JPS6080748A - Device for determining thermal change of heat capacity and weight simultaneously - Google Patents

Device for determining thermal change of heat capacity and weight simultaneously

Info

Publication number
JPS6080748A
JPS6080748A JP18768883A JP18768883A JPS6080748A JP S6080748 A JPS6080748 A JP S6080748A JP 18768883 A JP18768883 A JP 18768883A JP 18768883 A JP18768883 A JP 18768883A JP S6080748 A JPS6080748 A JP S6080748A
Authority
JP
Japan
Prior art keywords
sample
heat capacity
heat
thermobalance
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18768883A
Other languages
Japanese (ja)
Other versions
JPH0372944B2 (en
Inventor
Ryozo Kato
加藤 良三
Yasunaga Takaya
貴家 泰長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP18768883A priority Critical patent/JPS6080748A/en
Publication of JPS6080748A publication Critical patent/JPS6080748A/en
Publication of JPH0372944B2 publication Critical patent/JPH0372944B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/005Investigating or analyzing materials by the use of thermal means by investigating specific heat

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To improve thermal decomposition effect of a determination device and to perform determination of heat capacity with high precision by supporting a sample placed in a heat bath of an AC calorimeter at one end of a beam of a thermobalance device interposing a heat leak resistance. CONSTITUTION:A sample 10 is placed on a sample holder comprising a good conductive thin plate having very small heat capacity as compared to the sample 10 interposing silver paste. The sample holder is supported by two pairs of thermocouple having small heat capacity extended over a stationary ring 23, and the stationary ring 23 is placed on one end of a beam 2 of a thermobalance 1 with a pair of insulating tube 26. Intermittent heat current is fed to the sample 10 from a light source 16, chopper 19, and optical fiber 20. The weight of the sample for this stage is measured by the thermobalance device 1, and the temp. of the sample 10 is measured by the thermocouple.

Description

【発明の詳細な説明】 従来、熱容量変化及び熱重量変化の同時測定装置として
、示差走査熱熱量計と熱天秤とを組合せたものが知られ
ているが、熱天秤のビームには、試料容器及び標準試料
容器全支持させなければならないから、該試料部の全体
の容積が大きくなり、そのため温度の変化による浮力及
び対流の変化の影響を受けて熱重量の変化が精密に測定
できない不都合があった。
[Detailed Description of the Invention] Conventionally, a device that combines a differential scanning calorimeter and a thermobalance has been known as a device for simultaneously measuring heat capacity changes and thermogravimetric changes. Since the standard sample container must be fully supported, the overall volume of the sample section becomes large, which makes it difficult to accurately measure thermogravimetric changes due to changes in buoyancy and convection due to temperature changes. Ta.

本発明はかかる不都合を解消すると共に熱容量測定の温
度分解能を示差走査熱景計より高く、精度のよい熱容量
測定を行なうことをその目的とするもので、熱天秤装置
のビームの一端に交流カロリメータの熱浴中に配置され
た試料を熱リーク抵抗を介して支持させるようにしたこ
とを特徴とする。
The purpose of the present invention is to eliminate such inconveniences and to perform heat capacity measurement with higher temperature resolution than a differential scanning calorimeter and with high precision. It is characterized in that a sample placed in a heat bath is supported via a heat leak resistance.

以下本発明の実施例を図面につき説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の1実施例の構成を示すM図、第2図は
第1図トl線截断面図である。
FIG. 1 is a diagram M showing the configuration of an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line T in FIG.

図において、(1)は熱天秤装置で、該熱天秤装置(1
)はビーム(2)の支点部にビーム(2)との傾きに連
動するスリット板、該スリット板を介して対向配置され
たランプ及びフォトセルからなるビーム角変化読取り用
装置(3)と、該ビーム(2)の一端に取付けられたマ
グネッ) (4) ’!r駆動するソレノイド(5)と
、前記7オトセルのビーム角変化検出信号に応じてビー
ム角復元用信号を該ソレノイド(5)に出力する共に秤
鴬信号を記録計(6)に出力する秤量回路(力と該ビー
ム(2)の他端に取付けられた分銅皿(8)とを具備す
るもので、従来公知のものを使用した。
In the figure, (1) is a thermobalance device;
) is a beam angle change reading device (3) consisting of a slit plate interlocked with the inclination of the beam (2) at the fulcrum part of the beam (2), a lamp and a photocell arranged opposite to each other through the slit plate; A magnet attached to one end of the beam (2) (4) '! r A driving solenoid (5) and a weighing circuit that outputs a beam angle restoration signal to the solenoid (5) in accordance with the beam angle change detection signal of the seven otocells and also outputs a weighing signal to the recorder (6). A conventionally known device was used, which is equipped with a force and a weight pan (8) attached to the other end of the beam (2).

