JPS6066238A - Optical color developing element - Google Patents

Optical color developing element

Info

Publication number
JPS6066238A
JPS6066238A JP58174929A JP17492983A JPS6066238A JP S6066238 A JPS6066238 A JP S6066238A JP 58174929 A JP58174929 A JP 58174929A JP 17492983 A JP17492983 A JP 17492983A JP S6066238 A JPS6066238 A JP S6066238A
Authority
JP
Japan
Prior art keywords
light
color
coloring
layer
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58174929A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Kumiko Hirochi
廣地 久美子
Tsuneo Mitsuyu
常男 三露
Kentaro Setsune
瀬恒 謙太郎
Osamu Yamazaki
山崎 攻
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58174929A priority Critical patent/JPS6066238A/en
Publication of JPS6066238A publication Critical patent/JPS6066238A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds

Abstract

PURPOSE:To make it possible to write a fine high-density pattern with a weak light, by constituting a double-layered structure consisting of a color developing layer and an ion supply source and irradiating this element with light while applying a fine electric field to it. CONSTITUTION:A color developing layer 1 and an ion supply source 2 are provided close to each other, and they are held between ultraviolet ray-transmissive electrodes 3 and 4. When light 6 is irradiated while applying a weak electric field, ultraviolet rays 6 pass through the ultraviolet ray-transmittable electrode 3 and act upon an interface 7 between the color developing layer and the ion supply source. This optical energy gives an energy E to cause a reaction, and color develops only in a part 8 to which the light is irradiated. Thus, a fine high-density pattern can be written with a weak light. When an electric field having a polarity opposite to that for color development is applied, the color developing part is erased easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微細な高密度の光メモリや表示等に有効な消
去可能な光学発色素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to erasable optical color elements useful for fine, high-density optical memories, displays, and the like.

従来例の構成とその問題点 従来、光学発色素子として知られているエレクトロクロ
ミック素子は1発色も消去も電界によって行い、電極の
形状によって発色パターンを形成していた。電極を形成
する場合にtユ、パターンの精細さに限界が有り−リー
ドを取り出す必要が有るため、密度に対しても限界があ
った0このため。
Conventional Structure and Problems Conventionally, an electrochromic element known as an optical coloring element generates and erases a color using an electric field, and forms a colored pattern depending on the shape of the electrode. When forming electrodes, there is a limit to the fineness of the pattern - it is necessary to take out the leads, so there is also a limit to the density.

微細な高密度なパターンを必要とする光メモリや表示等
への適用は困難であり、簡単な表示素子として使用され
るだけであった。また−従来の光メモリは、熱によって
構造変化を起こさせ−メモリするものがほとんどで一消
去が可能なものは少なく、消去可能な光メモリでも、熱
による消去を行うため、消去のための複雑な構造を必要
とし、実用に十分なものではなかった。発明者等は、発
色層とイオン供給源とを密着させた2層構造を有する発
色素子に上記2層構造の厚み方向に微弱な電界を印加し
つつ光を照射すると、光に照射された部分の今が発色し
、この発色部は上記2層構造に上記発色時と逆極性の電
界を印加することにより消去できることを発見し−この
発見に基づいて微細な高密度のパターンを実現できる消
去可能な光学発色素子を発明した。
It is difficult to apply it to optical memories, displays, etc. that require fine, high-density patterns, and it has only been used as a simple display element. In addition, most conventional optical memories use heat to cause structural changes, and only a few can be erased. was not sufficient for practical use. The inventors discovered that when light is irradiated onto a color-forming element having a two-layer structure in which a color-forming layer and an ion source are brought into close contact while applying a weak electric field in the thickness direction of the two-layer structure, the portion irradiated by the light It was discovered that this colored part can be erased by applying an electric field of opposite polarity to the coloring part to the above two-layer structure. Invented a unique optical coloring element.

発明の目的 本発明の目的は一微細な高密度のパターンが書き込み可
能で、さらに簡単に消去できる光学発色素子を提供する
ことである。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an optical coloring element on which fine, high-density patterns can be written and which can be easily erased.

発明の構成 本発明の光学発色素子は、発色層と上記発色層に密着し
て設けたイオン供給源とからなる2層構造を有する発色
素子において一上記2層構造の厚み方向に微弱な電界を
印加しつつ光を照射することにより発色させることを特
徴とする。また、上記2層構造に上記発色時と逆極性の
電界を印加することにより消色すること全特徴とする。
Structure of the Invention The optical coloring element of the present invention has a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer, in which a weak electric field is applied in the thickness direction of the two-layered structure. It is characterized by developing color by irradiating light while applying light. A further feature is that the color is erased by applying an electric field of opposite polarity to the coloring state to the two-layer structure.

