JP7093944B2 - Thermophysical property measurement method - Google Patents

Thermophysical property measurement method Download PDF

Info

Publication number
JP7093944B2
JP7093944B2 JP2018025000A JP2018025000A JP7093944B2 JP 7093944 B2 JP7093944 B2 JP 7093944B2 JP 2018025000 A JP2018025000 A JP 2018025000A JP 2018025000 A JP2018025000 A JP 2018025000A JP 7093944 B2 JP7093944 B2 JP 7093944B2
Authority
JP
Japan
Prior art keywords
thin film
thermal conductivity
thin plate
measuring
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018025000A
Other languages
Japanese (ja)
Other versions
JP2019138869A (en
Inventor
芳明 中村
賢次 島田
賢朗 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2018025000A priority Critical patent/JP7093944B2/en
Publication of JP2019138869A publication Critical patent/JP2019138869A/en
Application granted granted Critical
Publication of JP7093944B2 publication Critical patent/JP7093944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、薄板及び薄板上の薄膜の厚さ方向の熱物性測定方法に関する。 The present invention relates to a thin plate and a method for measuring thermophysical properties in the thickness direction of a thin plate and a thin film on the thin plate.

試料の厚さ方向における熱伝導率(熱拡散率)の測定方法として、定常法(JIS A 1412)やフラッシュ法(JIS R 1611)が知られている。また、薄膜の厚さ方向における物性の測定方法として、特許文献1に開示された、2ω法を用いた測定方法が知られている。 As a method for measuring thermal conductivity (thermal diffusivity) in the thickness direction of a sample, a steady method (JIS A 1412) and a flash method (JIS R 1611) are known. Further, as a method for measuring physical properties in the thickness direction of a thin film, a measuring method using the 2ω method disclosed in Patent Document 1 is known.

特開2009-300086号公報Japanese Unexamined Patent Publication No. 2009-300686

近年、高熱伝導率を有する薄板(例えば厚さ200μmのシリコンウエハ)の厚さ方向の熱伝導率を評価する方法が求められている。しかし、定常法やフラッシュ法は、測定原理及び測定機器の構成上、高熱伝導率を有する薄板の厚さ方向の熱伝導率を測定することが困難である。 In recent years, there has been a demand for a method for evaluating the thermal conductivity in the thickness direction of a thin plate having a high thermal conductivity (for example, a silicon wafer having a thickness of 200 μm). However, in the stationary method and the flash method, it is difficult to measure the thermal conductivity in the thickness direction of a thin plate having high thermal conductivity due to the measurement principle and the configuration of the measuring device.

特許文献1の測定方法は、厚さが半無限として仮定された基板上に形成された薄膜の熱物性を測定することを目的としている。すなわち、特許文献1の測定方法は、基板の裏面まで熱が到達しないことを条件とした伝熱モデルである。このため、特許文献1の測定方法は、上述した厚さが有限である薄板の熱伝導率の測定には適用できない。 The measuring method of Patent Document 1 is intended to measure the thermophysical properties of a thin film formed on a substrate whose thickness is assumed to be semi-infinite. That is, the measuring method of Patent Document 1 is a heat transfer model on the condition that heat does not reach the back surface of the substrate. Therefore, the measuring method of Patent Document 1 cannot be applied to the above-mentioned measurement of the thermal conductivity of a thin plate having a finite thickness.

本発明はこのような事情を考慮してなされたもので、薄板の厚さ方向の熱物性値を精度よく求めることができる熱物性測定方法を提供することを目的とする。 The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a thermophysical characteristic measuring method capable of accurately obtaining a thermophysical characteristic value in the thickness direction of a thin plate.

本発明に係る熱物性測定方法は、上述した課題を解決するために、熱伝導率が未知である薄板上に、熱伝導率が未知である第2薄膜と、第1薄膜と、を順に積層して形成された試料に対して、(a)前記第1薄膜の表面に対する周期的な加熱による前記第1薄膜の表面上の温度応答を測定することにより、前記第1薄膜の表面上の温度変化の振幅A及び位相差θを求める工程と、(b)前記第1薄膜の熱伝導率λ,体積比熱容量C及び膜厚d、前記第2薄膜の熱伝導率λ,体積比熱容量C及び膜厚d、並びに、前記薄板の熱伝導率λ,体積比熱容量C及び膜厚dを含み、前記第1薄膜の表面上の温度変化の時間依存性を示す第1関数を導出する工程と、(c)前記振幅A及び前記位相差θを含む前記第1薄膜の表面上の温度変化の時間依存性を示す第2関数と、前記第1関数と、に基づいて、前記薄板の熱伝導率λと、前記第2薄膜の熱伝導率λと、を求める工程と、を含み、前記薄板は、前記第2薄膜に面する面と、前記第2薄膜に面する面の反対の面である裏面を有し、前記第1関数は、前記第1薄膜の加熱に伴う熱流の少なくとも一部が前記第1薄膜から前記薄板の前記裏面方向へと流れ、前記裏面で垂直に反射し前記第1薄膜方向へ流れる一次元伝熱モデルを用いて導出される、ことを特徴とする。 In the thermophysical property measuring method according to the present invention, in order to solve the above-mentioned problems, a second thin film having an unknown thermal conductivity and a first thin film are laminated in order on a thin plate having an unknown thermal conductivity. (A) The temperature on the surface of the first thin film by measuring the temperature response on the surface of the first thin film due to periodic heating to the surface of the first thin film. The steps of obtaining the change amplitude A and the phase difference θ, and (b) the thermal conductivity λ 1 of the first thin film, the volume specific heat capacity C 1 and the film thickness d 1 , the thermal conductivity λ 2 of the second thin film, and the volume. It includes the specific heat capacity C 2 and the film thickness d 2 , and the thermal conductivity λ 3 of the thin plate, the volume specific heat capacity C 3 and the film thickness d 3 , and determines the time dependence of the temperature change on the surface of the first thin film. The step of deriving the first function shown, (c) the second function showing the time dependence of the temperature change on the surface of the first thin film including the amplitude A and the phase difference θ, and the first function. The thin plate comprises a step of obtaining the heat conductivity λ 3 of the thin plate and the heat conductivity λ 2 of the second thin film, wherein the thin plate has a surface facing the second thin film and the surface. It has a back surface that is the opposite surface of the surface facing the second thin film, and the first function is such that at least a part of the heat flow accompanying the heating of the first thin film is from the first thin film toward the back surface of the thin plate. It is characterized in that it is derived by using a one-dimensional heat transfer model that flows vertically on the back surface and flows in the direction of the first thin film .

