JPS6079729A - Wafer oxidation process - Google Patents

Wafer oxidation process

Info

Publication number
JPS6079729A
JPS6079729A JP58186730A JP18673083A JPS6079729A JP S6079729 A JPS6079729 A JP S6079729A JP 58186730 A JP58186730 A JP 58186730A JP 18673083 A JP18673083 A JP 18673083A JP S6079729 A JPS6079729 A JP S6079729A
Authority
JP
Japan
Prior art keywords
wafer
temperature
temperature distribution
wafers
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186730A
Other languages
Japanese (ja)
Inventor
Hiroyuki Suzuki
博之 鈴木
Ikuo Matsuba
松葉 育雄
Kuniaki Matsumoto
松本 邦顕
Akira Yoshinaka
吉中 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58186730A priority Critical patent/JPS6079729A/en
Publication of JPS6079729A publication Critical patent/JPS6079729A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Abstract

PURPOSE:To decrease dummy wafers improving eveness by a method wherein both front end of front wafer and rear end of rear wafer are heated so that the temperature gradient within wafer surfaces may be decreased to make the temperature within wafer surfaces even. CONSTITUTION:Heaters 2 are provided on both ends of a boat 5 loaded with wafers 4 between the heaters. The heaters provided on both ends heat the end wafers subject to even temperature distribution with planes in parallel with the wafers. The influence of the dispersion of wafer temperature distribution upon the dispersion of oxide film thickness attains from the end wafer temperature distribution to the nearer wafer temperature distribution. Through these procedures, the numbers of dummy wafers may be decreased remarkably by means of controlling to make the both end wafer temperature distribution similar to the central part wafer temperature distribution by auxiliary heaters provided other than furnace walls.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体製造プロセスのウェハ表面に酸化膜を形
成する酸化工程に係り、特に高歩留りを目的とした均一
な酸化膜を持ったウェハ奮生成するのに好適な酸化方式
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an oxidation process for forming an oxide film on the surface of a wafer in a semiconductor manufacturing process, and in particular to the production of wafers with a uniform oxide film for the purpose of high yield. oxidation method suitable for

〔発明の背景〕[Background of the invention]

従来の酸化方式は高温に維持された酸化炉の炉壁面から
の輻射のみでウェハを加熱していたためウェハ聞及びウ
ェハ面内温度分布を制御することが困難であり加熱後の
酸化膜に大きなバラツキが生じていた。これが大規模集
積回路生産における高品質化及びに歩留り向上に対して
大きな問題であった。
In the conventional oxidation method, the wafer was heated only by radiation from the wall of the oxidation furnace, which was maintained at a high temperature, making it difficult to control the temperature distribution between and within the wafer, resulting in large variations in the oxide film after heating. was occurring. This has been a major problem in improving quality and yield in large-scale integrated circuit production.

〔発明の目的〕[Purpose of the invention]

本発明の目的は半導体製造プロセス酸化工程において生
成てれるウェハ面上酸化膜の膜厚をウェハごとのバラツ
キ、同一ウェハ面上でのバラツキ1に最小とし、大規模
集積回路の高品質化と高歩留りを実現するための酸化方
式を提供することにある。
The purpose of the present invention is to minimize the variation from wafer to wafer and the variation on the same wafer surface to 1 in the thickness of the oxide film formed on the wafer surface during the oxidation step of the semiconductor manufacturing process, and to improve the quality of large-scale integrated circuits. The objective is to provide an oxidation method to achieve high yield.

〔発明の概要〕[Summary of the invention]

本発明はシミュレーション及び実験結果から得られた酸
化工程に関する新しい発見に基づくものである。
The present invention is based on new discoveries regarding the oxidation process obtained from simulation and experimental results.

シミュレーションに際して用いたモデルは基本的な物理
法則に基づく、あまり近似全便わずに現象をそのまま記
述したものである。以下それ全記述してみると +div(Kw@grad’l’+)−−(1)ここで
、TIはi番目ウェハ温度%Cwはウェハ比熱、ρWは
ウェハ密度%7wはウェハ厚み、tは時間、σはボルツ
マン・ステファン定数、aはウェハ熱吸収率5gwはウ
ェハ輻射率、Gn、sはウェハ間係態係数で添字nは反
射回数を表わす。
The model used in the simulation is based on basic physical laws and describes the phenomenon as it is without much approximation. To describe it all below, +div(Kw@grad'l'+) --(1) Here, TI is the i-th wafer temperature%Cw is the wafer specific heat, ρW is the wafer density%7w is the wafer thickness, and t is time, σ is the Boltzmann-Stefan constant, a is the wafer heat absorption coefficient, 5 gw is the wafer emissivity, Gn, s are the inter-wafer coefficients, and the subscript n represents the number of reflections.