光で発色させる場合に印加する電界は、消去時に印加す
る電界の6%〜60%の範囲が適当である。上記発色時
に印加する微弱な電界により、上記発色時に照射する光
は9弱い光でも発色可能となり一十記微弱な電界を印加
しない場合の1/10〜i/+o。
The electric field applied when coloring with light is suitably in the range of 6% to 60% of the electric field applied during erasing. Due to the weak electric field applied during the above color development, the light irradiated during the above color development can be colored even with 9 weak light, which is 1/10 to i/+o of the case where no weak electric field is applied.

以下の強度の光で発色が可能となった。Color development is now possible with light of the following intensity.

光を照射して発色させる場合、波長が600nm以下の
紫外光を用いると特に有効に発色させるこ号 とができることを発明へ等は確認した。また−上記2層
構造をはさんで、少なくとも一方が紫外光に対して透過
性の1対の電極を設け、紫外線に対して透過性の電極を
通して光を照射し発色させ。
The inventors have confirmed that when irradiating light to develop color, the use of ultraviolet light having a wavelength of 600 nm or less can particularly effectively develop color. Further, a pair of electrodes, at least one of which is transparent to ultraviolet light, is provided between the two-layer structure, and light is irradiated through the electrodes that are transparent to ultraviolet light to cause color development.

上記電極間に電圧を印加することにより、上記電界を上
記2重層に印加し消色すると、上記2重層により有効に
電界が印加され一低電圧での見逸消去が行えることも発
明者等は確認した。さらに。
The inventors have also discovered that when the electric field is applied to the double layer to erase color by applying a voltage between the electrodes, the electric field is applied more effectively to the double layer, and it is possible to erase the misalignment at a low voltage. confirmed. moreover.

上記発色層としては−リチウムとタングステンの混合酸
化物のアルゴン雰囲気中でのスノ(フタ膜が上記イオン
供給源としては一リチウムとタングステンの混合酸化物
のアルゴン・酸素雰囲気中でのスパッタ膜が1本発明の
光学発色素子として特に有効であることを確認した。紫
外光に対して透過性の電極としては−ITO膜を用いる
と、可視領域の透過性も良好であり、特に有効であるこ
とも確認した。
The above-mentioned coloring layer is a sputtered film of a mixed oxide of lithium and tungsten in an argon atmosphere (a lid film is used as the ion supply source); It was confirmed that it is particularly effective as an optical coloring element of the present invention.If an -ITO film is used as an electrode that is transparent to ultraviolet light, the transparency in the visible region is also good, and it is also particularly effective. confirmed.

実施例の説明 第1図に本発明の光学発色素子の第1の実施例を示す。Description of examples FIG. 1 shows a first embodiment of the optical coloring element of the present invention.

発色層1とイオン供給源2を密着して設は紫外光に対し
て透過性の電極3,4ではさむ。
The coloring layer 1 and the ion source 2 are placed in close contact and sandwiched between electrodes 3 and 4 that are transparent to ultraviolet light.

この4層構造は、基板6上に形成されるが1機械的に安
定であれば一必÷ずしも基板6は必要でない。また、電
極3.4についても、十分な電界が上記発色層1とイオ
ン供給源2の2層構造にかかれば、必ずしも必要でない
。発色層1は、イオン供給源2から供給されるイオンと
反応して発色する。反応に際しては1発色層の物質とイ
オンが共存している状態aから互いに反応して発色した
状態すへ、第2図に示すごとくエネルギーの壁Aを越え
て変化しなけれはならないため一エネルギーの壁の高さ
Eに対応するエネルギーを必要とする。
Although this four-layer structure is formed on the substrate 6, the substrate 6 is not necessarily required if it is mechanically stable. Further, the electrodes 3.4 are not necessarily required as long as a sufficient electric field is applied to the two-layer structure of the coloring layer 1 and the ion source 2. The coloring layer 1 reacts with ions supplied from the ion supply source 2 to develop color. During the reaction, the state A in which the substances and ions in one color-forming layer coexist to the state in which they react with each other and develop color must cross the energy wall A, as shown in Figure 2, so one energy Energy corresponding to the wall height E is required.