本発明によれば、薄板の厚さ方向の熱物性値を精度よく求めることができる。 According to the present invention, the thermophysical property value in the thickness direction of the thin plate can be accurately obtained.

本発明に係る熱物性測定方法を実施するための熱物性測定装置を示す構成図。The block diagram which shows the thermophysical characteristic measuring apparatus for carrying out the thermophysical characteristic measuring method which concerns on this invention. 試料を説明するための平面図。Top view to explain the sample. 図2のIII-III線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line III-III of FIG. XYステージに設置された試料の平面図。Top view of the sample installed on the XY stage. 図4のV-V線に沿う断面図。FIG. 4 is a cross-sectional view taken along the line VV of FIG. 図4のVI-VI線に沿う断面図。Sectional drawing along the VI-VI line of FIG. (A)は本発明の実施形態に係る熱物性測定方法を適用した場合の測定結果を示すグラフ、(B)は比較例としての熱物性測定方法を適用した場合の測定結果を示すグラフ。(A) is a graph showing the measurement result when the thermophysical characteristic measurement method according to the embodiment of the present invention is applied, and (B) is a graph showing the measurement result when the thermophysical characteristic measurement method as a comparative example is applied.

本発明に係る熱物性測定方法の実施形態を添付図面に基づいて説明する。本実施形態においては、本発明に係る熱物性測定方法を、図1に示す熱物性測定装置1で測定する方法に適用した例を説明する。 An embodiment of the thermophysical characteristic measurement method according to the present invention will be described with reference to the accompanying drawings. In the present embodiment, an example in which the thermophysical characteristic measuring method according to the present invention is applied to the method for measuring with the thermophysical characteristic measuring device 1 shown in FIG. 1 will be described.

図1は、本発明に係る熱物性測定方法を実施するための熱物性測定装置1を示す構成図である。 FIG. 1 is a block diagram showing a thermophysical characteristic measuring device 1 for carrying out the thermophysical characteristic measuring method according to the present invention.

熱物性測定装置1は、ケース2で区画された測定室3を有している。測定室3は、内部の空気を抜くことにより真空状態になっている。測定室3の内部底面には、XYステージ23が設けられている。XYステージ23は、例えば銅からなる。XYステージ23は、治具23aを有している。治具23aは、銅からなり、試料40(薄板裏面41a)との断熱層3aを形成する。 The thermophysical characteristic measuring device 1 has a measuring chamber 3 partitioned by a case 2. The measuring chamber 3 is in a vacuum state by removing the air inside. An XY stage 23 is provided on the inner bottom surface of the measurement chamber 3. The XY stage 23 is made of, for example, copper. The XY stage 23 has a jig 23a. The jig 23a is made of copper and forms a heat insulating layer 3a with the sample 40 (thin plate back surface 41a).

XYステージ23は、平坦な表面に試料40を保持する。このXYステージ23は、試料40を移動する移動手段の一例である。XYステージ23は、測定室3の外部に配置された移動制御装置25に接続されている。移動制御装置25を駆動すると、XYステージ23は、試料40を保持した状態で水平面内において移動する。 The XY stage 23 holds the sample 40 on a flat surface. The XY stage 23 is an example of a means of transportation for moving the sample 40. The XY stage 23 is connected to a movement control device 25 arranged outside the measurement chamber 3. When the movement control device 25 is driven, the XY stage 23 moves in the horizontal plane while holding the sample 40.

測定室3の外部には、交流電源21が設けられている。交流電源21は、プローブ24、24に接続されている。プローブ24、24と試料40とが接触した後に交流電源21を起動すると、試料40に周波数(角周波数)ωの交流電圧が印加される。 An AC power supply 21 is provided outside the measurement chamber 3. The AC power supply 21 is connected to the probes 24 1 and 242 . When the AC power supply 21 is started after the probes 24 1 and 242 come into contact with the sample 40, an AC voltage having a frequency (angular frequency) ω is applied to the sample 40.

測定室3の内部上方には、レーザ照射装置12及び光検出装置13が配置されている。このレーザ照射装置12は、照射手段の一例である。レーザ照射装置12は、レーザ光源4と、集光レンズ5と、プリズムと、ロックインアンプと、パワーアンプと、を有している。レーザ光源4を起動して発光させると、そのレーザ光はプリズムにより照射光と参照光に分けられる。照射光が集光レンズ5で集光された後、レーザ光はXYステージ23の表面の所定位置にスポット状に照射される。照射後の反射光と参照光はプリズムを介して別々の検知器により検知され、検知された信号の差はロックインアンプの信号入力端子に送られる。 A laser irradiation device 12 and a light detection device 13 are arranged above the inside of the measurement chamber 3. The laser irradiation device 12 is an example of irradiation means. The laser irradiation device 12 includes a laser light source 4, a condenser lens 5, a prism, a lock-in amplifier, and a power amplifier. When the laser light source 4 is activated to emit light, the laser light is divided into irradiation light and reference light by a prism. After the irradiation light is focused by the condenser lens 5, the laser beam is spotted at a predetermined position on the surface of the XY stage 23. The reflected light and the reference light after irradiation are detected by separate detectors via a prism, and the difference between the detected signals is sent to the signal input terminal of the lock-in amplifier.

光検出装置13は、光検出手段の一例である。光検出装置13は、集光レンズ6と、光学フィルタ7と、受光装置8と、を有している。反射光は、集光レンズ6で集光され、光学フィルタ7で光学的なノイズが除去された後に、受光装置8に受光される。受光装置8は、PINフォトダイオード及びI-V増幅器を備えている。反射光は、このPINフォトダイオードで電流に変換され、I-V増幅器で電圧変換された後に増幅され、反射光の強度に応じた大きさの電圧が生成される。受光装置8は、測定室3の外部に配置された測定装置22に接続されている。反射光の強度に応じた電圧は、測定装置22に出力される。 The photodetector 13 is an example of a photodetector. The photodetector 13 includes a condenser lens 6, an optical filter 7, and a light receiving device 8. The reflected light is collected by the condenser lens 6, and after the optical noise is removed by the optical filter 7, the reflected light is received by the light receiving device 8. The light receiving device 8 includes a PIN photodiode and an IV amplifier. The reflected light is converted into a current by this PIN photodiode, voltage-converted by an IV amplifier, and then amplified to generate a voltage having a magnitude corresponding to the intensity of the reflected light. The light receiving device 8 is connected to a measuring device 22 arranged outside the measuring chamber 3. The voltage corresponding to the intensity of the reflected light is output to the measuring device 22.

