JPS60804A - Ultrafiltration apparatus - Google Patents

Ultrafiltration apparatus

Info

Publication number
JPS60804A
JPS60804A JP11057883A JP11057883A JPS60804A JP S60804 A JPS60804 A JP S60804A JP 11057883 A JP11057883 A JP 11057883A JP 11057883 A JP11057883 A JP 11057883A JP S60804 A JPS60804 A JP S60804A
Authority
JP
Japan
Prior art keywords
membrane
pressure
valve
flow rate
original liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11057883A
Other languages
Japanese (ja)
Inventor
Akito Inoue
昭人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORITETSUKUSU KK
Poly Techs Inc
Original Assignee
PORITETSUKUSU KK
Poly Techs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORITETSUKUSU KK, Poly Techs Inc filed Critical PORITETSUKUSU KK
Priority to JP11057883A priority Critical patent/JPS60804A/en
Publication of JPS60804A publication Critical patent/JPS60804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To remove simply the clogging of the membrane arising in the process of filtration by exerting the pressure to the filtrate side, and changing over alternately the flow of the original liquid to the opposite direction in an ultrafiltration apparatus. CONSTITUTION:An original liquid 11 stored in an original liquid tank 10 is circulated and supplied into an ultrafiltration apparatus 13 at specified pressure by the action of a pump 12 through flow rate control valves 16 and 17 and a direction changeover valve 30. The valve 30, consisting of a four-way valve, has the function to allow the original liquid 11, which is sent from the pump 12 through the flow rate control valve 16, to pass through the ultrafiltration apparatus 13 from the left to the right or conversely from the right to the left, and can be changed over alternately at intervals of a specified time to the opposite direction by the control of a control circuit provided outside or manually. In this way, the clogging while filtering can be prevented only by changing over the flowing direction of the original liquid.

Description

【発明の詳細な説明】 本発明は、ウルトラフィルタ装置に係り、とくに濾過作
業の進行で生じるメンブレンの目づまりを極めて簡単に
除去出来るようにしたウルトラフィルタ装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrafilter device, and more particularly to an ultrafilter device that can extremely easily remove clogging of the membrane that occurs during the progress of filtration work.

ウルトラフィルタは、1μ〜0.001μ程度の孔径を
持った半透膜の一種(以下、「メンブレン」という)で
、水、イオン、可溶性の低分子は通すが高分子の物質と
かコロイド状の物質はカットするという性質を持ってい
る。このウルトラフィルタ装置は、第1図に示すように
、前記メンブレン10片側に加圧下で原液2を流し該メ
ンブレン1の反対側に孔径を通過出来る成分を濾過させ
て原液中の比較的分子量の高い成分と分子量の74%さ
い成分を分離したり濃縮回収したりする装置として電着
塗装ラインにおける持出し塗料の回収システムをはじめ
、近年多くの分野に利用さttている。
Ultrafilter is a type of semi-permeable membrane (hereinafter referred to as "membrane") with a pore size of approximately 1μ to 0.001μ, which allows water, ions, and soluble low molecules to pass through, but does not allow high molecular substances or colloidal substances to pass through. has the property of cutting. As shown in FIG. 1, this ultrafilter device pours a stock solution 2 under pressure on one side of the membrane 10 and filters out components that can pass through the pore size on the other side of the membrane 1. In recent years, it has been used in many fields, including as a system for recovering paint taken out in electrodeposition coating lines, as a device for separating and concentrating and recovering components with molecular weights as low as 74%.

ウルトラフィルタ装置のタイプとしては、第2図の如き
円筒の容器4の中に円筒状のメンフ゛レンIAを二重管
構造となるように装備し、メンツブレフ1人の両端を通
して原液2を流し容器4側部75−らP液5を排出する
ようにしたチューブラ−タイプ、或いはメンブレンを細
い管にしたフォローファイバータイプ、さらには第3図
の如く容器6の中に袋構造を持つメンブレンIBを複数
個の透孔7を穿設したP液管8を中心として半径方向に
螺1 線状に配設したスノ(イラルタイプなど、種々の
ものがちる。
The type of ultrafilter device is as shown in Fig. 2, in which a cylindrical membrane IA is equipped in a double-tube structure in a cylindrical container 4, and the stock solution 2 is poured through both ends of one Menzblef, and the membrane is placed on the side of the container 4. A tubular type in which the P liquid 5 is discharged from the part 75, or a follow fiber type in which the membrane is made into a thin tube, or a plurality of membranes IB having a bag structure in the container 6 as shown in FIG. There are various types of pipes, such as the radial type, which are arranged in a spiral shape in the radial direction around the P liquid pipe 8 in which the through hole 7 is bored.

