JPS6078423A - Optically color developing element - Google Patents

Optically color developing element

Info

Publication number
JPS6078423A
JPS6078423A JP58186448A JP18644883A JPS6078423A JP S6078423 A JPS6078423 A JP S6078423A JP 58186448 A JP58186448 A JP 58186448A JP 18644883 A JP18644883 A JP 18644883A JP S6078423 A JPS6078423 A JP S6078423A
Authority
JP
Japan
Prior art keywords
layer
color
ultraviolet light
light
coloring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186448A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Kumiko Hirochi
廣地 久美子
Tsuneo Mitsuyu
常男 三露
Kentaro Setsune
瀬恒 謙太郎
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58186448A priority Critical patent/JPS6078423A/en
Publication of JPS6078423A publication Critical patent/JPS6078423A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To enable the writing and vanishment of a fine and high density pattern by forming a layer transmitting no ultraviolet light on one side of a two-layered structure consisting of a color developing layer and an ion feeding source formed in contact with the color developing layer, irradiating light from the other side to develop color, and impressing voltage to the structure to vanish the color. CONSTITUTION:A layer transmitting no ultraviolet light is formed on one side of a two-layered structure consisting of a color developing layer 1 and an ion feeding source 2 formed in contact with the layer 1 to obtain a color developing element having a multilayered structure. Light is irradiated on the element from the side not covered with the layer transmitting no ultraviolet light to develop color, and the color is vaniched by impressing an electric field to the two-layered structure. Ultraviolet light of <=500nm wavelength is used as the light. A pair of electrodes 3, 4 are attached to both sides of the two-layered structure. One of the e electrodes on the side not covered with the layer transmitting no ultraviolet light transmits ultraviolet light. A film formed by sputtering mixed Li.W oxide in an Ar atmosphere is used as the layer 1, and a film formed by sputtering mixed Li.W oxide in an Ar.O2 atmosphere is used as the source 2. The electrodes 3, 4 are made of ITO. A clear, fine and high density pattern is formed with the color developing element, and it can be simply vanished by impressing an electric field.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微細な高密度の光メモリや表示等に有効な消
去可能な光学発色素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to erasable optical color elements useful for fine, high-density optical memories, displays, and the like.

従来例の構成とその問題点 従来、光学発色素子として知られているエレクトロクロ
ミック素子は、発色も消去も電界によって行い、電極の
形状によって発色パターンを形成していた。電極を形成
する場合は、パターンの精細さに限界が有り、リードを
取り出す必要があるため、密度に対しても限界が有った
0このため、微細な高密度なパターンを必要とする光メ
モリや表示等への適用は困難であり、簡単な表示素子と
して使用されるだけであった。また、従来の光メモリは
、熱によって構造変化を起こさせ、メモリするものがほ
とんどで、消去が可能なものは少なく、消去可能な光メ
モリでも、熱による消去を行うため、消去のための複雑
な構造を必要とし、実用に十分なものではなかった。光
によって発色させる光学発色素子において、発色パター
ンを見る場合に、十分な明るさとコントラストを得るた
め、光を照射する必要が有り、この見る場合の光によっ
て、発色素子が発色してしまうことがある。発明者等は
、発色層とイオン供給源とを密着させた2層構造の一方
に紫外光を透過しない層を付加した多層構造を有する発
色素子において、上記紫外光を透過しない層を付加した
側から光を照射しても発色せず、その逆側から光を照射
すると光に照射された部分のみが発色し、この発色部は
上記2層構造に電界を印加することにより消去できるこ
とを発見し、この発見に基づいて、微細な高密度のパタ
ーンを実現できる消去可能な表示の明るい光学発色素子
を発明した。
Conventional Structures and Problems Conventionally, electrochromic elements, known as optical color elements, perform color development and erasure using electric fields, and form colored patterns depending on the shape of electrodes. When forming electrodes, there is a limit to the fineness of the pattern, and since the leads must be taken out, there is also a limit to the density.For this reason, optical memory and other devices that require fine, high-density patterns It is difficult to apply it to displays, etc., and it has only been used as a simple display element. In addition, most conventional optical memories use heat to cause structural changes, and only a few can be erased. was not sufficient for practical use. Optical color particles that produce color when exposed to light need to be irradiated with light in order to obtain sufficient brightness and contrast when viewing the colored pattern, and the light used when viewing this may cause the color particles to develop color. . The inventors have developed a color-forming element that has a multilayer structure in which a layer that does not transmit ultraviolet light is added to one side of a two-layer structure in which a color-forming layer and an ion source are brought into close contact with each other, and the side to which the layer that does not transmit ultraviolet light is added. They discovered that even when light is irradiated from the opposite side, no color develops, and when light is irradiated from the opposite side, only the irradiated area becomes colored, and this colored area can be erased by applying an electric field to the above two-layer structure. , based on this discovery, invented bright optical dye elements with erasable displays that can realize fine, high-density patterns.

