JPS6078424A - Optically color developing element - Google Patents

Optically color developing element

Info

Publication number
JPS6078424A
JPS6078424A JP58186449A JP18644983A JPS6078424A JP S6078424 A JPS6078424 A JP S6078424A JP 58186449 A JP58186449 A JP 58186449A JP 18644983 A JP18644983 A JP 18644983A JP S6078424 A JPS6078424 A JP S6078424A
Authority
JP
Japan
Prior art keywords
color
layer
coloring
light
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186449A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Kumiko Hirochi
廣地 久美子
Tsuneo Mitsuyu
常男 三露
Kentaro Setsune
瀬恒 謙太郎
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58186449A priority Critical patent/JPS6078424A/en
Publication of JPS6078424A publication Critical patent/JPS6078424A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Abstract

PURPOSE:To enable the writing, long-time retention and simple vanishment of a fine and high density pattern by irradiating light on a two-layered structure consisting of a color developing layer and an ion feeding source formed in contact with the color develoing layer to develop color and by impressing voltage to retain the color. CONSTITUTION:Light is irradiated on a two-layered structure consisting of a color developing layer 1 and an ion feeding source 2 formed in contact with the layer 1 to develop color, and the color is retained by impressing an electric field to the structure. The color is vanished by impressing an electric field whose polarity is reverse to that of the electric field for color retention. Ultraviolet light of 500nm wavelength is used as the light irradiated. A pair of electrodes 3, 4 are attached to both sides of the structure. At least one of the electrodes 3, 4 transmits ultraviolet light. A film formed by sputtering mixed Li.W oxide in an Ar atmosphere used as the layer 1, and a film formed by sputtering mixed Li.W oxide in an Ar.O2 atmosphere is used as the source 2. The electrodes 3, 4 are made of ITO. A fine and high density optical memory or display can be retained for a long time with the resulting color developing element, and it can be simply vanished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は微細な高密度の光メモリや表示等に有効な消去
可能な光学発色素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to erasable optical color elements useful for fine, high-density optical memories, displays, and the like.

従来例の構成とその問題点 従来、光学発色素子として知られているエレクトロクロ
ミック素子は、発色も消去も電界によって行い、電極の
形状によって発色パターンを形成していた。そして発色
は時間とともに減衰して行くことも知られている。電極
を形成する場合は、パターンの精細に限界が有シ、リー
ドを取り出す必要があるため、密度に対しても限界が有
った。
Conventional Structures and Problems Conventionally, electrochromic elements, known as optical color elements, perform color development and erasure using electric fields, and form colored patterns depending on the shape of electrodes. It is also known that the coloring fades over time. When forming electrodes, there is a limit to the fineness of the pattern, and since it is necessary to take out the leads, there is also a limit to the density.

このだめ、従来の素子は微細な高密度なパターンを必要
とする光メモリや表示等への適用は困難であり、簡単な
表示素子として使用されるだけであった。また、従来の
光メモリは、熱によって構造変化を起こさせ、メモリす
るものがほとんどで、消去が可能なものは少なく、消去
可能な光メモリでも、熱による消去を行うため、消去の
ための複雑な構造を必要とし、実用に十分なものではな
かった。光によって発色されるものでも、発色は長時間
保持できるものではなかった。本発明者等は発色層とイ
オン供給源とを密着させた2層構造を有する発色素子に
光を照射すると、光に照射された部分のみが発色し、こ
の発色部は上記2層構造に電界を印加することにより発
色を長時間保持できることを発見した。また、上記発色
保持の場合と逆極性の電界を印加すると発色を消去でき
る。
Unfortunately, it is difficult for conventional devices to be applied to optical memories, displays, etc. that require fine, high-density patterns, and they have only been used as simple display devices. In addition, most conventional optical memories use heat to cause structural changes, and only a few can be erased. was not sufficient for practical use. Even when the color is produced by light, the color cannot be maintained for a long time. The present inventors discovered that when light is irradiated onto a coloring element that has a two-layer structure in which a coloring layer and an ion supply source are brought into close contact, only the portion irradiated with light develops color, and this coloring portion is caused by an electric field applied to the two-layered structure. It was discovered that color development can be maintained for a long time by applying . Further, color development can be erased by applying an electric field of opposite polarity to that in the case of maintaining color development.