第4図は上記ウルトラフィルタ装置を用いた塗料の濃縮
システムを示す系統図である。図において10は原液槽
であり、塗料を含んだ原液11が貯えられている。原液
槽10中の原液11は、ポンプ12の働きでウルトラフ
ィルタ装置13に所定圧力で循環供給されるように成っ
ており、このウルトラフィルタ装置13で水分の濾過が
行なわれ塗料の濃縮化がなされる。前記ウルトラフィル
タ装置13は例えばチューブラ−タイプであり、第2図
と同様の構成を持つ。原液11は弁16を経て容器4の
左端に設けた開口部14からメンブレンIA内に入り、
該メンブレンlAi通してp液5の濾過が行なわれたの
ち右端の開口部15から出る(実線矢印A−D参照)。
FIG. 4 is a system diagram showing a paint concentration system using the ultrafilter device described above. In the figure, reference numeral 10 is a stock solution tank in which stock solution 11 containing paint is stored. The stock solution 11 in the stock solution tank 10 is circulated and supplied at a predetermined pressure to an ultra filter device 13 by the action of a pump 12, and this ultra filter device 13 filters water and concentrates the paint. Ru. The ultrafilter device 13 is, for example, a tubular type, and has a configuration similar to that shown in FIG. 2. The stock solution 11 passes through the valve 16 and enters the membrane IA through the opening 14 provided at the left end of the container 4.
After the p-liquid 5 is filtered through the membrane lAi, it exits from the opening 15 at the right end (see solid line arrows A-D).

濃縮後の原液11は弁17を経て再ひもとの原液槽10
に戻る。
After concentration, the stock solution 11 passes through a valve 17 and is transferred to the stock solution tank 10.
Return to

一方、涙液5は容器4の側壁に設けた排出部18より、
弁19を経てろ液貯槽20に送られる。この涙液貯槽2
0には液面計21が備えられてお91所定高さに達する
とポンプ22が稼動して涙液5を外部に排水するように
成っている。23〜25は各々圧力計である。
On the other hand, the lachrymal fluid 5 is discharged from the discharge part 18 provided on the side wall of the container 4.
The filtrate is sent to a filtrate storage tank 20 via a valve 19. This tear reservoir 2
0 is equipped with a liquid level gauge 21, and when the liquid level 91 reaches a predetermined height, a pump 22 is activated to drain the lachrymal fluid 5 to the outside. 23 to 25 are pressure gauges, respectively.

ところで、前記した濃縮システムなどに於て、ウルトラ
フィルタ装置13を長時間使用すると、原液11中の高
分子成分やコロイド状成分がメンブレンIAの壁に付着
しゲル層25が形成されてくる。このゲル層25は、メ
ンブレンIAに目づ捷りを起こさせ濾過速度を低下させ
て濃縮効率を悪化させるとともに、メンブレンIAの寿
命を短くする作用をなす。従って、従来より、例えは第
4図の場合、前述のようにして濃縮システムを成る時間
運転させたあと当該装置の稼動を止め、メンブレンIA
の目づ甘りを除去するために、前記弁16.17を閉じ
弁26.27を開いてゲル層25を溶解させる薬液をウ
ルトラフィルタ装置13に循環供給して洗浄したV(一
点鎖線E〜工参照)、弁19を閉じ弁28を開いて、ろ
液貯槽20中のろ液5′fr:ボンプ29でウルトラフ
ィルタ装置13側に逆流させゲル層25を逆洗浄したり
していた。
By the way, when the ultrafilter device 13 is used for a long time in the concentration system described above, the polymeric components and colloidal components in the stock solution 11 adhere to the wall of the membrane IA, forming a gel layer 25. This gel layer 25 has the effect of causing the membrane IA to become wrinkled, reducing the filtration rate, deteriorating the concentration efficiency, and shortening the life span of the membrane IA. Therefore, conventionally, for example, in the case of FIG.
In order to remove the looseness, the valve 16.17 was closed, the valve 26.27 was opened, and a chemical solution for dissolving the gel layer 25 was circulated and supplied to the ultra filter device 13 for cleaning. ), the valve 19 was closed, the valve 28 was opened, and the filtrate 5'fr in the filtrate storage tank 20 was made to flow back to the ultrafilter device 13 side through the pump 29 to backwash the gel layer 25.