発明の目的 本発明の目的は、微細な高密度のパターンが書き込み可
能で、さらに簡単に消去できる表示の明るい光学発色素
子を提供するものである。
OBJECTS OF THE INVENTION An object of the present invention is to provide an optical coloring element with a bright display on which fine, high-density patterns can be written and which can be easily erased.

発明の構成 本発明の光学発色素子は、発色層と上記発色層に密着し
て設けたイオン供給源とからなる2層構造の一方に紫外
光を透過しない層を付加した多層構造を有する発色素子
において、上記紫外光を透過しない層を設けていない側
から光を照射することにより発色させ、上記2層構造に
電界を印加することにより消色することを特徴とする。
Structure of the Invention The optical coloring element of the present invention has a multilayer structure in which a layer that does not transmit ultraviolet light is added to one side of the two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. The method is characterized in that the color is developed by irradiating light from the side not provided with the layer that does not transmit ultraviolet light, and the color is erased by applying an electric field to the two-layer structure.

紫外光を透過しない層を設けた側から光を照射しても発
色しないため、発色パターンを見る場合に、強力な光を
照射することができるため、・明るいコントラストの高
い表示を見ることができる。光を照射して発色させる場
合、波長が500 nm以下の紫外光を用いると特に有
効に発色させることができることを発明者等は確認した
0 また、上記2層構造をはさんで、少なくとも紫外光を透
過しない層を設けていない側が紫外光に対して透過性の
1対の電極を設け、紫外線に対して透過性の電極を通し
て光を照射し発色させ、上記電極間に電圧をくわえるこ
とにより、上記電界を上記2重層に印加し消色すると、
上記2重層により有効に電界が印加され、低電圧での消
去が行えることも発明者等は確認した0 さらに、上記発色層としては、リチウムとタングステン
の混合酸化物のアルゴン雰囲気中テのスノくツタ膜が、
上記イオン供給源としては、リチウムとタングステンの
混合酸化物のアルコ゛ン・酸素雰囲気中でのスパッタ膜
が、そルぞれ本発明の光学発色素子として特に有効であ
ることを確認したO紫外光に対して透過性の電極として
は、ITO膜を用いると、可視領域の透過性も良好であ
り、特に有効であることも確認した。
Since no color develops even if light is irradiated from the side with a layer that does not transmit ultraviolet light, it is possible to irradiate a strong light when looking at colored patterns, allowing you to see bright, high-contrast displays. . The inventors have confirmed that when coloring is caused by irradiation with light, the coloring can be particularly effectively achieved by using ultraviolet light with a wavelength of 500 nm or less. By providing a pair of electrodes that are transparent to ultraviolet light on the side that is not provided with the layer that does not transmit ultraviolet light, irradiating light through the electrodes that are transparent to ultraviolet light to develop color, and applying a voltage between the electrodes, When the electric field is applied to the double layer to erase the color,
The inventors have also confirmed that an electric field can be applied effectively through the double layer, and erasing can be performed at low voltage.Furthermore, as the color-forming layer, a mixed oxide of lithium and tungsten can be used in an argon atmosphere. The ivy membrane is
As the ion supply source, a sputtered film of a mixed oxide of lithium and tungsten in an alcohol/oxygen atmosphere is used for the O-ultraviolet light, which has been confirmed to be particularly effective as an optical coloring element of the present invention. It was also confirmed that using an ITO film as a transparent electrode has good transparency in the visible region and is particularly effective.

実施例の説明 第1図に本発明の光学発色素子の第1の実施例を示す。Description of examples FIG. 1 shows a first embodiment of the optical coloring element of the present invention.

発色層1とイオン供給源2を密着して設は紫外光に対し
て透過性の電極3,4ではさむ。
The coloring layer 1 and the ion source 2 are placed in close contact and sandwiched between electrodes 3 and 4 that are transparent to ultraviolet light.

この4層構造は、基板5上に形成される。この場合、こ
の基板5が紫外光を透過しない層をかねる。
This four-layer structure is formed on the substrate 5. In this case, the substrate 5 also serves as a layer that does not transmit ultraviolet light.