TPは炉壁温度、εfは炉壁輻射率 F nはウェハの
炉壁間形態係数、Kwはウェハ熱伝導度、dsy、ds
yはそれぞれ炉壁面、ウェハ面の微小面積片を表わす。
TP is the furnace wall temperature, εf is the furnace wall emissivity, F n is the wafer wall-to-wall view factor, Kw is the wafer thermal conductivity, dsy, ds
y represents a small area piece of the furnace wall surface and the wafer surface, respectively.

また(1)式右辺については、第一項で自己輻射損失、
第二項で隣接ウェハがらの輻射、第三項で炉壁からの輻
射、第四項で熱拡散を表わしている。
Also, regarding the right side of equation (1), the first term is self-radiation loss,
The second term represents radiation from adjacent wafers, the third term represents radiation from the furnace wall, and the fourth term represents thermal diffusion.

実験結果よシ第2図で示すウェハ間の酸化膜厚の分布と
第4図で示すウェハ面内の酸化膜厚の分布がわかってい
る。第2図はウェハ列の両端近くでウェハ中心の酸化膜
厚が小さいことが示されている。第4図は両端のウェハ
(左図)、均一部分のウェハ(右図)およびその中間の
ウェハ(中央の図)の、第1図におけるA−A’ 、 
B−B’ 。
From the experimental results, the distribution of oxide film thickness between wafers as shown in FIG. 2 and the distribution of oxide film thickness within the wafer surface as shown in FIG. 4 are known. FIG. 2 shows that the oxide film thickness at the center of the wafer is small near both ends of the wafer row. Figure 4 shows AA' in Figure 1 of the wafers at both ends (left figure), the wafer in the uniform part (right figure), and the wafer in the middle (center figure).
B-B'.

c−c’での酸化膜厚分布を示している。これよシ端の
ウェハはど平均酸化膜厚が(/〕(→]小さく、ウェハ
面内で酸化膜厚のバラツキが大きいことがわかる。
The oxide film thickness distribution along c-c' is shown. It can be seen that the average oxide film thickness of the wafer at the far end is (/](→) smaller, and the variation in oxide film thickness within the wafer surface is large.

この酸化膜厚分布はウェハ温度分布に強く依存すると考
えられているが実際の製造ラインと同じ条件で直接温度
分布を測定する実験はされていないため、どのような酸
化炉内温度制御を施すかは暗中模索の状態であった。
This oxide film thickness distribution is thought to be strongly dependent on the wafer temperature distribution, but since no experiments have been conducted to directly measure the temperature distribution under the same conditions as on the actual production line, it is unclear what kind of temperature control inside the oxidation furnace should be applied. was in a state of groping in the dark.

本発明に用いたシミュレータはパラメータを設定するこ
とによシ各シミュレーション条件におけるウェハ間温度
分布とウェハ面内温度分布を出力することができる。こ
のシミュレーション結果より、ウェハ温度分布(ウェハ
間温度分布とウェハ間温度分布)は第2図、第4図で示
した酸化膜厚測定結果と非蕪によく似た傾向を示し、次
の式によってウェハ温度と酸化膜厚は関係付けられた。
By setting parameters, the simulator used in the present invention can output the inter-wafer temperature distribution and the in-plane temperature distribution of the wafer under each simulation condition. From this simulation result, the wafer temperature distribution (inter-wafer temperature distribution and inter-wafer temperature distribution) shows a tendency very similar to the oxide film thickness measurement results shown in Figures 2 and 4, and is calculated by the following formula. Wafer temperature and oxide film thickness were correlated.

X” =A・r ・exp(B/Tw )ここで、Xは
酸化膜厚、τは酸化時間、Twはウェハ温度、A、B 
(>0)は定数である。目標酸化膜厚XOと酸化時間τ
0が与えられた時、要求されるウェハ温度は上式よシ決
定される。
X” = A・r・exp(B/Tw) Here, X is the oxide film thickness, τ is the oxidation time, Tw is the wafer temperature, A, B
(>0) is a constant. Target oxide film thickness XO and oxidation time τ
When 0 is given, the required wafer temperature is determined according to the above equation.