しかしながら、上記従来技術に於ては、メンブレンの洗
浄を行なう度に濾過作業を長時間停止しなければならず
、連続運転が不可能で稼動率が低くなるとともに、シス
テムの構成が複雑化するという欠点があり、また、ウル
トラフィルタ装置の入口側と出口側に圧力差があるので
ゲル層は入口側に厚く形成されてお争へこのため逆洗を
行なう場合出口側の洗浄効果は太きいが人口側の洗浄効
果は小さく、更に、スパイラルタイプでFi第5図に示
すように半径方向外側に向がって流路抵抗が増大し、r
液管8の近傍は逆洗出来るが外側部分は殆んど逆洗出来
ないという不都合がめった。
However, in the above conventional technology, the filtration operation has to be stopped for a long time every time the membrane is cleaned, which makes continuous operation impossible, lowers the operating rate, and complicates the system configuration. There is a drawback, and since there is a pressure difference between the inlet and outlet sides of the ultrafilter device, the gel layer is thicker on the inlet side, which is problematic.For this reason, when backwashing is performed, the cleaning effect on the outlet side is greater, but The cleaning effect on the artificial side is small, and furthermore, with the spiral type, the flow resistance increases toward the outside in the radial direction as shown in Figure 5, and r
The vicinity of the liquid pipe 8 can be backwashed, but the outside part can hardly be backwashed, which is a rare problem.

本発明は、斯かる従来技術の欠点に鑑みなこれたもので
あり、濾過作業を継続しながらメンブレンの目づまりを
簡単に除去出来るようにしたウルトラフィルタ装置を提
供することを、その目的とするO 本発明は、ウルトラフィルタ装置に対する原液の流向を
交互に反対方向に切換えることにより、前記目的を達成
しようとするものである。
The present invention has been developed in view of the drawbacks of the prior art, and an object of the present invention is to provide an ultrafilter device that can easily remove clogging of the membrane while continuing filtration work. The present invention seeks to achieve this objective by alternately switching the flow direction of the stock solution to the ultrafilter device in opposite directions.

以下、本発明の一実施例を第6図乃至第15図シて基づ
いて説明する。ここで、WJ4図と同一の構成要素は同
一の符号を付す。
An embodiment of the present invention will be described below with reference to FIGS. 6 to 15. Here, the same components as in Figure WJ4 are given the same reference numerals.

第6図は本発明に係る塗料の濃縮システムを示す系統図
である。図に於て、原液槽1oに貯えられた原液11け
、ポンプ12の働きで流量制御弁16.17、方向切換
弁30を介してウルトラフィルタ装置13に所定圧力で
循環供給されるように成っている。前記方向切換弁3o
は、4方弁から成り、流量制御弁16を経てポンプ12
から送られる原液11をウルトラフィルタ装置13の左
から右方向へ、又は右から左方向へ切換流通せしめる機
能を有し、外部に設けられた図示しない制御回路の制御
又は手動操作等によって、所定時間経過する度に交互に
反対方向に切換えられるように成っている。
FIG. 6 is a system diagram showing a paint concentration system according to the present invention. In the figure, 11 undiluted solutions stored in the undiluted solution tank 1o are circulated and supplied to the ultra filter device 13 at a predetermined pressure via the flow control valves 16, 17 and the directional control valve 30 by the action of the pump 12. ing. Said directional switching valve 3o
consists of a four-way valve, which connects the pump 12 via a flow control valve 16.
It has a function of switching the stock solution 11 sent from the ultra filter device 13 from left to right or from right to left, and is controlled by an external control circuit (not shown) or by manual operation for a predetermined period of time. It is designed so that it can be switched alternately in the opposite direction each time it elapses.

前記ウルトラフィルタ装置13内を通過する間に濃縮さ
れた原液11は流量制御弁17を経て再び原液槽10へ
戻される。一方、ウルトラフィルタ装置13で濾過され
た涙液5は、流量制御弁19、流量計31を介してろ液
貯槽20へ排出されるように成っている。23〜25は
各々圧力計である。
The stock solution 11 concentrated while passing through the ultrafilter device 13 is returned to the stock solution tank 10 again via the flow rate control valve 17. On the other hand, the lachrymal fluid 5 filtered by the ultrafilter device 13 is discharged into the filtrate storage tank 20 via a flow control valve 19 and a flow meter 31. 23 to 25 are pressure gauges, respectively.

次に、上記実施例の全体的動作について説明する。尚、
ウルトラフィルタ装置13内の原液圧力をV、F液圧力
をひで表わす。
Next, the overall operation of the above embodiment will be explained. still,
The raw liquid pressure in the ultra filter device 13 is expressed by V, and the liquid pressure by F is expressed by H.