測定装置22は測定手段の一例である。測定装置22は、同期検波器33と、信号発生器34と、演算装置35と、を有している。反射光の強度に応じた大きさの電圧は、同期検波器33に出力される。同期検波器33には、信号発生器34から周波数2ωの正弦波交流信号が出力されている。この交流信号が反射光の強度に応じた大きさの電圧と乗算されることにより、反射光の強度に応じた大きさの電圧から、周波数2ωの成分が抽出され、演算装置35に出力される。演算装置35は、入力された電圧から、その電圧に応じた金属薄膜43の温度を求める。 The measuring device 22 is an example of measuring means. The measuring device 22 includes a synchronous detector 33, a signal generator 34, and an arithmetic unit 35. A voltage having a magnitude corresponding to the intensity of the reflected light is output to the synchronous detector 33. A sinusoidal AC signal having a frequency of 2ω is output from the signal generator 34 to the synchronous detector 33. By multiplying this AC signal with a voltage having a magnitude corresponding to the intensity of the reflected light, a component having a frequency of 2ω is extracted from the voltage having a magnitude corresponding to the intensity of the reflected light and output to the arithmetic unit 35. .. The arithmetic unit 35 obtains the temperature of the metal thin film 43 according to the input voltage from the input voltage.

図2は、試料40を説明するための平面図である。
図3は、図2のIII-III線に沿う断面図である。
FIG. 2 is a plan view for explaining the sample 40.
FIG. 3 is a cross-sectional view taken along the line III-III of FIG.

試料40は、薄板41と、絶縁薄膜42と、金属薄膜43と、を有している。試料40は、熱伝導率が未知である薄板41上に、熱伝導率が未知である第2薄膜としての絶縁薄膜42と、第1薄膜としての金属薄膜43と、を順に積層して形成されている。
薄板41は、例えば、厚さ200μm以下のシリコン製基板(シリコンウエハ)、厚さ10~100μmのSUS(Steel Use Stainless)製(及びそれに相当する熱拡散率を有する材料)の薄板、厚さ20μm程度のカーボングラファイト製のシート等である。絶縁薄膜42は、薄板41の表面に形成され、薄板41へ電気を流さないために絶縁性を有している。また、絶縁薄膜42は、計測感度を向上するために熱伝導率の低い材料からなる。絶縁薄膜42は、例えば厚さ0.6μmのポリメタクリル酸メチル樹脂(PMMA)からなる。金属薄膜43は、絶縁薄膜42の表面に形成され、交流電圧の印加及び温度変化の検出に用いられる。金属薄膜43は、例えば長さ4mm、幅2mm、厚さ0.2μmの金からなる。
The sample 40 has a thin plate 41, an insulating thin film 42, and a metal thin film 43. The sample 40 is formed by sequentially laminating an insulating thin film 42 as a second thin film and a metal thin film 43 as a first thin film on a thin plate 41 having an unknown thermal conductivity. ing.
The thin plate 41 is, for example, a silicon substrate (silicon wafer) having a thickness of 200 μm or less, a thin plate made of SUS (Steel Use Stainless) having a thickness of 10 to 100 μm (and a material having a thermal diffusivity equivalent thereto), and a thickness of 20 μm. It is a sheet made of carbon graphite of the degree. The insulating thin film 42 is formed on the surface of the thin plate 41 and has an insulating property so that electricity does not flow to the thin plate 41. Further, the insulating thin film 42 is made of a material having a low thermal conductivity in order to improve the measurement sensitivity. The insulating thin film 42 is made of, for example, a polymethyl methacrylate resin (PMMA) having a thickness of 0.6 μm. The metal thin film 43 is formed on the surface of the insulating thin film 42 and is used for applying an AC voltage and detecting a temperature change. The metal thin film 43 is made of, for example, gold having a length of 4 mm, a width of 2 mm, and a thickness of 0.2 μm.

かかる構成の熱物性測定装置1を用いて、薄板の熱伝導率を求める方法(熱物性測定方法)について、以下で説明する。
薄板の熱伝導率を求める方法は、(a)金属薄膜43の表面に対する周期的な加熱による金属薄膜43の表面上の温度応答を測定することにより、金属薄膜43の表面上の温度変化の振幅A及び位相差θを求める工程と、(b)金属薄膜43の熱伝導率λ1,体積比熱容量C1及び膜厚d1、絶縁薄膜42の熱伝導率λ2,体積比熱容量C2及び膜厚d2、並びに、薄板41の熱伝導率λ3,体積比熱容量C3及び膜厚d3を含み、薄板41が有限であることを考慮した金属薄膜43の表面上の温度変化の時間依存性を示す第1関数を導出する工程と、(c)振幅A及び位相差θを含む金属薄膜43の表面上の温度変化の時間依存性を示す第2関数と、第1関数と、に基づいて、薄板41の熱伝導率λ3と、絶縁薄膜42の熱伝導率λ2とを求める工程と、を含む。
以下、上記工程(a)から工程(c)を具体的に説明する。
A method for obtaining the thermal conductivity of a thin plate (thermophysical property measuring method) using the thermophysical property measuring device 1 having such a configuration will be described below.
The method for determining the thermal conductivity of the thin plate is as follows: (a) The amplitude of the temperature change on the surface of the metal thin film 43 by measuring the temperature response on the surface of the metal thin film 43 due to periodic heating to the surface of the metal thin film 43. The steps of obtaining A and the phase difference θ, and (b) the thermal conductivity λ1 of the metal thin film 43, the volume specific heat capacity C1 and the film thickness d1, the thermal conductivity λ2 of the insulating thin film 42, the volume specific heat capacity C2 and the film thickness d2, and , Derived the first function showing the time dependence of the temperature change on the surface of the metal thin plate 43, including the thermal conductivity λ3 of the thin plate 41, the volume specific heat capacity C3 and the film thickness d3, and considering that the thin plate 41 is finite. The thermal conductivity of the thin plate 41 is based on (c) the second function showing the time dependence of the temperature change on the surface of the metal thin film 43 including the amplitude A and the phase difference θ, and the first function. It includes a step of obtaining λ3 and a thermal conductivity λ2 of the insulating thin film 42.
Hereinafter, steps (a) to (c) will be specifically described.

