1 of II-VI group compds. semiconductor as a magnetooptic material are optically polished and dichromatic plastic polarizing elements 2, 3 of which the passing directions of polarized light have 45 deg. gradient with each other are provided thereon. Lenses 6, 7 are so used that the light emitted from an optical fiber 4 is effectively condensed to an optical fiber 5. The polycrystalline body formed by a vapor growth method of the II-VI group compds. semiconductor (ZnSe, ZnTe, CdSe, ZnO, etc.), for example, ZnSe, has the Faraday rotation power equiv. to that of a single crystal and the temp. stability is rather excellent with the polycrystal.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁界に感応して光の偏波面が回転するファラ
デー効果を応用した磁界センサに関し、高いコストパフ
ォーマンスと量産性を併せ持つ実用的な磁界センサを提
供せんとするものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a magnetic field sensor that applies the Faraday effect in which the plane of polarization of light rotates in response to a magnetic field, and is a practical magnetic field sensor that has both high cost performance and mass productivity. We aim to provide the following.

従来例の構成とその問題点 ファラデー効果を有する磁気光学物質と1対の偏光素子
とを組み合わせた磁界センサにおいては、ベルデ定数が
太きくかつ光の吸収係数の小さい物質を磁気光学物質と
して利用するのが有利である。
Conventional configuration and its problems In a magnetic field sensor that combines a magneto-optical material with a Faraday effect and a pair of polarizing elements, a material with a large Verdet constant and a small light absorption coefficient is used as the magneto-optic material. is advantageous.

従来は、この条件に適合するものとして磁性ガーネット
、鉛ガラス、ファラデー回転ガラスが主に検討されてき
た。しかし、これらは個々に特有の問題点を有し、必ず
しも磁界センサに対する幅広い要求性能を全面的に具備
するものではない。磁性ガーネットについていえば、フ
ァラデー回転能は大きい反面、強磁性体であるため磁気
飽和現象を有し、ヒステリシス特性やバルクハウセン現
象に見られる再現性上の問題点が指摘される。さらにま
た、波長1μm以下の光に対して吸収が大きいため、受
光素子にジョンンンノイズの大きいゲルマニウムホトダ
イオードを用いる必要があり、信号対雑音比が低いこと
も大きな欠点である。加うるに、通常ファラデー回転能
の温度依存性が大きく、これを補正しない限り十分な6
4I]定精度が得られない。
Conventionally, magnetic garnet, lead glass, and Faraday rotation glass have been mainly considered as materials that meet this condition. However, each of these has its own problems, and does not necessarily fully meet the wide range of performance requirements for magnetic field sensors. Regarding magnetic garnet, although it has a large Faraday rotation ability, since it is a ferromagnetic material, it has a magnetic saturation phenomenon, and problems with reproducibility such as hysteresis characteristics and Barkhausen phenomenon have been pointed out. Furthermore, since the absorption of light with a wavelength of 1 μm or less is large, it is necessary to use a germanium photodiode with large noise as a light receiving element, and the low signal-to-noise ratio is also a major drawback. In addition, the Faraday rotation ability usually has a large temperature dependence, and unless this is corrected, sufficient 6
4I] Consistent accuracy cannot be obtained.

鉛ガラスについては、ファラデー回転能が小さく、波長
0’、633 pmでも16×1odeq10e@C1
nの程度である。また7アラデ一回転カラスは、ファラ
デー回転能は波長0.6331tmで4.5X10 d
eg 10e −tmと鉛ガラスに比して大きいものの
、温度依存性が非常に大きいため、磁性ガーネット同様
に温度補正をしない限り精度は低い。
As for lead glass, the Faraday rotation power is small, and even at wavelength 0' and 633 pm, it is 16×1odeq10e@C1
It is of the order of n. In addition, the Faraday rotation ability of the 7 Arade single rotation crow is 4.5 x 10 d at a wavelength of 0.6331 tm.
eg 10e-tm, which is larger than lead glass, but because it has very high temperature dependence, the accuracy is low unless temperature correction is made like magnetic garnet.

発明の目的 本発明の目的は、磁界に対する感度が高く、かつ温度依
存性の小さい磁界センサを安価にかつ犬、量に提供する
ことにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a magnetic field sensor that is highly sensitive to magnetic fields and has low temperature dependence at low cost and in a large quantity.

発明の構成 そのための構成として、本発明は、第1の偏光素子、フ
ァラデー効果を有する磁気光学物質、第のである。
Structure of the Invention As a structure therefor, the present invention includes a first polarizing element, a magneto-optical material having a Faraday effect, and a second polarizing element.