また、稼動時に於けるウルトラフィルタ装置13の入口
側P、及び出口側Pzの原液圧力をゲージ圧でVu 、
 ML (但し、VH) Vi、 、> O)とし、流
量制御弁19は簡単のためオリフィス型特性を有してい
るものとする。
In addition, the raw solution pressure on the inlet side P and outlet side Pz of the ultra filter device 13 during operation is expressed as gauge pressure Vu,
ML (where VH) Vi, , > O), and the flow control valve 19 is assumed to have orifice type characteristics for simplicity.

まず、目づまりのないメンフ゛レンIAに対し、原液1
1をウルトラフィルター装置13の左から右へ流した状
態で、排出部18を閉鎖したときの涙液圧力は、Pc 
= (VH+ VL ) / 2となり、 第7図に示
すように、メンブレンIA内外の圧力差が左右対称にな
り、中間の中性点PCf境にして左側が濾過、右側が逆
洗となる。メンブレンIAでの濾過、逆洗作用は内外の
圧力差に比例しウルトラフィルタ装置13の端部に行く
ほど大きくなる。
First, apply 1 part of the stock solution to membrane IA without clogging.
1 is flowing from the left to the right of the ultrafilter device 13 and the tear fluid pressure when the discharge part 18 is closed is Pc
= (VH+VL)/2, and as shown in FIG. 7, the pressure difference between the inside and outside of the membrane IA becomes symmetrical, with the neutral point PCf in the middle serving as the boundary, with filtration on the left and backwashing on the right. The filtration and backwashing effects in the membrane IA are proportional to the pressure difference between the inside and outside, and increase toward the ends of the ultrafilter device 13.

斜線■の面積で示す濾過流量と斜線Hの面積で示す逆洗
流量が等しく、ろ液5の外部流量QはOで、容器4とメ
ンブレンIへの間を左から右へ移動する。これとは別に
、前記排出部18を大気圧に開放し怖−0としたとき、
第8図に示すようにメンブレンIA内外の圧力差が、全
て正になって濾過状態となる。このとき、斜線Iの面積
が涙液5の外部流t Q = Qmaxとなる。テ液圧
力が0〜′vCの間を変化すると、外部流量Qは0− 
Qnaxの間を直線的に変化する。この様子をウルトラ
フィルタ装置13の静特性として第14図のα0に示す
The filtration flow rate indicated by the area of the diagonal line ■ and the backwash flow rate indicated by the area of the diagonal line H are equal, the external flow rate Q of the filtrate 5 is O, and it moves between the container 4 and the membrane I from left to right. Separately, when the discharge part 18 is opened to atmospheric pressure and the fear is -0,
As shown in FIG. 8, the pressure differences inside and outside the membrane IA are all positive, resulting in a filtration state. At this time, the area of the diagonal line I becomes the external flow t Q = Qmax of the tear fluid 5. When the liquid pressure changes between 0 and 'vC, the external flow rate Q changes from 0 to
It changes linearly between Qnax. This state is shown as α0 in FIG. 14 as a static characteristic of the ultra filter device 13.

今、メンブレンIAに目づ筐りの1よい状態で前記流量
制御弁19を成る開度に開いたとき、弁がオリフィス型
であることから該流量制御弁19の入口側圧力、即ちp
液圧力υと弁から流れる流量。
Now, when the flow control valve 19 is opened to the opening degree with the membrane IA in a good condition, the pressure on the inlet side of the flow control valve 19, that is, p
The fluid pressure υ and the flow rate from the valve.

即ちP液の外部流量Qとは比例する。この様子を第14
図中に書き加えたと@(β参照ンの前記α0との交点が
糸の動作点’I’s (9s + Qs )となり、ウ
ルトラフィルタ装置13の圧力分布及び流れ分布は第9
図の如くなる。中性点13sは、Pcよりやや右よりに
在り、白ぬき■の面積だけ外部にろ液5が流出する。
That is, it is proportional to the external flow rate Q of the P liquid. This situation can be seen in the 14th
When added to the diagram, the intersection of the β reference number with α0 becomes the yarn operating point 'I's (9s + Qs), and the pressure distribution and flow distribution of the ultrafilter device 13 are
It will look like the figure. The neutral point 13s is located slightly to the right of Pc, and the filtrate 5 flows out to the outside by the area of the white square.