試料40を測定室3内に入れ、薄板41を下側、金属薄膜43を上側にしてXYステージ23の表面に置く。薄板41は治具23a上に置かれるため、薄板41の裏面41a側の一部は治具23aと接し、他部は断熱層3aと接している。断熱層3aは、金属薄膜43の照射光が照射される範囲に対応する位置に設けられる。断熱層3aは、例えばケース2内(測定室3内)を真空状態にすることにより形成される。 The sample 40 is placed in the measurement chamber 3 and placed on the surface of the XY stage 23 with the thin plate 41 on the lower side and the metal thin film 43 on the upper side. Since the thin plate 41 is placed on the jig 23a, a part of the thin plate 41 on the back surface 41a side is in contact with the jig 23a, and the other part is in contact with the heat insulating layer 3a. The heat insulating layer 3a is provided at a position corresponding to the range in which the irradiation light of the metal thin film 43 is irradiated. The heat insulating layer 3a is formed, for example, by creating a vacuum inside the case 2 (inside the measuring chamber 3).

ここで、図4は、XYステージ23に設置された試料40の平面図である。図5は、図4のV-V線に沿う断面図である。次に、金属薄膜43の長さ方向両端部に、プローブ24、24が立てられ、プローブ24、24が金属薄膜43の表面に接触する。交流電源21が起動され、金属薄膜43に周波数ωの交流電圧が印加される。 Here, FIG. 4 is a plan view of the sample 40 installed on the XY stage 23. FIG. 5 is a cross-sectional view taken along the line VV of FIG. Next, the probes 24 1 and 242 are erected at both ends in the length direction of the metal thin film 43, and the probes 24 1 and 242 come into contact with the surface of the metal thin film 43. The AC power supply 21 is activated, and an AC voltage having a frequency ω is applied to the metal thin film 43.

ここで、図6は、図4のVI-VI線に沿う断面図である。金属薄膜43の電気抵抗により、金属薄膜43にジュール熱が発生する。このジュール熱は交流電圧により交流的に発生する。ジュール熱により、金属薄膜43は昇温するが、熱流70は金属薄膜43から絶縁薄膜42を通って薄板41へと伝わる。このため、金属薄膜43の温度変化は、薄板41と絶縁薄膜42の熱伝導状態に依存する。尚、断熱層3aに面している薄板41の裏面41aに到達した熱流70は、薄板41の裏面41aで反射する。 Here, FIG. 6 is a cross-sectional view taken along the line VI-VI of FIG. Joule heat is generated in the metal thin film 43 due to the electric resistance of the metal thin film 43. This Joule heat is generated AC by AC voltage. The temperature of the metal thin film 43 rises due to Joule heat, but the heat flow 70 is transmitted from the metal thin film 43 to the thin plate 41 through the insulating thin film 42. Therefore, the temperature change of the metal thin film 43 depends on the heat conduction state of the thin plate 41 and the insulating thin film 42. The heat flow 70 that reaches the back surface 41a of the thin plate 41 facing the heat insulating layer 3a is reflected by the back surface 41a of the thin plate 41.

次に、レーザ光源4を発光させ、XYステージ23の表面(金属薄膜43)に向けてレーザ光80を照射する。このときレーザ光80の金属薄膜43表面におけるスポット径は、金属薄膜43の幅の十分の一以下(例えば100μm)としている。XYステージ23を水平移動させ、金属薄膜43のほぼ中心となる所定位置にレーザ光80を照射する。 Next, the laser light source 4 is made to emit light, and the laser beam 80 is irradiated toward the surface (metal thin film 43) of the XY stage 23. At this time, the spot diameter on the surface of the metal thin film 43 of the laser beam 80 is set to be one tenth or less (for example, 100 μm) of the width of the metal thin film 43. The XY stage 23 is horizontally moved, and the laser beam 80 is irradiated to a predetermined position substantially at the center of the metal thin film 43.

こうして照射されたレーザ光80は、金属薄膜43で反射されるが、金属薄膜43の反射率は、金属薄膜43の温度により変化する。その反射率の変化により、反射光の強度も変化する。反射光は、測定室3の内部上方に配置された光検出装置13方向に反射されるようになっている。光検出装置13は、受信した反射光の温度に応じて変化する強度に応じた大きさの電圧を生成する。 The laser beam 80 thus irradiated is reflected by the metal thin film 43, and the reflectance of the metal thin film 43 changes depending on the temperature of the metal thin film 43. The intensity of the reflected light also changes due to the change in the reflectance. The reflected light is reflected in the direction of the photodetector 13 arranged above the inside of the measurement chamber 3. The photodetector 13 generates a voltage of a magnitude corresponding to the intensity that changes according to the temperature of the received reflected light.

金属薄膜43は、図示しない冷却器により、温度が所定温度以上には上昇せずにほぼ一定の温度で安定し、熱系が定常状態になるようになっている。熱系が定常状態になり、金属薄膜43の温度がほぼ一定値で安定したら、演算装置35は金属薄膜43の温度を求める。 The metal thin film 43 is stabilized at a substantially constant temperature without rising above a predetermined temperature by a cooler (not shown), so that the thermal system becomes a steady state. When the thermal system becomes a steady state and the temperature of the metal thin film 43 stabilizes at a substantially constant value, the arithmetic unit 35 obtains the temperature of the metal thin film 43.

演算装置35は、得られた金属薄膜43の温度に基づいて、試料40について熱伝導状態を解析する。この試料40においては金属薄膜43の幅は広く、しかも、レーザ光80が照射されて温度変化が測定される箇所は、金属薄膜43のごく狭い領域であって、しかも金属薄膜43のほぼ中心の領域である。このため、この測定箇所においては、ジュール熱の熱流70は金属薄膜43から薄板41の裏面41a方向へと鉛直方向に流れる(また裏面41aで垂直に反射し金属薄膜43方向へ流れる)と考えてよく、熱流70は一次元的に流れるとすることができる。このため、試料40の熱伝導状態の解析には、一次元伝熱モデルを用いることができる。 The arithmetic unit 35 analyzes the heat conduction state of the sample 40 based on the temperature of the obtained metal thin film 43. In this sample 40, the width of the metal thin film 43 is wide, and the place where the temperature change is measured by irradiating the laser beam 80 is a very narrow region of the metal thin film 43, and is substantially at the center of the metal thin film 43. It is an area. Therefore, at this measurement point, it is considered that the heat flow 70 of Joule heat flows vertically from the metal thin film 43 toward the back surface 41a of the thin plate 41 (and is reflected vertically by the back surface 41a and flows in the direction of the metal thin film 43). Well, the heat flow 70 can be said to flow one-dimensionally. Therefore, a one-dimensional heat transfer model can be used for the analysis of the heat conduction state of the sample 40.