実施例の説明 n −vt族化合物半導体と総称されるZn5e 、 
ZnTeCdSe、ZnO等の単結晶はバンド間遷移に
基づく大きなファラデー回転能を有することが知られて
いる。しかし、これらの単結晶を大量に得る結晶成長技
術は今日なお確立されたとはいい難く、産業的利用には
未だ入手困難な現状であり、価格も高価である。本発明
者は、n−vt族化合物半導体を大量に製造できる成長
方法を検討する過程で、気相成長法による多結晶体にお
いても、単結晶に劣らない特性が得られることを見い出
しだ。例えばZn5eの場合は、単結晶においてはファ
ラデー回転能が3.4 X 10 degloe −c
m (λ=O、Q2 、am ) 、その温度変化率が
20〜120℃で±1%であるのに対し、多結晶体にお
いてはファラデー回転能3.lX1O−3d e g 
10e −cm (λ=0.82pm)および6.0X
10 degloe−m(λ−0,63μm)、温度に
よる変化率は20〜120℃で±0.3%であシ、温度
安定性はむしろ多結晶の方が良好であった。さらにまた
Zn5eの多結晶体は赤外線の席料として大量の需要が
あり、製造方法も確立しておシ、コスト的にも鉛ガラス
よりはるかに安価である。
Description of Examples Zn5e, which is collectively called n-vt group compound semiconductor,
Single crystals such as ZnTeCdSe and ZnO are known to have a large Faraday rotation ability based on interband transitions. However, the crystal growth technology for obtaining large quantities of these single crystals has not yet been established, and is still difficult to obtain for industrial use, and is expensive. In the process of investigating a growth method that would allow mass production of n-vt group compound semiconductors, the present inventor discovered that even a polycrystalline material produced by vapor phase growth can have properties comparable to those of a single crystal. For example, in the case of Zn5e, the Faraday rotation power in a single crystal is 3.4 × 10 degloe -c
m (λ=O, Q2, am), its temperature change rate is ±1% from 20 to 120°C, whereas in polycrystalline materials, the Faraday rotation ability is 3. lX1O-3d e g
10e-cm (λ=0.82pm) and 6.0X
10 degloe-m (λ-0, 63 μm), the rate of change due to temperature was ±0.3% from 20 to 120° C., and the polycrystalline one had better temperature stability. Furthermore, polycrystalline Zn5e is in large demand as a material for infrared rays, a manufacturing method has been established, and it is much cheaper than lead glass.

第1図に、気相成長法による多結晶Zn5eのファ面図
である。図において、1は磁気光学物質としてのn−v
i族化合物半導体の多結晶であり、相対する両端面を光
学研磨したものである。
FIG. 1 is a front view of polycrystalline Zn5e produced by vapor phase growth. In the figure, 1 is n-v as a magneto-optical material.
It is a polycrystal of an i-group compound semiconductor, and both opposing end faces are optically polished.

研磨した両端面に、偏光通過方向が互いに45°の勾き
を有する偏光素子2,3を設ける。この例の場合1、こ
の偏光素子2,3には二色性プラスチック偏光板を用い
た。その理由は第1に単結晶のZn5eに比べると、多
結晶Zn5eは比較的脆さがあり、方解石や二酸化チタ
ン等を素材にした堅い偏光素子と接着すると、接着応力
や熱膨張係数の差に基づく応力によってクランクを生じ
ることがあることど、第2に前記方解石や二酸化チタン
等を素材にした偏光素子自体が高価な上に大量に入手し
難いことにある。4と5は光ファイバーであり、光ファ
イバー4から出射する光が、光ファイバー6に有効に集
光するようにレンズ6.7を用いた。8および9はセラ
ミノクチコープでアリ、光ファイバー4.6の接着を堅
固にするだめのものである。
Polarizing elements 2 and 3 whose polarized light passing directions have an inclination of 45° to each other are provided on both polished end faces. In the case of this example 1, dichroic plastic polarizing plates were used for the polarizing elements 2 and 3. The reason for this is firstly that polycrystalline Zn5e is relatively brittle compared to single-crystal Zn5e, and when bonded to a hard polarizing element made of calcite or titanium dioxide, the difference in adhesive stress and coefficient of thermal expansion causes Crank may occur due to the stress generated.Secondly, polarizing elements themselves made of materials such as calcite and titanium dioxide are expensive and difficult to obtain in large quantities. 4 and 5 are optical fibers, and lenses 6.7 are used so that the light emitted from the optical fiber 4 is effectively focused on the optical fiber 6. 8 and 9 are ceraminocticops, which are used to firmly bond the optical fiber 4.6.