この発見に基づいて、微細な高密度のパターンを実現で
き、パターンを長時間保持できる消去可能な光学発色素
子を発明した〇 発明の目的 本発明の目的は、微細な高密度のパターンが書き込み可
能で、長時間保持できさらに簡単に消去できる光学発色
素子を提供するものである。
Based on this discovery, we invented an erasable optical coloring element that can create fine, high-density patterns and retain patterns for long periods of time.Objective of the InventionThe purpose of the present invention is to be able to write fine, high-density patterns. The present invention provides an optical coloring element that can be retained for a long time and can be easily erased.

発明の構成 本発明の光学発色素子は、発色層と上記発色層に密着し
て設けたイオン供給源とからなる2層構造を有す名発色
素子において、光を照射することによシ発色させ、上記
2層構造に電界を印加することによシ発色を保持するこ
とを特徴とする。また、上記発色保持の場合と逆極性の
電界を印加すると発色を消去できる。光を照射して発色
させる場合、波長が500 n m以下の紫外光を用い
ると特に有効に発色させることができることを発明者等
は確認した。また、上記2層構造をはさんで、少なくと
も一方が紫外光に対して透過性の1対の電極を設け、紫
外線に対して透過性の電極を通して光を照射し発色させ
、上記電極間に電圧をくわえることにより、上記電界を
上記2重層に印加し消色すると、上記2重層によシ有効
に電界が印加され、低電圧での消去が行えることも発明
者等は確認した。
Structure of the Invention The optical coloring element of the present invention has a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer, and is capable of developing color by irradiating it with light. , is characterized in that color development is maintained by applying an electric field to the two-layer structure. Further, color development can be erased by applying an electric field of opposite polarity to that in the case of maintaining color development. The inventors have confirmed that when irradiating light to develop color, the use of ultraviolet light having a wavelength of 500 nm or less makes it possible to develop color particularly effectively. In addition, a pair of electrodes, at least one of which is transparent to ultraviolet light, is provided between the two-layer structure, and light is irradiated through the electrodes that are transparent to ultraviolet light to cause color development, and a voltage is applied between the electrodes. The inventors have also confirmed that when the electric field is applied to the double layer to erase the color by holding the double layer between the two layers, the electric field is effectively applied to the double layer and erasing can be performed at a low voltage.

さらに、上記発色層としては、リチウムとタングステン
の混合酸化物のアルゴン雰囲中でのスパッタ膜が、上記
イオン供給源としては、リチウムとタングステンの混合
酸化物のアルゴン・酸素雰囲気中でのスパッタ膜が、そ
れぞれ本発明の光学発色素子として特に有効であること
を確認した。
Further, the coloring layer is a sputtered film of a mixed oxide of lithium and tungsten in an argon atmosphere, and the ion source is a sputtered film of a mixed oxide of lithium and tungsten in an argon/oxygen atmosphere. It was confirmed that these are particularly effective as optical coloring elements of the present invention.

紫外光に対して透過性の電極としては、ITO膜を用い
ると、可視領域の透過性も良好であり、特に有効である
ことも確認した。
It was also confirmed that when an ITO film is used as an electrode that is transparent to ultraviolet light, it has good transparency in the visible region and is particularly effective.

実施例の説明 第1図に本発明の光学発色素子の第一の実施例を示す。Description of examples FIG. 1 shows a first embodiment of the optical coloring element of the present invention.

発色層1とイオン供給源2を密着して設は紫外光に対し
て透過性の電極3,4ではさむ。
The coloring layer 1 and the ion source 2 are placed in close contact and sandwiched between electrodes 3 and 4 that are transparent to ultraviolet light.

この4層構造は、基板6上に形成されるが、機械的に安
定であれば、必ずしも基板5は必要でない。
Although this four-layer structure is formed on the substrate 6, the substrate 5 is not necessarily required as long as it is mechanically stable.

又、電極3,4についても、十分な電界が上記発色層1
とイオン供給源2の2層構造にかかれば、必らずしも必
要でない。発色層1は、イオン供給源2から供給される
イオンと反応して発色する。
Also, regarding the electrodes 3 and 4, a sufficient electric field is applied to the coloring layer 1.
and the two-layer structure of the ion source 2, it is not necessarily necessary. The coloring layer 1 reacts with ions supplied from the ion supply source 2 to develop color.