ウェハ列で両端近くのウェハ酸化膜厚が全体的に小さく
、またウェハ面内の酸化膜厚分布の均一性が悪いのはウ
ェハ温度分布の均一性が悪いためである。第2図、第4
図と酸化膜厚とウェハ温度の関係から両端のウェハ温度
分布は均一部分のウェハ温度分布に比較して平均温度が
低く、面内で温度勾配が大きいことがわかる。両端から
内側に向かって不均一な傾向は弱まり中央の強一部分に
続く。両端のウェハの温度分布がウニ八同志の熱のやり
とシによって隣シのウェハに悪影響を及ぼすため隣りの
ウェハの温度分布も均一部分の温度よりも低くて温度勾
配の大きなものとなる。同様の効果が両端から内側に向
かって次々と伝えられるため第2図、第4図のような温
度分布や酸化膜厚分布が得られるのである。
The reason why the wafer oxide film thickness near both ends of the wafer row is generally small and the oxide film thickness distribution within the wafer surface is not uniform is because the wafer temperature distribution is not uniform. Figures 2 and 4
From the figure and the relationship between oxide film thickness and wafer temperature, it can be seen that the wafer temperature distribution at both ends has a lower average temperature than the wafer temperature distribution in the uniform part, and the temperature gradient within the plane is large. The non-uniform tendency weakens from both ends inward and continues to a strong part in the center. Since the temperature distribution of the wafers at both ends has an adverse effect on the neighboring wafers due to the thermal radiation of the eight urchins, the temperature distribution of the neighboring wafers is also lower than the temperature of the uniform portion, resulting in a large temperature gradient. Similar effects are successively transmitted inward from both ends, resulting in the temperature distribution and oxide film thickness distribution as shown in FIGS. 2 and 4.

上記の理由からウエノ・温度分布の均一性向上のために
、両端のウェハの温度分布を、均一な部分の温度分布に
近づけるように改善することは効果的である。両端での
ウェハ平均温度をT1%均一部分のウェハ平均温度を“
v2とすれば、両端と均一部分の間のウェハ平均温度T
 ld T r < T < T 2を満たす。酸化膜
厚の目標値をXo、バラツキの許容範囲をΔXとしてX
oに対応するウエノ・温度f T ’w 、 X O−
ΔXに対応するウエノ・温度fj:T 2−ΔTとすれ
ば14−ΔT < T”1 < ’I” 2 となる様
に両端ウエノ・の温度を制御すれば原理的にはすべてウ
ェハから良質の酸化膜が得られることになる。
For the above reasons, in order to improve the uniformity of the wafer temperature distribution, it is effective to improve the temperature distribution of the wafer at both ends so that it approaches the temperature distribution of a uniform portion. The wafer average temperature at both ends is T1% The wafer average temperature at the uniform part is “
v2, the wafer average temperature T between both ends and the uniform part
ld T r < T < T 2 is satisfied. The target value of oxide film thickness is Xo, and the allowable range of variation is ΔX.
Ueno temperature f T'w corresponding to o, X O-
If the wafer temperature fj corresponding to ΔX is T 2 - ΔT, then if the temperature of the wafers at both ends is controlled so that 14 - ΔT <T"1<'I" 2, in principle all wafers can be made of high quality. An oxide film will be obtained.

同様の理由により両端ウエノ・面内温度勾配を十分小さ
くすればウエノ・1枚当たりの均一な酸化膜厚の面積が
広くなる。
For the same reason, if the in-plane temperature gradient at both ends of the wafer is made sufficiently small, the area of uniform oxide film thickness per wafer will be increased.

しかし、両端のウエノ・の温度を上記の様な最適温度に
するためには、従来の炉壁からの加熱のみでは十分良い
結果がシミュレーションからは得られなかった。従って
炉壁以外から両端ウェハの温度を制御する必要がある。
However, in order to bring the temperature of the wafer at both ends to the optimal temperature as described above, simulations have not shown that sufficient results can be obtained using conventional heating from the furnace walls alone. Therefore, it is necessary to control the temperature of the wafers at both ends from other than the furnace wall.