各層のパラメータを以下の通りとする。ここでは、金属薄膜43と絶縁薄膜42の界面熱抵抗及び絶縁薄膜42と薄板41の間の界面熱抵抗を0[m・K・W-1]としている。尚、λ及びλが未知となる。 The parameters of each layer are as follows. Here, the interfacial thermal resistance between the metal thin film 43 and the insulating thin film 42 and the interfacial thermal resistance between the insulating thin film 42 and the thin plate 41 are set to 0 [m 2 · K · W -1 ]. It should be noted that λ 2 and λ 3 are unknown.

Figure 0007093944000001
Figure 0007093944000001

周期的な加熱は、ここでは、金属薄膜43上に周波数f[Hz」で電圧を強度変調することにより、一様に通電加熱を行う場合を想定して説明する。すなわち、複数の周波数ωの電気的又は光学的な周期的な加熱による金属薄膜43の表面上の温度変化を、サーモリフレクタンス法により測定する場合を想定して説明する。
金属薄膜43に加えられる単位時間当たりの熱量Q(t)[W]は、周波数2f[Hz]に依存するので、角周波数2ω[s-1]で加えられる単位時間当たりの熱量Q(t)[W]は次式の通りとなる。
The periodic heating will be described here assuming that the metal thin film 43 is uniformly energized and heated by intensity-modulating the voltage at a frequency f [Hz]. That is, the case where the temperature change on the surface of the metal thin film 43 due to the periodic heating of a plurality of frequencies ω by electrical or optical periodic heating is measured by the thermoreflectance method will be described.
Since the amount of heat Q (t) [W] applied to the metal thin film 43 per unit time depends on the frequency 2f [Hz], the amount of heat Q (t) per unit time applied at the angular frequency 2ω [s -1 ]. [W] is as shown in the following equation.

Figure 0007093944000002
Figure 0007093944000002

尚、qは、0以外の定数であり、ω=2πfとする。 Note that q is a constant other than 0, and ω = 2πf.

各層41~43の周波数2f[Hz]における熱拡散長の逆数をk[m-1]とすると、kは次式で表される。

Figure 0007093944000003
n=1(金属薄膜)、n=2(絶縁薄膜)、n=3(薄板) Assuming that the reciprocal of the thermal diffusivity at frequencies 2f [Hz] of each layer 41 to 43 is k [m -1 ], k is expressed by the following equation.
Figure 0007093944000003
n = 1 (metal thin film), n = 2 (insulating thin film), n = 3 (thin plate)

ここで、薄板が有限であることを考慮した金属薄膜43の表面上の温度変化の時間依存性を示す第1関数としての、1次元伝熱モデルによる表面上の温度変化の時間依存性T(0,t)
[K]は次式となる。

Figure 0007093944000004
Figure 0007093944000005
Figure 0007093944000006
m=1(金属薄膜)、m=2(絶縁薄膜)、m=3(薄板) Here, the time dependence T of the temperature change on the surface by the one-dimensional heat transfer model as the first function showing the time dependence of the temperature change on the surface of the metal thin film 43 considering that the thin plate is finite ( 0, t)
[K] is the following equation.
Figure 0007093944000004
Figure 0007093944000005
Figure 0007093944000006
m = 1 (metal thin film), m = 2 (insulating thin film), m = 3 (thin plate)

上記(式3)を簡略化すると下記(式6)となる。

Figure 0007093944000007
尚、x及びy中には、未知数であるλ及びλが含まれている。 The following (Equation 6) is obtained by simplifying the above (Equation 3).
Figure 0007093944000007
It should be noted that x and y include λ 2 and λ 3 which are unknowns.

一方、表面上の温度は、振幅A[K]及び位相差θ[deg]を用いると、振幅A及び位相差θを含む金属薄膜43の表面上の温度変化の時間依存性T(0,t)[K]を示す第2関数としての式である以下の式になる。

Figure 0007093944000008
On the other hand, the temperature on the surface is time-dependent T (0, t) of the temperature change on the surface of the metal thin film 43 including the amplitude A and the phase difference θ when the amplitude A [K] and the phase difference θ [deg] are used. ) The following equation, which is an equation as a second function indicating [K].
Figure 0007093944000008

(式7)と(式3)とを比較すると、以下の(式8)及び(式9)の関係が成立する。

Figure 0007093944000009
Figure 0007093944000010
Comparing (Equation 7) and (Equation 3), the following relationships (Equation 8) and (Equation 9) are established.
Figure 0007093944000009
Figure 0007093944000010

そして、既知の量λ,C,C,C,d,d,dを(式3)に代入した値でフィッティングすることにより、λ,λを求めることができる。
具体的には、複数の周波数fに対して、それぞれ、金属薄膜43の表面上の温度応答を測定することにより、金属薄膜43の表面上の温度変化の振幅A及び位相差θを測定し、各周波数において振幅A及び位相差θをそれぞれ求める(工程(a))。そして、第1関数及び第2関数に基づいて、薄板41の熱伝導率λと、絶縁薄膜42の熱伝導率λと、を求める(工程(b)、工程(c))。また、フィッティングは、求められた振幅Aの値が、(式8)の関係と近似又は最小となるように、補正又は近似させることにより行う。更に、振幅Aに加えて、位相差θの値が、(式9)の関係と近似又は最小となるように、フィッティングを行う。より、精度を高めることができるからである。
尚、近似や最小とする方法については、最小二乗法等の公知の方法を用いることができる。
Then, λ 2 and λ 3 can be obtained by fitting the known quantities λ 1 , C 1 , C 2 , C 3 and d 1 , d 2 and d 3 with the values substituted into (Equation 3). ..
Specifically, the amplitude A and the phase difference θ of the temperature change on the surface of the metal thin film 43 are measured by measuring the temperature response on the surface of the metal thin film 43 for each of the plurality of frequencies f. The amplitude A and the phase difference θ are obtained at each frequency (step (a)). Then, based on the first function and the second function, the thermal conductivity λ 3 of the thin plate 41 and the thermal conductivity λ 2 of the insulating thin film 42 are obtained (steps (b) and (c)). Further, the fitting is performed by correcting or approximating the obtained value of the amplitude A so as to be close to or minimize the relationship of (Equation 8). Further, in addition to the amplitude A, fitting is performed so that the value of the phase difference θ is close to or minimizes the relationship of (Equation 9). This is because the accuracy can be further improved.
As a method for approximating or minimizing, a known method such as the least squares method can be used.