反応に除しては、発色層の物質とイオンが共存している
状態aから、互いに反応して発色した状態すへ、第2図
に示すごとく、エネルギーの壁Aを越えて変化しなけれ
ばならないため、エネルギーの壁Aの高さEに対応する
エネルギーを必要とする。このエネルギーを光によって
与えることにより発色層1を発色させるのが本発明の発
色の原理である。
In terms of reaction, the state from state a where the substance and ions in the coloring layer coexist to the state where they react with each other and develop color must change beyond the energy barrier A, as shown in Figure 2. Therefore, energy corresponding to the height E of the energy wall A is required. The principle of color development of the present invention is to cause the color development layer 1 to develop color by applying this energy with light.

第3図に示すごとく光6を照射すると、紫外光に対して
透過性の電極3を紫外光6が通シ抜け、発色層とイオン
供給源の界面7に作用する。この光のエネルギーが上記
エネルギーEを与えることとなシ、反応が起こシ光を照
射された部分8のみ発色する。この反応の詳細は不明で
あるが上述のようなメカニズムにより、光が照射された
部分のみが発色すると考えられる。上記発色部8は、上
記2層構造に電界を印加する。っまシ上記電極3゜4に
電圧を加えることにより長時間保持される0この保持電
界を印加することにより、発色状態のエネルギーが下げ
られ第2図の6− B t a t eとなる。
When the light 6 is irradiated as shown in FIG. 3, the ultraviolet light 6 passes through the electrode 3 which is transparent to ultraviolet light and acts on the interface 7 between the coloring layer and the ion source. When the energy of this light gives the energy E, a reaction occurs and only the portion 8 irradiated with the light develops a color. Although the details of this reaction are unknown, it is thought that only the areas irradiated with light develop color due to the mechanism described above. The coloring section 8 applies an electric field to the two-layer structure. By applying a holding electric field that is maintained for a long time by applying a voltage to the electrodes 3 and 4, the energy of the coloring state is lowered to become 6-Btate in FIG.

つまり発色状態の方が、発色層の物質とイオンが共存し
ている無発色の状態とよりもエネルギー的に低くなり、
熱による効果でエネルギーの壁へを越えて、発色状態す
から無発色の状態aへ移るつまり消色する確率が減少す
る。電界の強さを適当に選ぶことによって、発色パター
ンは長時間保持された。上記発色部は、上記2層構造に
、上記発色保持の場合と逆極性の電界を印加、つまり、
上記電極3,4に上記発色保持の場合と逆極性の電圧を
くわえることにより消去され、発色前の状態に戻る。消
去時には、上記反応と逆の反応が起こると考えられ、上
記エネルギーの壁(第2図のE’)以上のエネルギーを
与える電界を加えることにより、逆反応させる。
In other words, the coloring state is lower in energy than the non-coloring state where the substance and ions of the coloring layer coexist.
Due to the effect of heat, the energy barrier is exceeded and the probability of transition from a colored state to a non-colored state a, that is, decolorization, decreases. By appropriately selecting the electric field strength, the colored pattern was maintained for a long time. The coloring section applies an electric field of opposite polarity to the two-layer structure to maintain the coloring, that is,
By applying a voltage of opposite polarity to the electrodes 3 and 4 to maintain the color development, the color is erased and returns to the state before color development. At the time of erasing, it is thought that a reaction opposite to the above reaction occurs, and by applying an electric field that provides energy greater than the above energy wall (E' in FIG. 2), the reverse reaction is caused.

上記発色層としてLi−”/i−0混合物のl’hr 
雰囲気中でのスパッタ蒸着膜を、上記イオン供給源とし
てLi−W−0混合物のAr・02雰囲気中でのスパッ
タ蒸着膜を、電極としてITO膜を用いた場合には、発
色させる光として、エキシアレーザ光を用い、’51/
cJ 程度以上の密度で照射するとブルーに発色した。
l'hr of Li-''/i-0 mixture as the coloring layer
When a sputter-deposited film in an atmosphere is used, a sputter-deposited film of a Li-W-0 mixture in an Ar-02 atmosphere is used as the ion source, and an ITO film is used as an electrode. Using light, '51/
When irradiated with a density of approximately cJ or higher, it developed a blue color.

この発色は発色層側を−として2■の電圧を加えること
により、1000時間以上保持された。この発色は、上
記ITO電極に5vの電圧を加えることによシ消去でき
た。膜厚は、発色層とイオン供給源と合わせて約600
0八であった。発色時には、He −N eレーザ光線
(6328人)の透過光強度10dB以上減衰するのが
認められ、青色の発色部を形成する。
This color development was maintained for more than 1000 hours by applying a voltage of 2 .mu. with the color development layer side set as -. This coloring could be eliminated by applying a voltage of 5V to the ITO electrode. The film thickness is approximately 600 mm including the coloring layer and ion source.
It was 08. At the time of color development, it was observed that the transmitted light intensity of the He-Ne laser beam (6328 people) was attenuated by 10 dB or more, and a blue colored part was formed.