紫外光を透過しない層を別に形成し、多層構造が機械的
に安定であれば、必らずしも基板5は必要でない0又、
電極3,4についても、十分な電界が上記発色層1とイ
オン供給源202層構造にがかれば、必ずしも必要でな
い。発色層1は、イオン供給源2から供給されるイオン
と反応して発色する。
If a layer that does not transmit ultraviolet light is formed separately and the multilayer structure is mechanically stable, the substrate 5 is not necessarily necessary.
The electrodes 3 and 4 are not necessarily required as long as a sufficient electric field is applied to the layered structure of the coloring layer 1 and the ion source 202. The coloring layer 1 reacts with ions supplied from the ion supply source 2 to develop color.

反応に際しては、発色層の物質とイオンが共存している
状態aから互いに反応して発色した状態すへ、第2図に
示すごとくエネルギーの壁Ai越えて変化しなければな
らないため、エネルギーの壁Aの高さEK対応するエネ
ルギーを必要とする。
During the reaction, the energy wall Ai must be exceeded to change from the state a where the substance and ions in the coloring layer coexist to the state where they react with each other and develop color, exceeding the energy wall Ai, as shown in Figure 2. Energy corresponding to the height EK of A is required.

このエネルギーを光によって与えることにより発色層1
を発色させるのが本発明の発色の原理である0 第3図に示すごとく光b−q照射すると、紫外光に対し
て透過性の電極3を紫外光すが通り抜け1発色層とイオ
ン供給源の界面7に作用する。この光のエネルギーが上
記エネルギーEi与えることとなり、反応が起こり、光
を照射された部分8のみ発色する。この反応の詳細は不
明であるが、上述のようなメカニズムにより、光が照射
さnた部分のみが発色すると考えられるO発色層くター
ンを表示として見る場合には、紫外光を透過しない層5
の側から光9を一面に照射することにより、明るいコン
トラストの良い表示が見られる。上記発色部8は、上記
2層構造に電界を印加する。つまり上記電極3,4に電
圧を加えることにより消去され、発色前の状態に戻る。
By applying this energy with light, the coloring layer 1
The principle of color development of the present invention is to develop a color. As shown in FIG. acts on the interface 7 of The energy of this light provides the energy Ei, a reaction occurs, and only the portion 8 irradiated with light develops a color. The details of this reaction are unknown, but due to the mechanism described above, it is thought that only the part irradiated with light develops color.When viewing the color-forming layer turn as an indication, the layer 5 that does not transmit ultraviolet light is
By irradiating the light 9 all over from the side, a bright display with good contrast can be seen. The coloring section 8 applies an electric field to the two-layer structure. That is, by applying a voltage to the electrodes 3 and 4, the color is erased and returns to the state before coloring.

消去時には、上記反応と逆の反応が起こると考えらn1
上記エネルギーの壁(第2図のE/)以上のエネルギー
を与える電界を加えることにより、逆反応させる0上記
発色層としてLi−W−〇の混会物のAr雰囲気中でス
パッタ蒸着膜を、上記イオン供給源としてLi−W−0
混合物のA r 、 02雰囲気中でのスパッタ蒸着膜
を、紫外光を透過しない層としてソーダガラス基板を電
極としてITO膜を用いた場合には、発色させる光とし
てエキシマレーザ光を用い、5 J / crl程度以
上の密度で照射するとブルーに発色した。この発色は、
上記ITO電極に5Vの電圧を加えることにより消去で
きた。膜厚は、発色層とイオン供給源と合わせて数10
oo八であった。発色時には、He−Neレーザ光線(
6328八)の透過光強度が10dB以上減衰するのが
認められ、青色の発色部を形成する。電界により消去し
た場合には発色以前の状態に戻り、発色以前の状態での
He −N eレーザ光線の透過光強度と同じ透過光強
度を示した。
It is thought that the opposite reaction to the above reaction occurs during elimination, n1
By applying an electric field that gives energy greater than the energy wall (E/ in Figure 2), a reverse reaction is caused.As the coloring layer, a sputter-deposited film of Li-W-〇 mixture is deposited in an Ar atmosphere. Li-W-0 as the ion source
When sputter-depositing a film of the mixture in an A r,02 atmosphere using an ITO film with a soda glass substrate as an electrode and a layer that does not transmit ultraviolet light, using excimer laser light as the light for coloring, 5 J / When irradiated with a density of approximately crl or higher, it developed a blue color. This coloring is
The data could be erased by applying a voltage of 5V to the ITO electrode. The film thickness is several 10 in total including the coloring layer and ion supply source.
It was oo eight. When developing color, a He-Ne laser beam (
It was observed that the transmitted light intensity of 63288) was attenuated by 10 dB or more, forming a blue colored part. When erased by an electric field, the state returned to the state before color development, and the transmitted light intensity was the same as the transmitted light intensity of the He--Ne laser beam in the state before color development.