上記のようにフィッティングすることにより、薄板41の熱伝導率λを極めて誤差を少なくして測定することができる。 By fitting as described above, the thermal conductivity λ 3 of the thin plate 41 can be measured with extremely small error.

本実施形態における熱物性測定方法は、例えば厚さ10から100μmのSUS又はSUSに相当する熱拡散率(4×10-6[m2・s-1])を有する材料からなる高熱伝導性シートの厚さ方向の熱伝導率の評価に好適に用いられる。また、本実施形態における熱物性測定方法は、カーボングラファイトシートの厚さ方向の熱伝導率の評価にも好適に用いられる。カーボングラファイトシートにおいては、面内方向の熱拡散率が、厚さ方向の熱拡散率に比べて100倍大きいため、面内方向の熱拡散率が注目されている。その一方で、20μm程度の厚さ方向に関する熱拡散率を求めるための測定方法がない。このため、カーボングラファイトシートをデバイスの放熱に用いる際の放熱設計において、本実施形態における熱物性測定方法を用いて求められたシートの厚さ方向の実測データを用いることは、有用である。 The method for measuring thermal physical characteristics in the present embodiment is, for example, a SUS having a thickness of 10 to 100 μm or a high thermal conductive sheet made of a material having a thermal diffusivity (4 × 10 -6 [m 2 · s -1 ]) corresponding to SUS. It is suitably used for evaluating the thermal conductivity in the thickness direction of. Further, the method for measuring thermal physical characteristics in the present embodiment is also suitably used for evaluating the thermal conductivity in the thickness direction of the carbon graphite sheet. In the carbon graphite sheet, the thermal diffusivity in the in-plane direction is 100 times larger than the thermal diffusivity in the thickness direction, so that the thermal diffusivity in the in-plane direction is attracting attention. On the other hand, there is no measuring method for obtaining the thermal diffusivity in the thickness direction of about 20 μm. Therefore, in the heat dissipation design when the carbon graphite sheet is used for heat dissipation of the device, it is useful to use the measured data in the thickness direction of the sheet obtained by using the thermophysical characteristic measurement method in the present embodiment.

上述した装置は、本発明の一実施の形態に過ぎず、周期的に加熱して温度応答を測定できるものであれば、測定装置及び測定方法については特に制限されるものではないが、サーモリフレクタンス法によることが好ましい。
また、本実施形態では、試料40表面におけるレーザ光80のスポット径を100μmとしているが、本発明のレーザ光のスポット径はこれに限られるものではなく、金属薄膜43の幅の十分の一以下になっていればよい。
The above-mentioned device is only one embodiment of the present invention, and the measuring device and measuring method are not particularly limited as long as they can be periodically heated to measure the temperature response. It is preferable to use the tongue method.
Further, in the present embodiment, the spot diameter of the laser beam 80 on the surface of the sample 40 is 100 μm, but the spot diameter of the laser beam of the present invention is not limited to this, and is not more than one tenth of the width of the metal thin film 43. It should be.

また、XYステージ23を設けて、試料40をレーザ照射装置12や光検出装置13に対して移動させることにより、試料40表面でレーザ光80を照射する位置を変えているが、本発明はこれに限られるものではなく、試料40は動かさないままでレーザ照射装置12や光検出装置13を移動させることで、レーザ光80を照射する位置を変えてもよい。 Further, by providing the XY stage 23 and moving the sample 40 with respect to the laser irradiation device 12 and the photodetector 13, the position where the laser light 80 is irradiated on the surface of the sample 40 is changed. The position where the laser beam 80 is irradiated may be changed by moving the laser irradiation device 12 or the photodetector 13 without moving the sample 40.

次に、本発明の一実施例として、上記発明の実施の形態で説明した装置を利用して以下の表2で示す条件で測定を行った結果を説明する。
尚、薄板の寸法は、長さ7mm、幅5mmであり、金属薄膜は絶縁薄膜上の中央部に長さ4mm×幅2mmで成膜した。
Next, as an embodiment of the present invention, the results of measurement under the conditions shown in Table 2 below will be described using the apparatus described in the embodiment of the present invention.
The dimensions of the thin plate were 7 mm in length and 5 mm in width, and the metal thin film was formed in the central portion on the insulating thin film in a length of 4 mm and a width of 2 mm.

Figure 0007093944000011
Figure 0007093944000011

この金属薄膜上に周波数fで電圧を強度変調することにより一様に周期的に通電加熱を行って、温度応答を測定することにより、その振幅A及び位相差θを測定した。 The amplitude A and the phase difference θ were measured by measuring the temperature response by uniformly and periodically energizing and heating the metal thin film by intensity-modulating the voltage at the frequency f.

図7(A)は測定結果を本発明の実施形態に係る熱物性測定方法の伝熱モデルでフィッティングを適用した場合を示すグラフであり、(B)は測定結果を比較例としての伝熱モデルでフィッティングを適用した場合の測定結果を示すグラフである。比較例としての伝熱モデルは、特許文献1に開示された熱物性測定方法を用いて行った。 FIG. 7A is a graph showing a case where the measurement result is applied to the heat transfer model of the thermophysical characteristic measurement method according to the embodiment of the present invention, and FIG. 7B is a heat transfer model using the measurement result as a comparative example. It is a graph which shows the measurement result when the fitting is applied in. The heat transfer model as a comparative example was carried out using the thermophysical characteristic measurement method disclosed in Patent Document 1.

ここでは、測定結果から各周波数における振幅A及び位相差θを算出し、図7(A)、(B)においては、振幅Aを「○」、位相差θを「△」でプロットした。左側の縦軸は(2ω)-1/2=0.0154で規格化した振幅Aとし、右側の縦軸は位相差θとした。尚、図7の横軸は、(2ω)-1/2[s1/2]である。 Here, the amplitude A and the phase difference θ at each frequency were calculated from the measurement results, and in FIGS. 7A and 7B, the amplitude A was plotted as “◯” and the phase difference θ was plotted as “Δ”. The vertical axis on the left side is the amplitude A normalized by (2ω) -1 / 2 = 0.0154, and the vertical axis on the right side is the phase difference θ. The horizontal axis of FIG. 7 is (2ω) -1 / 2 [s 1/2 ].