(9)は交流カロリメータで、該交流カロリメータ(9
)は熱重量を測定すると共に熱容量を測定すべき試料Q
lに断続的熱流を供給する装置αυと、該試料部の温度
に対応する信号を増幅する直流増幅器α2と、試料の交
流的温度変化分に対応する信号を増幅するロックイン増
幅器0階とを公知のように具備する。
(9) is an AC calorimeter;
) is the sample Q whose thermogravimetry is to be measured as well as its heat capacity.
A device αυ for supplying an intermittent heat flow to l, a DC amplifier α2 that amplifies a signal corresponding to the temperature of the sample section, and a lock-in amplifier 0th floor that amplifies a signal corresponding to the AC temperature change of the sample. It is equipped in a known manner.

前記断続的熱流を試料に供給する装置αυは直流電源α
aによって付勢されるランプ09等を具備する光源(1
61と電源αDに接続されたモータQFtJにより回転
される光断続用チ目ツバ(11と、その断続光を試料部
に導く光ファイバ(21とから成る、試料α〔は、試料
α〔に対して熱容量が非常に小さい熱良導性薄板からな
る試料ホルダ(21)上に銀ペースト四ヲ介在させて載
置するようにする。該試料ホルダ(20は第3図及び第
4図に明示するように、セラミック等から成る固定リン
グ(至)に張設された2対の熱容量の小さい熱電対c!
a(ハ)によって支持され、該固定リング(ハ)は一対
の絶縁管(261mで熱天秤装置(1)のビーム(2)
の一端に載置されるようにした。
The device αυ for supplying the intermittent heat flow to the sample is a DC power supply α
A light source (1) comprising a lamp 09 etc. energized by
61, a light intermittent collar (11) rotated by a motor QFtJ connected to a power source αD, and an optical fiber (21) that guides the intermittent light to the sample section. The silver paste is placed on a sample holder (21) made of a thermally conductive thin plate with a very small heat capacity.The sample holder (20 is clearly shown in FIGS. 3 and 4). As shown, two pairs of thermocouples with small heat capacity are attached to a fixing ring made of ceramic or the like (c!).
The fixed ring (c) is supported by a pair of insulating tubes (261 m) and the beam (2) of the thermobalance device (1).
so that it is placed at one end of the

この交流カロリメータにおいては、公知のように、試料
(llll及び試料ホルダ(2Dの合計厚み番ま断続光
の波長に比して著しく簿<シ、試料0Q及び試料ホルダ
0υは熱電対(24)(25+なる所定値の熱リーク抵
抗を介して熱浴と接続するようにした。
In this AC calorimeter, as is well known, the total thickness of the sample (llll and sample holder (2D) is significantly smaller than the wavelength of the intermittent light, and the sample 0Q and sample holder 0υ are connected to a thermocouple (24) ( It was connected to a heat bath through a heat leak resistance having a predetermined value of 25+.

前記光ファイバ(イ)は該一対の絶縁管■潟)間に介在
させ、その先端は試料ホルダ(2υの下面に対向させて
該試料ホルダ(21を下面から断続光を照射するように
した。
The optical fiber (A) was interposed between the pair of insulating tubes (21), and its tip was opposed to the lower surface of the sample holder (2υ) so that the sample holder (21) was irradiated with intermittent light from the lower surface.

該熱電対(至)(ハ)はそれぞれ絶縁管(至)■内を通
して前記直流増幅器a2及び四ツクイン増幅器(1騰に
接続した。
The thermocouples (1) and (3) were connected to the DC amplifier a2 and the four-in-one amplifier (1) through insulating tubes (1), respectively.

第1図において、面は熱浴となる電気炉、(ハ)は温度
制御器である。次にその作動について説明すると、試料
a〔は温度制御器(至)で制御された電気炉(2)で所
定温度に加熱されると共に、光源aeからチョッパ四及
び光ファイバIJt−経て放出される断続光により加熱
される。
In FIG. 1, the surface shows an electric furnace serving as a heat bath, and (c) shows a temperature controller. Next, to explain its operation, the sample a is heated to a predetermined temperature in the electric furnace (2) controlled by the temperature controller (to), and is emitted from the light source ae through the chopper 4 and the optical fiber IJt. Heated by intermittent light.

かくしてその温度における試料QOIの重量は熱天秤装
置(11により測定され、記録計(6)に記録される。
The weight of the sample QOI at that temperature is thus measured by the thermobalance device (11) and recorded on the recorder (6).