ここでは具体的にLi−W−0混合物のスパッタ膜につ
いてのみ示したが、発色層はいわゆるエレクトロクロミ
ック材料であれば良く、イオン供給源も上記物質に限ら
れるものではない。イオン供給源は、固体ばかりでなく
液体でも良く、上記エレクトロクロミック材料に作用す
るイオンを含んでいるものであれば良い。紫外光を透過
しない層も、ソーダガラス基板に限られるものですく、
他に形成しても良い。照射光も、エキシマレーザに限ら
2するものではなく、反応に対するエネルギーの壁以」
二のエネルギーを与える光であれば良い。
Although only a sputtered film of a Li-W-0 mixture is specifically shown here, the coloring layer may be made of a so-called electrochromic material, and the ion supply source is not limited to the above-mentioned materials. The ion supply source may be not only solid but also liquid, as long as it contains ions that act on the electrochromic material. The layer that does not transmit ultraviolet light is also limited to soda glass substrates.
It may be formed in other ways. The irradiation light is not limited to excimer lasers, but also has energy barriers to reactions.
Any light that gives the second energy is fine.

エネルギーの大きな紫外光は有効である0照射光はレン
ズ絞り、約1μm程度の畝細なノ(ターンを、発色させ
ることができる01ブこ光をスキャンすることにより複
雑なパターンを書き込むこともてきる0 発明の効果 以上のように、本発明は、発色層とそれに密着して設け
たイオン供給源とからなる2層構造を有する発色素子に
おいて、光を照射することにより、発色させ、表示の明
るい微細な高密度の・(ターンを実現できた。捷だ電界
を印加することにより、簡峨に発色部を消去することが
でき、微細な高習度の光メモリや表示等に有効な、消去
可能な光学発色素子を実現できた。本発明の工業的価値
は犬なるものである。
Ultraviolet light with a large amount of energy is effective.The irradiation light is applied to the lens aperture, and it is also possible to write complex patterns by scanning the 01-bukko light, which can produce color by creating a ridged pattern (turn) of about 1 μm. Effects of the Invention As described above, the present invention provides a coloring element having a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer, by irradiating it with light to develop color and display. We were able to realize bright, fine, high-density turns.By applying a shunting electric field, the colored part can be easily erased, making it an effective eraser for fine, high-quality optical memories and displays. A possible optical coloring element has been realized.The industrial value of the present invention is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光学発色素子の概略断面構造図、第
2図は本発明の光学発色素子における各状態でのエネル
ギー図、第3図は本発明の光学発色素子の光による発色
動作図である。
Fig. 1 is a schematic cross-sectional structural diagram of the optical coloring element of the present invention, Fig. 2 is an energy diagram of the optical coloring element of the present invention in each state, and Fig. 3 is the coloring operation of the optical coloring element of the present invention due to light. It is a diagram.

Claims (5)