各プロットされた値を、表2の各パラメータを用いて上記実施形態で説明した1次元伝熱モデルに基づいてフィッティングを行った。図7(A)、(B)においては、振幅A(○)をフィッティングした結果を実線で示し、位相差θ(△)をフィッティングした結果を点線で示した。 Each plotted value was fitted using each parameter in Table 2 based on the one-dimensional heat transfer model described in the above embodiment. In FIGS. 7A and 7B, the result of fitting the amplitude A (◯) is shown by a solid line, and the result of fitting the phase difference θ (Δ) is shown by a dotted line.

比較例としての熱物性測定方法を用いた場合、200から10000Hzの範囲(ω-1/2>0.012)においては、図7(B)に示す測定結果は、理論的に成立しないものであった。低周波数であるため熱流が薄板の裏面まで到達し、薄板が半無限として仮定されている比較例としての伝熱モデルは、実施例で用いた厚さを無視できない(厚さが有限の)薄板には適用できないことがわかった。 When the thermophysical characteristic measurement method is used as a comparative example, the measurement result shown in FIG. 7 (B) is theoretically not valid in the range of 200 to 10000 Hz (ω- 1 / 2 > 0.012). there were. In the heat transfer model as a comparative example in which the heat flow reaches the back surface of the thin plate due to the low frequency and the thin plate is assumed to be semi-infinite, the thickness used in the examples cannot be ignored (the thickness is finite). It turns out that it is not applicable to.

これに対し、本発明に係る熱物性測定方法を用いた場合、200から10000Hzの範囲(ω-1/2>0.012)においては、図7(A)に示す測定結果は、計算値と一致した。試料を再度セットし、複数回測定を行い、得られた測定結果に基づいてフィッティングした。その結果、薄板の熱伝導率λSiが147[W・m-1・K-1]、絶縁薄膜の熱伝導率λPMMAが0.17[W・m-1・K-1]となり、λSiは理論値である148[W・m-1・K-1]と10%以内で一致した。 On the other hand, when the thermophysical characteristic measurement method according to the present invention is used, the measurement result shown in FIG. 7A is a calculated value in the range of 200 to 10000 Hz (ω- 1 / 2 > 0.012). It matched. The sample was set again, multiple measurements were taken, and fitting was performed based on the obtained measurement results. As a result, the thermal conductivity of the thin plate λ Si is 147 [W ・ m -1・ K -1 ], and the thermal conductivity of the insulating thin film λ PMMA is 0.17 [W ・ m -1・ K -1 ]. Si was within 10% of the theoretical value of 148 [W ・ m -1・ K -1 ].

1 熱物性測定装置
2 ケース
3 測定室
3a 断熱層
4 レーザ光源
5、6 集光レンズ
7 光学フィルタ
8 受光装置
12 レーザ照射装置
13 光検出装置
21 交流電源
22 測定装置
23 XYステージ
23a 治具
24、24 プローブ
25 移動制御装置
33 同期検波器
34 信号発生器
35 演算装置
40 試料
41 薄板
42 絶縁薄膜
43 金属薄膜
1 Thermophysical property measuring device 2 Case 3 Measuring room 3a Insulation layer 4 Laser light source 5, 6 Condensing lens 7 Optical filter 8 Light receiving device 12 Laser irradiation device 13 Light detection device 21 AC power supply 22 Measuring device 23 XY stage 23a Jig 24 1 , 242 probe 25 movement control device 33 synchronous detector 34 signal generator 35 arithmetic device 40 sample 41 thin plate 42 insulating thin film 43 metal thin film

Claims (4)