上記構成において、II −Vl族化合物半導体多結晶
にZn5eを用いた具体的実施例について述べる。
A specific example will be described in which Zn5e is used as the II-Vl group compound semiconductor polycrystal in the above structure.

Zn5eは気相成長法で製作し、光透過方向の長さは5
耽のものを用いた。二色性グラスチック偏光素子にはポ
ラロイド社のHN38 (厚みOoam)を用い、レン
ズは自己収束性ロッドレンズの%ピッチのものを用いた
。光ファイバーはコア径SOOμmのステップインデク
ス形グラスチックファイバーを用い、発光素子は波長0
.66μmの可視LED、受光素子はSt PIN ホ
トダイオードを用いた。
Zn5e is manufactured using a vapor phase growth method, and its length in the light transmission direction is 5.
I used something that I indulged in. The dichroic glass polarizing element used was HN38 (thickness Ooam) manufactured by Polaroid, and the lens was a self-focusing rod lens with a pitch of %. The optical fiber is a step index type glass fiber with a core diameter of SOOμm, and the light emitting element has a wavelength of 0.
.. A 66 μm visible LED and a St PIN photodiode were used as the light receiving element.

挿入損失は一6dBの偏光ロスを除くと、−6dBで受
光パワーは1μ4以上が得られ、入射光量対雑音比は帯
域幅10KHzで72 dEと十分実用になる結果を得
だ。
Excluding the -6 dB polarization loss, the insertion loss was -6 dB, the received light power was 1 μ4 or more, and the incident light to noise ratio was 72 dE with a bandwidth of 10 KHz, which is sufficient for practical use.

本実施例における磁界センサの最小検出感度は1エルス
テツドであり、計算による結果とよい一致をみた。また
温度特性もZn5e多結晶単体の測定結果と、測定誤差
内で一致した、 発明の効果 以上のような本発明の磁界センサには、次のような効果
がある。
The minimum detection sensitivity of the magnetic field sensor in this example was 1 oersted, which was in good agreement with the calculated results. Furthermore, the temperature characteristics also matched the measurement results of a single Zn5e polycrystalline substance within a measurement error.Effects of the InventionThe magnetic field sensor of the present invention has the following effects.

(1)磁気感度が高く、かつ温度特性が良い。(1) High magnetic sensitivity and good temperature characteristics.

(2)磁気光学物質、偏光素子2発光素子、受光素子、
光ファイバーのいずれも入手し易く、かつ安価な汎用製
品であるため、量産性にすぐれ安価に供給できる。
(2) magneto-optical material, polarizing element 2 light emitting element, light receiving element,
Since both optical fibers are easily available and inexpensive general-purpose products, they are suitable for mass production and can be supplied at low cost.

(3)磁気光学物質が気相成長法による多結晶体であっ
ても、接着する偏光素子がプラスチック製であるため熱
的ストレス等に対し損傷し難く、信頼性が高い。
(3) Even if the magneto-optical material is a polycrystalline material produced by vapor phase growth, since the polarizing element to be bonded is made of plastic, it is less likely to be damaged by thermal stress, etc., and is highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた多結晶Zn5eのファ
ラデー回転能の波長特性図、第2図は本発明の磁界セン
サの断面図である。 1・・・・磁気光学物質(II −Vl族化合物半導体
の多結晶)、2,3・・・偏光素子、4,5・・・光フ
ァイバー、6,7・・ レンズ、8,9・・・・・・セ
ラミックチー−一フ。 第1図 う皮表(k寓) 、2 y
FIG. 1 is a wavelength characteristic diagram of the Faraday rotation ability of polycrystalline Zn5e used in an example of the present invention, and FIG. 2 is a sectional view of the magnetic field sensor of the present invention. 1... magneto-optical material (polycrystal of II-Vl group compound semiconductor), 2, 3... polarizing element, 4, 5... optical fiber, 6, 7... lens, 8, 9... ...Ceramic chief. Figure 1: Carious surface (k), 2 y

Claims (1)