この時の試料(1〔の温度は熱電対(2)によ、り検出
され、冷接点c!1を介してその出力は直流増幅器(1
ので増幅され、記録計(6)に記録される。また試料(
IIの交流的温度変化成分は熱電対(ハ)で検出され、
その出力はロックイン増幅器a3で増幅され、記録計(
6)に記録される。
At this time, the temperature of the sample (1) is detected by the thermocouple (2), and its output is sent to the DC amplifier (1) via the cold junction c!1.
Therefore, it is amplified and recorded on the recorder (6). Also, the sample (
The AC temperature change component of II is detected by a thermocouple (c),
The output is amplified by lock-in amplifier a3, and the recorder (
6) is recorded.

該四ツクイン増幅器(13)はチョッパa優で得られる
断続光が照射されるフォトトランジスタ(至)の出力を
参照信号としており、チョッパ周波数と同−周波数及び
同一位相の入力信号のみしか受付けないので誤差が少な
く、−!−°cの温度変化を100 %の精度で測定でき、その温度分解能は1万分の1であ
る。
The four-in-one amplifier (13) uses the output of the phototransistor (to) that is irradiated with intermittent light obtained from the chopper a as a reference signal, and only accepts input signals with the same frequency and phase as the chopper frequency. Less error, -! Temperature changes of -°C can be measured with 100% accuracy, and the temperature resolution is 1/10,000.

そして熱天秤装W(1)のビーム(2)の一端に支持さ
れゐのは試料Qlのみであるから、試料(11の浮力や
対流のために熱重量の測定が影響を受けることが少ない
Since only the sample Ql is supported by one end of the beam (2) of the thermobalance device W(1), the thermogravimetric measurement is less affected by the buoyancy and convection of the sample (11).

このように本発明によるときは、熱天秤装置のビームの
一端に交流カロリメータの熱浴中に配置された試料を熱
リーク抵抗を介して支持させるようにしたから、示差走
査熱量計に比べて熱容量の測定における温度分解能が高
く、また、示差走査熱量計のような試料と標準試料間の
温度差零の基線のドリフトが無い等高精度に熱容量を測
定できるのは勿論、同時に測定する試料の熱重量の精度
を損うことがない等の効果を有する。
In this way, according to the present invention, the sample placed in the heat bath of the AC calorimeter is supported at one end of the beam of the thermobalance device via the heat leak resistance, so the heat capacity is lower than that of the differential scanning calorimeter. It has a high temperature resolution in the measurement of heat capacity, and it is possible to measure the heat capacity with high precision such as a differential scanning calorimeter without the drift of the baseline with zero temperature difference between the sample and the standard sample. This has effects such as not impairing weight accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の装置の線図、第2図は第°
1図のト」線截断面図、第5図は試料部の平面図、第4
図はその測面図を示す。 (1)・・・熱天秤装置 (9)・・・交流力νリメー
タαQ・・・試料 (16)・・・光源 a9・・・チ
ョッパ(21・・・光ファイバ (2D・・・試料ホル
ダ (2り・・・銀ペースト(ハ)・・・固定リング 
(財)(ハ)・・・固定リング■・・・絶縁管 額・・
・電気炉 外2名
FIG. 1 is a diagram of an apparatus according to one embodiment of the present invention, and FIG.
Figure 1 is a cross-sectional view taken along line T, Figure 5 is a plan view of the sample section, Figure 4 is
The figure shows the surface survey. (1)...Thermobalance device (9)...AC force ν remeter αQ...sample (16)...light source a9...chopper (21...optical fiber (2D...sample holder) (2ri...silver paste (c)...fixing ring
(Foundation) (c)...Fixing ring ■...Insulating tube Forehead...
・2 people outside the electric furnace

Claims (1)

【特許請求の範囲】[Claims] 熱天秤装置のビームの一端に交流力pリメータの熱浴中
に配置された試料を熱リーク抵抗を介して支持させるよ
うにしたことを特徴とする熱容量変化及び熱重量変化の
同時測定装置。
1. An apparatus for simultaneously measuring heat capacity changes and thermogravimetric changes, characterized in that a sample placed in a heat bath of an alternating current force p meter is supported at one end of a beam of a thermobalance apparatus via a heat leak resistance.
JP18768883A 1983-10-08 1983-10-08 Device for determining thermal change of heat capacity and weight simultaneously Granted JPS6080748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18768883A JPS6080748A (en) 1983-10-08 1983-10-08 Device for determining thermal change of heat capacity and weight simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18768883A JPS6080748A (en) 1983-10-08 1983-10-08 Device for determining thermal change of heat capacity and weight simultaneously

Publications (2)

Publication Number Publication Date
JPS6080748A true JPS6080748A (en) 1985-05-08
JPH0372944B2 JPH0372944B2 (en) 1991-11-20