第9図の状態で成る時間運転を継続すると、ウルトラフ
ィルタ装置13の左開口部14近くのメンブレンIAに
ゲル層40が形成され目づまりを起こす(第10図参照
)。ゲル層40は、メンブレンIA内外の圧力差の大き
い左端部が最も厚くなる。仁の目づまりにより、ウルト
ラフィルり装置13は第10図の距1[’ffけ入口側
が短かくな対シ、中間点Pc41、(VH+VL)/2
.1)o = 0における流量はQmaxとなるのでウ
ルトラフィルタ装置13の静特性が第14図のα1に変
化し、このため系の動作点が移動してTSとなる。即ち
、外部流量、F液圧力ともに低下する。ウルトラフィル
タ装置13の圧力分布及び流れ分布は第10図の如くな
る。中性点P′sはP8より右に移動し、又、目づまり
した所の流量は抵抗が増大する為圧力差より小さくなる
(第10図のに参照)。メンブレンIAの目づまりが進
行するにつれて、第8図に示すウルトラフィルタ装置1
3の静特性はαOから次第に原点に近づいていくことに
なる。
If the operation is continued for a period of time in the state shown in FIG. 9, a gel layer 40 will be formed on the membrane IA near the left opening 14 of the ultrafilter device 13, causing clogging (see FIG. 10). The gel layer 40 is thickest at the left end where the pressure difference between the inside and outside of the membrane IA is large. Due to clogging, the ultra fill device 13 has a distance of 1 ['ff, but the inlet side is not short, as shown in Fig. 10, the intermediate point Pc41, (VH+VL)/2
.. 1) Since the flow rate at o=0 becomes Qmax, the static characteristics of the ultrafilter device 13 change to α1 in FIG. 14, and therefore the operating point of the system moves to TS. That is, both the external flow rate and the F liquid pressure decrease. The pressure distribution and flow distribution of the ultrafilter device 13 are as shown in FIG. The neutral point P's moves to the right from P8, and the flow rate at the clogged area becomes smaller than the pressure difference because the resistance increases (see FIG. 10). As the clogging of the membrane IA progresses, the ultrafilter device 1 shown in FIG.
The static characteristic of 3 gradually approaches the origin from αO.

次に、第10図の状態になったところで、前記方向切換
弁30を切換え、今度はウルトラフィルタ装置13の右
から左へ原液11を通過させる。
Next, when the state shown in FIG. 10 is reached, the directional control valve 30 is switched to allow the stock solution 11 to pass through the ultrafilter device 13 from right to left.

このとき、装置の右端が最高圧vH1左端が最低圧vL
となる。ただし、左端部のメンブレンIAが既に目づま
りしているため、前述と同様にウルトラフィルタ装N1
3は第11図の距離lだけ出口側が短かくなったと等価
になり、仮想した出口Pz (7) 圧力’VL II
C対し、中間点Pcti (VH+VL )/2.0o
における流量はQrnaxとなるのでウルトラフィルタ
装置13の静特性が第14図のα2に変化し、系の動作
点はT′Sとなる。即ち、外部流量、P液圧力ともに増
大する。圧力分布及び流れ分布は第11図の如くなる。
At this time, the right end of the device is the highest pressure vH1, the left end is the lowest pressure VL
becomes. However, since the membrane IA on the left end is already clogged, the ultra filter unit N1
3 is equivalent to shortening the exit side by the distance l in Fig. 11, and the virtual exit Pz (7) Pressure 'VL II
For C, midpoint Pcti (VH+VL)/2.0o
Since the flow rate at is Qrnax, the static characteristic of the ultrafilter device 13 changes to α2 in FIG. 14, and the operating point of the system becomes T'S. That is, both the external flow rate and the P liquid pressure increase. The pressure distribution and flow distribution are as shown in FIG.

原液11の流れの向きが変わったため、中性点PSの左
が逆洗、右が沖過状態となり、とくに目づまりの程度が
甚だしい左端部に於て大きな差圧が掛かるので逆洗効果
が極めて大となる。目づまり部分は、ゲル層40の抵抗
を受けるため逆洗流量が圧力差より小さくなる(第11
図のM参照)。逆洗を受けたゲル層40は運転の継続に
つれて次第にメンブレンIAから外れて小さくなる。こ
れに応じて等価距離l′が小さくなりウルトラフィルタ
装置13の静特性はα2からα0へ近づいて行く。ゲル
層4oが全部なくなると、系の動作点は前述したTsに
戻る。 このときの圧力分布及び流れ分布を第12図に
示す。
Since the flow direction of the stock solution 11 has changed, the left side of the neutral point PS is backwashed, and the right side is in an offshore state, and a large differential pressure is applied at the left end where the degree of clogging is particularly severe, so the backwashing effect is extremely large. becomes. In the clogged area, the backwash flow rate becomes smaller than the pressure difference because the gel layer 40 provides resistance (11th
(See M in the figure). As the operation continues, the gel layer 40 that has undergone backwashing gradually separates from the membrane IA and becomes smaller. Correspondingly, the equivalent distance l' becomes smaller and the static characteristic of the ultrafilter device 13 approaches α2 from α0. When the gel layer 4o is completely removed, the operating point of the system returns to the aforementioned Ts. The pressure distribution and flow distribution at this time are shown in FIG.