電界により消去した場合には、発色以前の状態に戻り発
色以前の状態でのHe −N eレーザ光線の透過光強
度と同じ透過光強度を示した。ここでは具体的にLi−
W−’O混合物のスパッタ膜についてのみ示したが、発
色層はいわゆるエレクトロクロミック材二であれば良く
、イオン供給源も上記物質に限られるものではない。イ
オン供給源は、固体ばかシでなく液体でも良く、上記エ
レクトロクロミック材料に作用するイオンを含んでいる
ものであれば良い。照射光も、エキシマレーザに限られ
るものではなく、反応に対するエネルギーの壁板上のエ
ネルギーを与える光であれば良い。エネルギーの大きな
紫外光は有効である0照射光は、ふ レンズ絞り、約1μm程度の微細なパターンを、発色さ
せることができる。また光をスキャンすることにより、
複雑なパターンを書き込むこともできる。
When erased by an electric field, the state returned to the state before color development and exhibited the same transmitted light intensity as the transmitted light intensity of the He--Ne laser beam in the state before color development. Specifically, Li-
Although only a sputtered film of a W-'O mixture is shown, the coloring layer may be any so-called electrochromic material, and the ion source is not limited to the above-mentioned materials. The ion supply source may be a liquid instead of a solid substance, as long as it contains ions that act on the electrochromic material. The irradiation light is not limited to excimer laser, but may be any light that provides energy on the wall plate of energy for reaction. Ultraviolet light with high energy is effective. The 0 irradiation light can color a fine pattern of about 1 μm through a lens aperture. Also, by scanning light,
You can also write complex patterns.

発明の効果 以上のように、本発明は発色層とそれに密着して設けた
イオン供給源とからなる2層構造を有する発色素子にお
いて、光を照射することにより発色させ、電界を印加す
ることにより保持し微細な高密度のパターンを実現し長
時間保持できた。また、上記保持の場合と逆極性の電界
を印加することにより、簡単に発色部を消去することが
でき、微細な高密度の光メモリや表示等に有効な長時間
Effects of the Invention As described above, the present invention provides a coloring element having a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. It was possible to achieve a fine, high-density pattern that could be held for a long time. In addition, by applying an electric field with the opposite polarity to the holding case described above, the colored part can be easily erased, making it effective for long periods of time for fine, high-density optical memory, display, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学発色素子の概略断面構造図、第2
図は本発明の光学発色素子における各状態でのエネルギ
ー図、第3図は本発明の光学発色素子の光による発色動
作図である。 1・・・・・・発色層、2・・・・・・イオン供給源、
3,4・″。 ・・・電極、5・・・・・・基板、6・・・・・・光(
紫外線)。
FIG. 1 is a schematic cross-sectional structural diagram of the optical coloring element of the present invention, and FIG.
The figure is an energy diagram of the optical coloring element of the present invention in each state, and FIG. 3 is a diagram of the coloring operation of the optical coloring element of the present invention due to light. 1... Coloring layer, 2... Ion supply source,
3,4・″. . . Electrode, 5 . . . Substrate, 6 . . . Light (
ultraviolet light).

Claims (1)