Family

ID=16210404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18768883A Granted JPS6080748A (en) 1983-10-08 1983-10-08 Device for determining thermal change of heat capacity and weight simultaneously

Country Status (1)

Country Link
JP (1) JPS6080748A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647839A1 (en) * 1993-10-08 1995-04-12 Rüdiger Dr.rer.nat. Carloff Method of determining the heat transmission coefficient in a temperature controlled reactor
US6843595B2 (en) * 2001-01-26 2005-01-18 Waters Investment Limited Differential scanning calorimeter accounting for heat leakage
CN103424278A (en) * 2013-08-27 2013-12-04 深圳市英威腾电气股份有限公司 Heat radiation test platform
CN106569073A (en) * 2016-11-14 2017-04-19 中国科学院福建物质结构研究所 Photo-electro performance test accessory based on thermoelectric performance tester and photo-electro performance test method thereof
CN107764857A (en) * 2017-01-10 2018-03-06 广西民族大学 A kind of micro- calorimeter and fluorescence in situ spectrum on line combined system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736302B2 (en) * 1993-11-02 1998-04-02 有限会社佐賀基礎工業 Mixing and stirring equipment for ground improvement machines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186147A (en) * 1981-05-13 1982-11-16 Agency Of Ind Science & Technol Simultaneous measurement of heat quantity change and thermogravimetric change

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186147A (en) * 1981-05-13 1982-11-16 Agency Of Ind Science & Technol Simultaneous measurement of heat quantity change and thermogravimetric change

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647839A1 (en) * 1993-10-08 1995-04-12 Rüdiger Dr.rer.nat. Carloff Method of determining the heat transmission coefficient in a temperature controlled reactor
US6843595B2 (en) * 2001-01-26 2005-01-18 Waters Investment Limited Differential scanning calorimeter accounting for heat leakage
US7025497B2 (en) 2001-01-26 2006-04-11 Waters Investment Limited Differential scanning calorimeter accounting for heat leakage
CN103424278A (en) * 2013-08-27 2013-12-04 深圳市英威腾电气股份有限公司 Heat radiation test platform
CN103424278B (en) * 2013-08-27 2016-04-27 深圳市英威腾电气股份有限公司 A kind of heat radiation test platform
CN106569073A (en) * 2016-11-14 2017-04-19 中国科学院福建物质结构研究所 Photo-electro performance test accessory based on thermoelectric performance tester and photo-electro performance test method thereof
CN106569073B (en) * 2016-11-14 2020-04-07 中国科学院福建物质结构研究所 Photoelectric property testing accessory and method based on thermoelectric property tester
CN107764857A (en) * 2017-01-10 2018-03-06 广西民族大学 A kind of micro- calorimeter and fluorescence in situ spectrum on line combined system

Also Published As

Publication number Publication date
JPH0372944B2 (en) 1991-11-20

Similar Documents

Publication Publication Date Title
JPS6080748A (en) Device for determining thermal change of heat capacity and weight simultaneously
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
US3045472A (en) Apparatus for simultaneously carrying out thermogravimetric, differentialthermal andderivative-thermo-gravimetric analysis
US3527081A (en) Differential scanning calorimeter
US3400266A (en) Infrared radiometric microscope
RU2620028C1 (en) Thermostatic device for nanocalorimetric measurements on chip with ultra-high heating and cooling rates
US3524340A (en) Device for differential thermal analysis
JP4658366B2 (en) Thermophysical property measurement method
JP5426115B2 (en) Thermophysical property measurement method
JPH0479411B2 (en)
US3465589A (en) Apparatus for measuring yarn temperature
Santucci et al. Data‐acquisition system for measurement of thermal diffusivity and propagation properties of thermal waves by a non‐steady‐state method
JP7093944B2 (en) Thermophysical property measurement method
JP2604596B2 (en) Differential AC specific heat measurement method and apparatus
RU2620029C1 (en) Holder unit for nanocalorimetric sensors for measuring thermophysical and structural parameters of sample
RU2636256C2 (en) Method for measuring power and frequency of laser radiation pulses and device for its implementation
JPS63159740A (en) Heat constant measuring instrument by laser flash method
JPH08285692A (en) Semiconductor processing technology including measurement ofradiated and heated main body by pyrometer and equipment forexecuting technology thereof
JPH0514200Y2 (en)
SU389414A1 (en) METHOD OF MEASUREMENT OF SPECTRAL BLOOD COEFFICIENTS OF RADIATION OF SURFACES
SU932293A1 (en) Differential scanning micro-calorimeter
SU972424A1 (en) Thermomagnetometer
SU819594A1 (en) Thermoradiometer for measuring degree of material blackness
JPH059737B2 (en)
RU1822958C (en) Method for measuring coefficient of thermal conductivity