両端ウェハの温度不均一性は隣接するウェハが1枚だけ
で、ウエノ・と隣接しない側からは直接炉壁からの輻射
を受けるためウェハの表と裏面との非対称性に起因する
。そこでウェハと隣接していない側に加熱器を設け、両
端ウェハの温度を制御する点が本発明の特徴である。
The temperature non-uniformity of the wafers at both ends is due to the asymmetry between the front and back surfaces of the wafer because there is only one wafer adjacent to the wafer and the side not adjacent to the wafer receives radiation directly from the furnace wall. Therefore, the present invention is characterized in that a heater is provided on the side not adjacent to the wafer to control the temperature of the wafers at both ends.

加熱器にはウェハと平行な平面を持たせ、その平面温度
を均一部分の温度T!に保ち面内温度勾配を可能な限り
抑える。高温環境のためオンライン制御等の可能性は少
ないが、数回の試行により炉内加熱器の最適温度を決定
し、その温度で両端ウェハ温度を制御すれば現在のウェ
ハ酸化膜の生産性を質、量とも向上できる。
The heater has a flat surface parallel to the wafer, and the temperature of the flat surface is equal to the temperature of the uniform part T! to suppress in-plane temperature gradients as much as possible. Although there is little possibility of online control due to the high temperature environment, it is possible to improve the productivity of the current wafer oxide film by determining the optimal temperature of the furnace heater through several trials and controlling the wafer temperature at both ends at that temperature. Both quantity and quantity can be improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。ウェ
ハ4を載せるボート5の両端に加熱器2を設け、その間
にウェハを並べる。両端に置いた加熱器はウェハと平行
な平面をもつ均一な温度分布で端のウェハを加熱する。
An embodiment of the present invention will be described below with reference to FIG. Heaters 2 are provided at both ends of a boat 5 on which wafers 4 are placed, and the wafers are arranged between them. The heaters placed at both ends heat the wafer at the ends with a uniform temperature distribution with a plane parallel to the wafer.

ウエノ・温度分布のノ(ラツキが酸化膜厚のバラツキに
及ぼす影響は第2図と第4図に示すような関係が実1暎
結果及びシミュレーション結果より知られている。第4
図より端のウェハの温度分布がその近くのウエノ・の温
度分布にまで影響していることがわかる。そこで両端の
ウェハの温度分布を中間部のウエノ・温度分布と同じに
なるように炉壁以外の補助的加熱器を設けて制御すれば
ダミーウエノ・の数を著るしく減少烙ぜることか出来る
。但し炉内加熱器の設定温度は数回の試行により最適温
度を決定しそれを採用するものとする。
The influence of the unevenness of the temperature distribution on the variation in oxide film thickness is known from actual and simulation results as shown in Figures 2 and 4.
The figure shows that the temperature distribution of the wafer at the edge affects the temperature distribution of the wafer nearby. Therefore, if an auxiliary heater other than the furnace wall is installed and controlled so that the temperature distribution of the wafers at both ends is the same as the temperature distribution of the wafers in the middle, the number of dummy wafers can be significantly reduced. . However, as for the temperature setting of the furnace heater, the optimum temperature shall be determined through several trials and then adopted.

〔発明の効果〕〔Effect of the invention〕

不発明によれば酸化膜が薄かったり不均一であるために
製品化婆れなかったダミーウエノ・を減少させ、均一性
を向上できるので大規模集積回路の生産性向上、高品質
化の効果がある。
According to the invention, it is possible to reduce dummy oxide films that could not be commercialized due to thin or uneven oxide films and improve uniformity, which has the effect of improving productivity and quality of large-scale integrated circuits. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸化装置の構成図、第2図は酸化炉内ウ
ェハ間温度分布図、第3図は本発明の一実施例である酸
化装置の構成図、第4図は従来の酸化方式によって得ら
れる酸化膜厚分布図である。
Fig. 1 is a block diagram of a conventional oxidation apparatus, Fig. 2 is a diagram of temperature distribution between wafers in an oxidation furnace, Fig. 3 is a block diagram of an oxidation apparatus which is an embodiment of the present invention, and Fig. 4 is a block diagram of a conventional oxidation apparatus. FIG. 3 is an oxide film thickness distribution diagram obtained by the method.