熱伝導率が未知である薄板上に、熱伝導率が未知である第2薄膜と、第1薄膜と、を順に積層して形成された試料に対して、
(a)前記第1薄膜の表面に対する周期的な加熱による前記第1薄膜の表面上の温度応答を測定することにより、前記第1薄膜の表面上の温度変化の振幅A及び位相差θを求める工程と、
(b)前記第1薄膜の熱伝導率λ,体積比熱容量C及び膜厚d、前記第2薄膜の熱伝導率λ,体積比熱容量C及び膜厚d、並びに、前記薄板の熱伝導率λ,体積比熱容量C及び膜厚dを含み、前記第1薄膜の表面上の温度変化の時間依存性を示す第1関数を導出する工程と、
(c)前記振幅A及び前記位相差θを含む前記第1薄膜の表面上の温度変化の時間依存性を示す第2関数と、前記第1関数と、に基づいて、前記薄板の熱伝導率λと、前記第2薄膜の熱伝導率λと、を求める工程と、を含み、
前記薄板は、前記第2薄膜に面する面と、前記第2薄膜に面する面の反対の面である裏面を有し、
前記第1関数は、前記第1薄膜の加熱に伴う熱流の少なくとも一部が前記第1薄膜から前記薄板の前記裏面方向へと流れ、前記裏面で垂直に反射し前記第1薄膜方向へ流れる一次元伝熱モデルを用いて導出される、ことを特徴とする熱物性測定方法。
For a sample formed by sequentially laminating a second thin film and a first thin film having an unknown thermal conductivity on a thin plate having an unknown thermal conductivity.
(A) By measuring the temperature response on the surface of the first thin film due to periodic heating to the surface of the first thin film, the amplitude A and the phase difference θ of the temperature change on the surface of the first thin film are obtained. Process and
(B) Thermal conductivity λ 1 of the first thin film, volume specific heat capacity C 1 and film thickness d 1 , thermal conductivity λ 2 of the second thin film, volume specific heat capacity C 2 and film thickness d 2 , and the above. A step of deriving a first function showing the time dependence of the temperature change on the surface of the first thin film, including the thermal conductivity λ 3 of the thin plate, the volume specific heat capacity C 3 and the film thickness d 3 .
(C) The thermal conductivity of the thin plate based on the second function showing the time dependence of the temperature change on the surface of the first thin film including the amplitude A and the phase difference θ and the first function. Includes a step of obtaining λ 3 and the thermal conductivity λ 2 of the second thin film.
The thin plate has a back surface that is an opposite surface of a surface facing the second thin film and a surface facing the second thin film.
In the first function, at least a part of the heat flow accompanying the heating of the first thin film flows from the first thin film toward the back surface of the thin film, is reflected vertically on the back surface, and flows toward the first thin film. A method for measuring thermophysical properties , which is derived by using a heat transfer model .
前記工程(a)における前記第1薄膜の温度応答は、複数の周波数ωの電気的又は光学的な周期的な加熱による前記第1薄膜の表面上の温度変化を、サーモリフレクタンス法により測定することを特徴とする請求項1に記載の熱物性測定方法。 For the temperature response of the first thin film in the step (a), the temperature change on the surface of the first thin film due to periodic heating of a plurality of frequencies ω by electrical or optical periodic heating is measured by a thermoreflectance method. The method for measuring thermophysical properties according to claim 1, wherein the method is characterized by the above. 前記第1薄膜の表面に対する周期的な加熱は、前記薄板の前記裏面側に断熱層を形成して行われる、請求項1または2記載の熱物性測定方法。The method for measuring thermophysical properties according to claim 1 or 2, wherein the periodic heating of the surface of the first thin film is performed by forming a heat insulating layer on the back surface side of the thin plate. 前記第1関数は、下記(式3)、(式4)、(式5)で表され、The first function is represented by the following (Equation 3), (Equation 4), and (Equation 5).
前記第2関数は、下記(式7)で表されることを特徴とする、請求項1から3のいずれか一項記載の熱物性測定方法。 The method for measuring thermophysical properties according to any one of claims 1 to 3, wherein the second function is represented by the following (Equation 7).
Figure 0007093944000012
Figure 0007093944000012
Figure 0007093944000013
Figure 0007093944000013
Figure 0007093944000014
Figure 0007093944000014
ただし、m=1(第1薄膜)、m=2(第2薄膜)、m=3(薄板)であり、前記第1 However, m = 1 (first thin film), m = 2 (second thin film), m = 3 (thin plate), and the first
薄膜と前記第2薄膜の間の界面熱抵抗及び前記第2薄膜と前記薄板の間の界面熱抵抗を0[mThe interfacial thermal resistance between the thin film and the second thin film and the interfacial thermal resistance between the second thin film and the thin plate are 0 [m]. 2 ・K・W・ K ・ W -1-1 ]とする。].
Figure 0007093944000015
Figure 0007093944000015
JP2018025000A 2018-02-15 2018-02-15 Thermophysical property measurement method Active JP7093944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018025000A JP7093944B2 (en) 2018-02-15 2018-02-15 Thermophysical property measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018025000A JP7093944B2 (en) 2018-02-15 2018-02-15 Thermophysical property measurement method

Publications (2)

Publication Number Publication Date
JP2019138869A JP2019138869A (en) 2019-08-22
JP7093944B2 true JP7093944B2 (en) 2022-07-01

Family

ID=67693717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025000A Active JP7093944B2 (en) 2018-02-15 2018-02-15 Thermophysical property measurement method

Country Status (1)

Country Link
JP (1) JP7093944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965212B (en) * 2020-07-31 2023-05-09 捷耀精密五金(深圳)有限公司 Thermophysical property calculation method, thermophysical property test system, electronic device, and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346818A (en) 1999-06-04 2000-12-15 Shinku Riko Kk Thermal diffusivity measuring method of thin film by means of laser heating angstrom method and measuring device therefor
JP2009300086A (en) 2008-06-10 2009-12-24 Ulvac-Riko Inc Thermophysical property measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593917B1 (en) * 1986-02-06 1988-06-03 Univ Reims Champagne Ardenne METHOD AND DEVICE FOR ANALYSIS AND MEASUREMENT OF PHYSICAL PARAMETERS OF A LAYERED MATERIAL BY THERMAL RADIOMETRY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346818A (en) 1999-06-04 2000-12-15 Shinku Riko Kk Thermal diffusivity measuring method of thin film by means of laser heating angstrom method and measuring device therefor
JP2009300086A (en) 2008-06-10 2009-12-24 Ulvac-Riko Inc Thermophysical property measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
御手洗 光裕他,2ω法に基づいた薄型板材料に適用可能な熱伝導率測定法の開発,第64回応用物理学会春季学術講演会[講演予稿集],公益社団法人応用物理学会,2017年

Also Published As

Publication number Publication date
JP2019138869A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
Zhao et al. Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials
CN108107074B (en) Double-pulse flash Raman method and system for representing thermophysical properties of two-dimensional nano material
CN106383105B (en) Raman spectrum measuring device and method capable of automatically adjusting sample measuring distance
US11137245B2 (en) Raman spectroscopy method for simultaneously measuring temperature and thermal stress of two-dimensional film material in situ
JP2016501376A (en) Sample inspection method and system using thermography
WO2015027210A1 (en) Lit method and system for determining material layer parameters of a sample
US20060153269A1 (en) Method and system for measuring the thermal diffusivity
TW201341784A (en) Apparatus for measuring thermal diffusivity and method for measuring thermal diffusivity
CN110873730B (en) Measuring device for determining the thermal conductivity of a fluid
JP5426115B2 (en) Thermophysical property measurement method
JP7093944B2 (en) Thermophysical property measurement method
JP4658366B2 (en) Thermophysical property measurement method
JP4258667B2 (en) Thermophysical property measuring method and apparatus
US5792667A (en) Process and a device for the detection of surface plasmons
JP2000074862A (en) Method for measuring seebeck coefficient by alternating current heating, and structure of measuring sample used therefor
KR920007197B1 (en) Method and apparatus for measuring thermal diffusivity by ac joule-heating
Menon et al. High accuracy, self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids
CN102818820A (en) System for measuring heat conductivity coefficient of nano materials based on vanadium dioxide nano wires
KR101130223B1 (en) Quantitative temperature and thermal conductivity measuring method using scanning thermal microscope
Xu et al. Thermal sensors for investigation of heat transfer in scanning probe microscopy
JP6892086B1 (en) Thermophysical property value measuring device and thermophysical characteristic value measuring method
US20100086005A1 (en) Method and apparatus for determining a phase transition of a substance
EP1800115B1 (en) Measuring apparatus
US11035809B2 (en) Thermal diffusion factor measurement device, thermal diffusion factor measurement method and program
JP2009210277A (en) Photothermal spectroscopy and photothermal spectroscopic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7093944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150