【特許請求の範囲】 (1)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造を有し、光を照射することにより
発色させ、上記2層構造に電界を印加することにより上
記発色を保持することを特徴とする光学発色素子。 (2)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造に、発色保持の場合と逆極性の電
界を印加することによシ発色部を消色することを特徴と
する特許請求の範囲第1項記載の光学発色素子。 (3)光として、波長が500 nm以下の紫外光を用
いることを特徴とする特許請求の範囲第1項記載の光学
発色素子。 (4)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造をはさんで、少なくとも一方が紫
外線に対して透過性の1対の電極を設けたことを特徴と
する特許請求の範囲第1項または第2項記載の光学発色
素子。 (6)発色層としてリチウムとタングステンの混合酸化
物のアルゴン雰囲気中でのスパッタ膜を、イオン供給源
として、上記リチウムとタングステンの混合酸化物のア
ルゴン・酸素雰囲気中でのスパッタ膜を用いることを特
徴とする特許請求の範囲第1項または第2項記載の光学
発色素子。 (6)紫外線に対して透過性の電極として、ITO膜を
用いたことを特徴とする特許請求の範囲第4項記載の光
学発色素子。
[Claims] (1) It has a two-layer structure consisting of a color-forming layer and an ion supply source provided in close contact with the color-forming layer, and the color is developed by irradiating light, and an electric field is applied to the two-layer structure. An optical coloring element that maintains the above-mentioned color development by applying an electric current. (2) The coloring part can be decolored by applying an electric field of opposite polarity to that for maintaining coloring to the two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. An optical coloring element according to claim 1, which is characterized by: (3) The optical coloring element according to claim 1, wherein ultraviolet light having a wavelength of 500 nm or less is used as the light. (4) A pair of electrodes, at least one of which is transparent to ultraviolet rays, are provided sandwiching a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. An optical coloring element according to claim 1 or 2. (6) A sputtered film of a mixed oxide of lithium and tungsten in an argon atmosphere is used as the coloring layer, and a sputtered film of the mixed oxide of lithium and tungsten in an argon/oxygen atmosphere is used as the ion source. An optical coloring element according to claim 1 or 2, which is characterized by: (6) The optical coloring element according to claim 4, characterized in that an ITO film is used as the electrode that is transparent to ultraviolet rays.
JP58186449A 1983-10-05 1983-10-05 Optically color developing element Pending JPS6078424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186449A JPS6078424A (en) 1983-10-05 1983-10-05 Optically color developing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186449A JPS6078424A (en) 1983-10-05 1983-10-05 Optically color developing element

Publications (1)

Publication Number Publication Date
JPS6078424A true JPS6078424A (en) 1985-05-04

Family

ID=16188646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186449A Pending JPS6078424A (en) 1983-10-05 1983-10-05 Optically color developing element

Country Status (1)

Country Link
JP (1) JPS6078424A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680799A1 (en) * 1991-09-03 1993-03-05 Elf Aquitaine Target element for cathodic sputtering, process for the preparation of the said element and targets, especially over a large area, produced from this element
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US11960188B2 (en) 2022-03-24 2024-04-16 View, Inc. Counter electrode for electrochromic devices

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2680799A1 (en) * 1991-09-03 1993-03-05 Elf Aquitaine Target element for cathodic sputtering, process for the preparation of the said element and targets, especially over a large area, produced from this element
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11635665B2 (en) 2009-03-31 2023-04-25 View, Inc. Counter electrode material for electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US11898233B2 (en) 2009-03-31 2024-02-13 View, Inc. Electrochromic devices
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
JP2020149055A (en) * 2010-04-30 2020-09-17 ビュー, インコーポレイテッド Electrochromic device, manufacturing method of electrochromic device, and device for manufacturing electrochromic device
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices
US11960188B2 (en) 2022-03-24 2024-04-16 View, Inc. Counter electrode for electrochromic devices
US11966140B2 (en) 2022-07-05 2024-04-23 View, Inc. Counter electrode for electrochromic devices

Similar Documents

Publication Publication Date Title
JPS6078424A (en) Optically color developing element
US3840288A (en) Electrochromic display having electro-catalyst
JPS6066238A (en) Optical color developing element
JPS6078423A (en) Optically color developing element
JPS59216126A (en) Optical recording element and its recording method
JPS60202429A (en) Optical coloring element
JPS6123532B2 (en)
US4526441A (en) Method and electrolytic display for selectively displaying an image
JPS5852566B2 (en) Sanka Kangen Niyoru
JP4738860B2 (en) Electrochromic display element
JPS6066237A (en) Optical color developing element
JP2002116461A (en) Liquid crystal optical modulation device and method for manufacturing the same
JPS6015482A (en) Preparation of optical color developing element
JPS6012530A (en) Optical memory device
JPS6015481A (en) Optical color developing material
JP2574507B2 (en) Recording method
JPH0317618A (en) Optical write driving method for optical write type liquid crystal light valve
US4106853A (en) Method and apparatus for increasing contrast ratio of the stored image in a storage mode light valve
JP3071216B2 (en) Information recording device and image projection device using liquid crystal cell
JPS6078426A (en) Projection type display device
JPS6078427A (en) Projection type display device
JPS5936246B2 (en) Electro-optical calculation recording method
JPH03107818A (en) Optical writing type liquid crystal light valve
JPS61103127A (en) Optical recording medium
JP2003149646A (en) Nonvolatile recording medium, method for manufacturing the same, and method for recording and reading information using the same