Claims (1)

【特許請求の範囲】[Claims] 1、半導体製造プロセスの酸化工程において、ウェハ列
の先端と後端近傍のウエノ・の温度を中間部のウェハと
ほぼ同温度にし、同時に、ウエノ・面内の温度勾配を減
少させウエノ・面内温度を均一にするように先端ウェハ
の前方と後端ウェハの後方から加熱することを特徴とす
るウェハ酸化方式。
1. In the oxidation step of the semiconductor manufacturing process, the temperature of the wafers near the front and rear ends of the wafer row is made to be approximately the same as that of the wafers in the middle, and at the same time, the temperature gradient within the wafer surface is reduced. A wafer oxidation method that heats from the front of the leading wafer and the rear of the trailing wafer to equalize the temperature.
JP58186730A 1983-10-07 1983-10-07 Wafer oxidation process Pending JPS6079729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186730A JPS6079729A (en) 1983-10-07 1983-10-07 Wafer oxidation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186730A JPS6079729A (en) 1983-10-07 1983-10-07 Wafer oxidation process

Publications (1)

Publication Number Publication Date
JPS6079729A true JPS6079729A (en) 1985-05-07

Family

ID=16193630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186730A Pending JPS6079729A (en) 1983-10-07 1983-10-07 Wafer oxidation process

Country Status (1)

Country Link
JP (1) JPS6079729A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274619A (en) * 1986-05-22 1987-11-28 Shinetsu Sekiei Kk Conveying device
JPS63278227A (en) * 1987-05-08 1988-11-15 Teru Sagami Kk Heat treatment equipment
JPH088194A (en) * 1994-06-16 1996-01-12 Kishimoto Sangyo Kk Gas phase growth mechanism and heating apparatus in heat treatment mechanism
EP0982761A1 (en) * 1998-08-27 2000-03-01 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for thermal treatment of semicondutor wafers
WO2019179942A1 (en) * 2018-03-17 2019-09-26 centrotherm international AG Heating unit for a horizontal furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274619A (en) * 1986-05-22 1987-11-28 Shinetsu Sekiei Kk Conveying device
JPH0332211B2 (en) * 1986-05-22 1991-05-10 Shinetsu Sekiei Kk
JPS63278227A (en) * 1987-05-08 1988-11-15 Teru Sagami Kk Heat treatment equipment
JPH088194A (en) * 1994-06-16 1996-01-12 Kishimoto Sangyo Kk Gas phase growth mechanism and heating apparatus in heat treatment mechanism
EP0982761A1 (en) * 1998-08-27 2000-03-01 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Process and apparatus for thermal treatment of semicondutor wafers
WO2019179942A1 (en) * 2018-03-17 2019-09-26 centrotherm international AG Heating unit for a horizontal furnace

Similar Documents

Publication Publication Date Title
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JPS6079729A (en) Wafer oxidation process
TW200425270A (en) Heat treatment apparatus and method of semiconductor wafer
JP2006222354A (en) Method for setting temperature of heat treatment plate, equipment for setting temperature of heat treatment, program, and program-recorded computer-readable recording medium
JPH1197448A (en) Apparatus and method for heat treatment of semiconductor crystal
JP4146558B2 (en) Substrate heat treatment method and substrate heat treatment apparatus
JPH11242324A (en) Formation of photomask and heat treatment device
JP2019151500A (en) Method for estimating convection pattern of silicon melt, method for estimating oxygen concentration of silicon single crystal, method for manufacturing silicon single crystal and apparatus for pulling silicon single crystal
JPH07201765A (en) Heat-treating device and heat treatment
JP4625394B2 (en) Film forming apparatus and film forming method
JPS5935671A (en) Heat treatment device
JPH06181173A (en) Heating system
JPH0327522A (en) Method and device for thin film processing to semiconductor substrate and thin film processing device
JP2002134491A (en) Heat treatment apparatus
JPS62101037A (en) Control system of temperature of wafer in oxidizing and diffusing device
JPS6189632A (en) Formation of resist pattern
KR20140006497A (en) Heating structure for heat treatment chamber of substrates and heat treatment chamber of substrates having the same
JPS61180438A (en) Treating device for resist
JPH05217930A (en) Wafer heating apparatus
JP2002367919A (en) Heat treatment device
JPH11257866A (en) Heating furnace
JPS61120427A (en) System for uniformizing thickness of oxide film in wafer within furnace for oxidizing semiconductor
KR20080048242A (en) Bake unit for semiconductor manufacture
JPH0557322A (en) Method for controlling finish rolling speed
JPS60135950A (en) Production for mask