更に運転を続けしばらく経つと、今度は第10図の場合
と対称的に濾過状態に在った装置右端部のメンブレンI
Aにゲル層4oが形成されてくる。
As the operation continued for a while, the membrane I at the right end of the device, which was in a filtration state symmetrically to the case in Figure 10, was removed.
A gel layer 4o is formed at A.

この為、系の動作点は前述した6となる。 このときの
圧力分布と流れ分布を第13図に示す。第13図の状態
になったところで、再び前記方向切換弁30を切換えウ
ルトラフィルタ装置13の左から右へ原液11を通過さ
せれば、前述と全く同様にして目づまりの逆洗を行なう
ことができる。
Therefore, the operating point of the system is 6 as mentioned above. The pressure distribution and flow distribution at this time are shown in FIG. When the state shown in FIG. 13 is reached, by switching the directional control valve 30 again and passing the undiluted solution 11 from the left to the right of the ultra filter device 13, backwashing of the clog can be performed in the same manner as described above. .

従って、例えば動作点がT’s −’rs −T;とな
る範囲で、所定時間おきに方向切換弁30を遂次反対方
向に切換えるだけで濾過作業を中断することなく常にメ
ンブレンの目づまり発生を防止することが可能となる。
Therefore, for example, within the range where the operating point is T's -'rs -T, membrane clogging can always occur without interrupting the filtration operation by simply switching the directional control valve 30 in the opposite direction at predetermined intervals. This makes it possible to prevent

尚、前記流量制御弁19の開度を変えると、弁の圧力・
流量特性が第14図の点線ノのようになり、αとの交点
で定まる涙液流量に変化する。
Note that by changing the opening degree of the flow rate control valve 19, the valve pressure and
The flow rate characteristics become as indicated by the dotted line in FIG. 14, and the tear flow rate changes to be determined by the intersection with α.

実賑にスパイラルタイプのウルトラフィルタ装V(膜面
1.8m)を用いて固形分15チ、5〜20μの粉本樹
脂が分散した水性塗料からなる原液を濃縮実験した結果
を第15図に示す。図中Xは、初期開放値の約1/2の
涙液流量(30Q cc/分)と7【るようにF数個流
量制御弁を閉じ1時間に1回の割で原液の流向を反転ざ
ぜたときの時間経過と涙液流量の変化を示し、Yは、開
放状態で一方向に原液を流し続けた場合の比較例を示す
Figure 15 shows the results of a concentration experiment using a spiral type ultra filter device V (membrane surface 1.8 m) to concentrate a stock solution consisting of a water-based paint with a solid content of 15 cm and 5 to 20 micron powder resin dispersed therein. show. In the figure, X indicates the lachrymal fluid flow rate (30Q cc/min), which is approximately 1/2 of the initial open value, and several F flow control valves are closed so that the flow direction of the stock solution is reversed once every hour. The passage of time and the change in the flow rate of tear fluid are shown when the cap is stirred, and Y indicates a comparative example in which the stock solution continues to flow in one direction in an open state.

尚、上記実施例((於ては、原液の方向を切換える際に
もP数冊流量制御弁を成る開度量いた1まにする場合に
ついて説明したが、原液の方向を切換えてから所定時間
の間だけ、タイマー制御等で前記p数個流量制御弁を閉
じ、M3図のT (P=ガIQ=O)を動作点にしてゲ
ル層に大きな逆洗差圧が掛かるようにし、これにより目
づまりを迅速に除去出来るようにして所定時間経過後弁
を所定の開度に開くようにしてもよい。実験によると濾
過作業に殆んど影響しない数分程度の間、弁を閉じてお
くだけで目づ捷りがほぼなくなることが判った。また、
上記実施例は塗料の濃縮システムに応用する場合を例に
して説明したが、本発明は何らこれに限定されるもので
はなく、電漬塗装ラインにおりる持出し塗料の回収シス
テム等にも適用できることは言うまでもない。
In the above embodiment ((), the case where the opening degree of several flow control valves is set to 1 even when switching the direction of the undiluted solution was explained, For a short period of time, close the P several flow control valves using timer control, etc., and set T (P=Ga IQ=O) in the M3 diagram as the operating point to apply a large backwash differential pressure to the gel layer. The valve may be opened to a predetermined opening degree after a predetermined period of time so that clogs can be removed quickly.Experiments have shown that the valve can be closed for a few minutes, which has little effect on filtration work. It was found that the confusion was almost eliminated.Also,
Although the above embodiment has been described with reference to the case where it is applied to a paint concentration system, the present invention is not limited to this in any way, and can also be applied to a system for recovering paint taken out from an electro-dip coating line. Needless to say.