【特許請求の範囲】 (1)第1の偏光素子、ファラデー効果を有する磁気光
学物質、第2の偏光素子を順次光学的に結合し、前記磁
気光学物質としてn−vt族化合物半導体の多結晶を用
いた磁界センサ。 (2ン 第1および第2の偏光素子として二色性プラス
チック偏光板を用いた特許請求の範囲第(1)項記載の
磁界センサ〇 (3)II−Vl族化合物半導体の多結晶として気相成
Scope of Claims: (1) A first polarizing element, a magneto-optical material having a Faraday effect, and a second polarizing element are sequentially optically coupled, and the magneto-optical material is a polycrystalline N-VT compound semiconductor. A magnetic field sensor using (2) A magnetic field sensor according to claim (1) using dichroic plastic polarizing plates as the first and second polarizing elements. Growth
JP18910483A 1983-10-07 1983-10-07 Magnetic field sensor Pending JPS6080779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18910483A JPS6080779A (en) 1983-10-07 1983-10-07 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18910483A JPS6080779A (en) 1983-10-07 1983-10-07 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPS6080779A true JPS6080779A (en) 1985-05-08

Family

ID=16235424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18910483A Pending JPS6080779A (en) 1983-10-07 1983-10-07 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPS6080779A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473429A2 (en) * 1990-08-30 1992-03-04 Ngk Insulators, Ltd. Optical magnetic-field sensor and method of producing the same
US5982174A (en) * 1997-07-21 1999-11-09 Wagreich; Richard B. External cavity fiber Fabry-Perot magnetometer
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9636133B2 (en) 2012-04-30 2017-05-02 The Regents Of The University Of Michigan Method of manufacturing an ultrasound system
US9642634B2 (en) 2005-09-22 2017-05-09 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US9901753B2 (en) 2009-08-26 2018-02-27 The Regents Of The University Of Michigan Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US11648424B2 (en) 2018-11-28 2023-05-16 Histosonics Inc. Histotripsy systems and methods
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262039A (en) * 1975-11-17 1977-05-23 Nec Corp Infrared light modulator using cav7g polycrystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262039A (en) * 1975-11-17 1977-05-23 Nec Corp Infrared light modulator using cav7g polycrystal

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473429A2 (en) * 1990-08-30 1992-03-04 Ngk Insulators, Ltd. Optical magnetic-field sensor and method of producing the same
US5982174A (en) * 1997-07-21 1999-11-09 Wagreich; Richard B. External cavity fiber Fabry-Perot magnetometer
US11701134B2 (en) 2005-09-22 2023-07-18 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US11364042B2 (en) 2005-09-22 2022-06-21 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US9642634B2 (en) 2005-09-22 2017-05-09 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
US9526923B2 (en) 2009-08-17 2016-12-27 Histosonics, Inc. Disposable acoustic coupling medium container
US9901753B2 (en) 2009-08-26 2018-02-27 The Regents Of The University Of Michigan Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10071266B2 (en) 2011-08-10 2018-09-11 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
US9636133B2 (en) 2012-04-30 2017-05-02 The Regents Of The University Of Michigan Method of manufacturing an ultrasound system
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US11819712B2 (en) 2013-08-22 2023-11-21 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US11648424B2 (en) 2018-11-28 2023-05-16 Histosonics Inc. Histotripsy systems and methods
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization

Similar Documents

Publication Publication Date Title
JPS6080779A (en) Magnetic field sensor
US7254286B2 (en) Magneto-optical resonant waveguide sensors
US4560932A (en) Magneto-optical converter utilizing Faraday effect
US4598996A (en) Temperature detector
JP3144928B2 (en) Optical sensor
JPS60218623A (en) Magnetooptic converting device
JPS6080778A (en) Device for measuring magnetic field
JP2616124B2 (en) How to make a magnetic sensor
JPH0424665B2 (en)
JPS5827071A (en) Photomagnetic field detector
JP2582914B2 (en) Polarizing prism
JP2019138775A (en) Magnetic field sensor element and magnetic field sensor device
JP2541014B2 (en) Polarizing prism
JPH0259683A (en) Light-applying sensor
JPS6162882A (en) Magnetic field detector
JPS60205379A (en) Light-applied magnetic field sensor
JPH09178940A (en) Polarizing element
JPH07244138A (en) Magnetooptic sensor
JPS60142272A (en) Voltage sensor
JPS63241365A (en) Optical voltage/electric field sensor
CN105699334A (en) Polarization insensitive type SPR sensing structure
JPH03249606A (en) Polarization beam splitter with magnetooptic element and its manufacture
JPH0248868B2 (en)
JPS6270776A (en) Magnetic field sensor
JPS62124416A (en) Light applied sensor