【特許請求の範囲】[Claims] (1)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造の一方に紫外光を透過しない層を
付加した多層構造を有し、上記紫外光を透過しない層を
設けていない側から光を照射することにより発色させ、
上記2層構造に電界を印加することにより消色すること
を特徴とする光学発色素子。
(1) It has a multilayer structure in which a layer that does not transmit ultraviolet light is added to one of the two-layer structure consisting of a color-forming layer and an ion supply source provided in close contact with the color-forming layer, and the layer that does not transmit ultraviolet light is added to one side of the two-layer structure. Color is developed by irradiating light from the side that is not provided,
An optical coloring element characterized in that the color is erased by applying an electric field to the two-layer structure.
(2)光として、波長が500 nm以下の紫外光を用
いることを特徴とする特許請求の範囲第1項記載の光学
発色素子。
(2) The optical coloring element according to claim 1, wherein ultraviolet light having a wavelength of 500 nm or less is used as the light.
(3)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造をはさんで、少なくとも紫外光を
透過しない層を設けていない側に紫外線に対して透過性
の1対の電極を設けたことを特徴とする特許請求の範囲
第1項記載の光学発色素子0
(3) A layer that is transparent to ultraviolet rays is placed on the side that does not have a layer that does not transmit ultraviolet light, sandwiching a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. Optical coloring element 0 according to claim 1, characterized in that a counter electrode is provided.
(4)発色層としてリチウ、ムとタングステンの混合酸
化物のアルゴン雰囲気中でのスパック膜を、イオン供給
源として、上記リチウムとタングステンの混合酸化物の
アルゴン・酸素雰囲気中でのスパッタ膜を用いることを
特徴とする特許請求の範囲第1項記載の光学発色素子。
(4) A sputtered film of a mixed oxide of lithium, mu and tungsten in an argon atmosphere is used as the coloring layer, and a sputtered film of the above mixed oxide of lithium and tungsten in an argon/oxygen atmosphere is used as an ion source. An optical coloring element according to claim 1, characterized in that:
(5)紫外線に対して透過性の電極として、ITO膜を
用いたことを特徴とする特許請求の範囲第3項記載の光
学発色素子。
(5) The optical coloring element according to claim 3, characterized in that an ITO film is used as the electrode that is transparent to ultraviolet rays.
JP58186448A 1983-10-05 1983-10-05 Optically color developing element Pending JPS6078423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186448A JPS6078423A (en) 1983-10-05 1983-10-05 Optically color developing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186448A JPS6078423A (en) 1983-10-05 1983-10-05 Optically color developing element

Publications (1)

Publication Number Publication Date
JPS6078423A true JPS6078423A (en) 1985-05-04

Family

ID=16188628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186448A Pending JPS6078423A (en) 1983-10-05 1983-10-05 Optically color developing element

Country Status (1)

Country Link
JP (1) JPS6078423A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685011A1 (en) * 1991-12-13 1993-06-18 Elf Aquitaine PROCESS FOR PREPARING A TARGET MEMBER FOR CATHODIC SPRAY AND TARGETS, ESPECIALLY LARGE AREA, PRODUCED THEREBY
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685011A1 (en) * 1991-12-13 1993-06-18 Elf Aquitaine PROCESS FOR PREPARING A TARGET MEMBER FOR CATHODIC SPRAY AND TARGETS, ESPECIALLY LARGE AREA, PRODUCED THEREBY
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11635665B2 (en) 2009-03-31 2023-04-25 View, Inc. Counter electrode material for electrochromic devices
US11966140B2 (en) 2009-03-31 2024-04-23 View, Inc. Counter electrode for electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US11898233B2 (en) 2009-03-31 2024-02-13 View, Inc. Electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
JP2020149055A (en) * 2010-04-30 2020-09-17 ビュー, インコーポレイテッド Electrochromic device, manufacturing method of electrochromic device, and device for manufacturing electrochromic device
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US11960188B2 (en) 2014-11-26 2024-04-16 View, Inc. Counter electrode for electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices

Similar Documents

Publication Publication Date Title
JPS6078423A (en) Optically color developing element
US5285517A (en) High energy beam sensitive glasses
DE3788634T4 (en) Method and device for optical recording.
JP2567226B2 (en) Electric coloring device
US3840288A (en) Electrochromic display having electro-catalyst
JPS6066238A (en) Optical color developing element
JPS6078424A (en) Optically color developing element
JPH11500838A (en) Electrochromic devices and display devices containing such devices
US20080254372A1 (en) PDR and PBR glasses for holographic data storage and/or computer generated holograms
US20080254373A1 (en) Method of making PDR and PBR glasses for holographic data storage and/or computer generated holograms
JPS60202429A (en) Optical coloring element
JPS6123532B2 (en)
EP3489748B1 (en) Electrochemical device
EP0069174B1 (en) Method and electrolytic display for selectively displaying an image
US4296479A (en) Method for optical recording in photo-dichroic glass surfaces
JP2001042307A (en) Multilayer intermediate concentration sheet having memory characteristics
JPS6066237A (en) Optical color developing element
JPS6015482A (en) Preparation of optical color developing element
US4261799A (en) Electrolytic process for generating erasable pictures on a solid substrate
JPS6012530A (en) Optical memory device
JPS6015481A (en) Optical color developing material
JPH0933713A (en) Production of color filter, color filter produced thereby, and liquid crystal panel
JPS6078425A (en) Photosensitive display device
JP2574507B2 (en) Recording method
JP4986645B2 (en) Optical device