以上説明したように、本発明によれば、単に原液の流向
ケ切換えるだけで濾過作業を継続しながらメンブレンの
目づまりを防止するようにしたのでシステム構成に負担
を掛けることなく濾過作業を長期間安定に行なうことが
でき、装置の稼動率が高く経済性に優れたウルトラフィ
ルタ装置が得られる。
As explained above, according to the present invention, the membrane can be prevented from clogging while the filtration work continues by simply changing the flow direction of the stock solution, so the filtration work can be stabilized for a long period of time without putting a burden on the system configuration. It is possible to obtain an ultra-filter device that has a high operating rate and is excellent in economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はウルトラフィルタの原理図、第2図ないし第3
図は各々ウルトラフィルタ装置の使用例を示す概略断固
、第4図は従来のウルトラフィルタ装置を用いた電着塗
装ラインにおける持出し塗料の回収システムを示す系統
図、第5図は逆洗時における第3図の作用を示す説明図
、第6図は、本発明の一実施例に係る持出し塗料の回収
システムを示ず系統図、第7図乃至第13図は各々第6
図に示すウルトラフィルタ装置の動作説明図、第14図
は第6図の動作を示す線図、第15図は実験結果を比較
例とともに示す線図である。 1 、 IA、 113・・・メンブレン、2.11・
・・原液、5・・・p液、13・・・ウルトラフィルタ
装置、30・・・方向切換弁。 特Wf出願人株式会社 ポリテツクス 第74図 第15図
Figure 1 is the principle diagram of the ultra filter, Figures 2 to 3
The figures are schematic diagrams showing examples of how the Ultra Filter device is used, Figure 4 is a system diagram showing a system for recovering paint taken out in an electrodeposition coating line using a conventional Ultra Filter device, and Figure 5 is a system diagram showing how the paint is recovered during backwashing. 3 is an explanatory diagram showing the action of FIG. 6, and FIG. 6 is a system diagram that does not show a system for recovering paint taken out according to an embodiment of the present invention, and FIGS.
FIG. 14 is a diagram showing the operation of FIG. 6, and FIG. 15 is a diagram showing the experimental results together with a comparative example. 1, IA, 113... membrane, 2.11.
...Natural solution, 5...P liquid, 13...Ultra filter device, 30...Directional switching valve. Special Wf Applicant Co., Ltd. Polytex Figure 74 Figure 15

Claims (1)

【特許請求の範囲】[Claims] (1)、メンブレンの片側に加圧下で原液を流し、該メ
ンブレンの反対側に原液中の低分子成分を濾過させるウ
ルトラフィルタ装置に於て、F数個に圧力を持たせると
ともに前記原液の流向を交互に反対方向に切換えるよう
にしたことを特徴とするウルトラフィルタ装置。
(1) In an ultrafilter device that flows a stock solution under pressure on one side of the membrane and filters low-molecular components in the stock solution on the other side of the membrane, pressure is applied to several F and the flow direction of the stock solution is An ultra filter device characterized in that the filters are alternately switched in opposite directions.
JP11057883A 1983-06-20 1983-06-20 Ultrafiltration apparatus Pending JPS60804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11057883A JPS60804A (en) 1983-06-20 1983-06-20 Ultrafiltration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11057883A JPS60804A (en) 1983-06-20 1983-06-20 Ultrafiltration apparatus

Publications (1)

Publication Number Publication Date
JPS60804A true JPS60804A (en) 1985-01-05

Family

ID=14539387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11057883A Pending JPS60804A (en) 1983-06-20 1983-06-20 Ultrafiltration apparatus

Country Status (1)

Country Link
JP (1) JPS60804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272957A (en) * 1986-05-21 1987-11-27 Daicel Chem Ind Ltd Clarification of fruit juice
JPS63151306A (en) * 1986-11-26 1988-06-23 ヘンリー・ビー・コフ Device and method for mass transfer including biological and/or pharmacological medium
WO2004022206A1 (en) * 2002-08-29 2004-03-18 Organo Corporation Separation membrane module and method of operating separation membrane module
KR100430672B1 (en) * 2001-06-27 2004-05-10 (주) 세라컴 a back washing apparatus of ceramics membrane
JP2016530893A (en) * 2013-09-16 2016-10-06 ジェンザイム・コーポレーション Method and system for processing cell culture
CN115253708A (en) * 2021-04-29 2022-11-01 天津膜天膜科技股份有限公司 Integrated hollow fiber membrane component integrating backwashing function
JP7284545B1 (en) * 2022-12-19 2023-05-31 環水工房有限会社 MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220389A (en) * 1975-08-09 1977-02-16 Dainippon Toryo Co Ltd Process for operating a reverse osmosis or ultrafiltration device
JPS55121812A (en) * 1979-03-15 1980-09-19 Asahi Chem Ind Co Ltd Method of ultrafiltration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220389A (en) * 1975-08-09 1977-02-16 Dainippon Toryo Co Ltd Process for operating a reverse osmosis or ultrafiltration device
JPS55121812A (en) * 1979-03-15 1980-09-19 Asahi Chem Ind Co Ltd Method of ultrafiltration

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272957A (en) * 1986-05-21 1987-11-27 Daicel Chem Ind Ltd Clarification of fruit juice
JPH0413990B2 (en) * 1986-05-21 1992-03-11 Daicel Chem
JPS63151306A (en) * 1986-11-26 1988-06-23 ヘンリー・ビー・コフ Device and method for mass transfer including biological and/or pharmacological medium
KR100430672B1 (en) * 2001-06-27 2004-05-10 (주) 세라컴 a back washing apparatus of ceramics membrane
WO2004022206A1 (en) * 2002-08-29 2004-03-18 Organo Corporation Separation membrane module and method of operating separation membrane module
CN1331574C (en) * 2002-08-29 2007-08-15 奥加诺株式会社 Method for operating separation membrane module and separation membrane apparatus
JP2016530893A (en) * 2013-09-16 2016-10-06 ジェンザイム・コーポレーション Method and system for processing cell culture
JP2020124204A (en) * 2013-09-16 2020-08-20 ジェンザイム・コーポレーション Method and system for processing cell culture
JP2022050549A (en) * 2013-09-16 2022-03-30 ジェンザイム・コーポレーション Methods and systems for processing cell culture
CN115253708A (en) * 2021-04-29 2022-11-01 天津膜天膜科技股份有限公司 Integrated hollow fiber membrane component integrating backwashing function
JP7284545B1 (en) * 2022-12-19 2023-05-31 環水工房有限会社 MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME

Similar Documents

Publication Publication Date Title
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
US6168714B1 (en) Flux-enhanced cross-flow membrane filter
US4670150A (en) Cross-flow microfiltration lime softener
US4931186A (en) Concentration of solids in a suspension
US5024762A (en) Concentration of solids in a suspension
AU576424B2 (en) Concentration of solids in a suspension
JPH07112185A (en) Waste water treating device and washing method therefor
US4592841A (en) Equipment and process for the treatment of swimming pool water with a semi-permeable membrane
EP0351363B1 (en) Filtration process, use of stabilization aids, plant for a filtration process and process for running this plant
JPH05131119A (en) Ultrafiltration method for recovering polymerizable latex from white water
JP2002529239A (en) Method and apparatus for removing suspended matter and salts from a liquid by membrane filtration
Suarez et al. Dead-end microfiltration as advanced treatment for wastewater
EP0220749B1 (en) Method for enhancing the flux rate of cross-flow filtration systems
EP0079040A2 (en) Method and apparatus for increasing the cross-flow filtration fluxes of liquids containing suspended solids
JPS60804A (en) Ultrafiltration apparatus
JPH0739872A (en) Dissolved manganese-containing water filter using permeable membrane
EP0131119B1 (en) Cross-flow microfiltration lime softener
JP2005254192A (en) Membrane separator and membrane separation method
CN220564379U (en) Column type ultrafiltration membrane component for high turbidity wastewater treatment
CN213537444U (en) Waterway system and water purifier
JP2005246110A (en) Method for cleaning hollow fiber membrane
JPS63294905A (en) Method for operating hollow yarn membrane filter
D'Agostino et al. Use of submerged membrane technology for the treatment of olive mill wasterwater: fouling study and process performance
CA1315209C (en) Concentration of solids in a suspension
JPS61120604A (en) Hollow yarn membrane filter