上記発色時に一2層構造の厚み方向に印加される微弱な
電界によって一発色層の物質とイオンの状態は、エネル
ギー的に少し励起され電相2図のe −5tate の
エネルギーとなる。この状態から上記エネルギーの壁を
越すためには、E″(第2図)だけのエネルギーが加え
られれば良く、上記微弱な電界を印加しない場合のエネ
ルギーの壁Eに比べて、少ないエネルギーで壁を越えて
、反応し、発色させることができる。このエネルギーE
“を光によって与えることにより発色層1を発色させる
のが本発明の発色の原理である。
At the time of color development, the state of the substance and ions in the first color development layer is slightly excited in terms of energy by a weak electric field applied in the thickness direction of the 12-layer structure, and becomes energy e -5tate in the electrophase diagram 2. In order to overcome the energy wall from this state, it is only necessary to apply energy E'' (Fig. 2), and compared to the energy wall E when the weak electric field is not applied, the wall requires less energy. It is possible to react and develop color by exceeding the energy E.
The principle of color development of the present invention is to cause the color development layer 1 to develop color by providing " with light."

上記微弱な電界を印加しない場合には1反応を起こさせ
るために一上記Eだけの大きなエネルギーを与えること
のできる強い光が必要であったが。
In the case where the above-mentioned weak electric field is not applied, strong light capable of imparting a large energy of one above E is required to cause one reaction.

本発明においては、上記E“と小さいエネルギーを与え
ることのできる弱い光でも反応を起こさせて。
In the present invention, a reaction can be caused even with weak light that can provide a small amount of energy, such as E".

発色させることができる。It can be colored.

第3図に示ごとく上記微弱な電界を印加しつつ光6を照
射すると、紫外光に対して透過性の電極3を紫外光6が
通り抜け、発色層とイオン供給源の界面γに作用する。
As shown in FIG. 3, when the light 6 is irradiated while applying the above-mentioned weak electric field, the ultraviolet light 6 passes through the electrode 3 which is transparent to ultraviolet light and acts on the interface γ between the coloring layer and the ion source.

この光のエネルギーが上記エネルギーE“を与えること
となり1反応が起こり光を照射された部分8のみ発色す
る。この反応の詳細は不明であるが上述のようなメカニ
ズムにより一発が照射された部分のみが発色すると考え
られる。上記発色部8は一上記2層構造に上記発色時と
逆極性の電界を印加する。つまり上記電極3゜4に上記
発色時と逆極性の電圧を加えることにより消去され1発
色前の状態に戻る。消去時には。
The energy of this light gives the above-mentioned energy E", and one reaction occurs, and only the area 8 that was irradiated with light develops color. The details of this reaction are unknown, but due to the above-mentioned mechanism, the area that was irradiated with one shot develops color. It is thought that the coloring section 8 applies an electric field of opposite polarity to the one for coloring to the two-layer structure.In other words, by applying a voltage of opposite polarity to the one for coloring to the electrodes 3.4, the coloring is erased. and returns to the state before one color was developed.When erasing.

上記反応と逆の反応が起こると考えられ、上記エネルギ
ーの壁(第2図のE’)以上のエネルギーを与える電界
を印加することにより、逆反応させる。
It is thought that a reaction opposite to the above reaction occurs, and is caused to occur by applying an electric field that provides energy greater than the energy wall (E' in FIG. 2).

上記発色層としてJ−W−0混合物のAl−雰囲気中で
スパッタ蒸着膜を、上記イオン供給源としてLl−W−
0混合物のAI−:02雰囲気中でのスパッタ蒸着膜を
一電極としてITO膜を用いた場合には1発色させる光
として水銀燈を用い一発色層側を−として2vの電圧を
加え60o mJ/、、p。
A sputter-deposited film of the J-W-0 mixture in an Al atmosphere is used as the coloring layer, and a Ll-W-
When using an ITO film with a sputter-deposited film in an AI-02 atmosphere as one electrode, a mercury lamp was used as the light for producing one color, and a voltage of 2V was applied with the color-producing layer side set to - at 60 mJ/, , p.

程度の密度で照射するとブルーに発色した。この発色は
、上記ITO電極に発色層側を」=(プラス)として5
vの電圧をくわえることにより消去できた。膜厚は、発
色層とイオン供給源と合わせて約5000人であった。
When irradiated at a certain density, it developed a blue color. This color development can be done by setting the color development layer side to the above ITO electrode as "= (plus)".
It could be erased by applying a voltage of v. The film thickness was approximately 5,000 layers including the coloring layer and ion source.

発色時には−He−Neレーザ光線(6328人)の透
過光強度が10dB以上減衰するのが認められ一責色の
発色部を形成する。電極に6vの電圧を加えその電界に
より消去した場合には1発色以前の状態に戻り1発色以
前の状態でのHe−Neレーザ光線の透過光強度と同じ
透過光強度を示した。ここでは具体的にLi −W−0
混合物のスパッタ膜についてのみ示したが2発色層はい
わゆるエレクトロクコミック材料であればよく、イオン
供給源も上記物質に限られるものではない。イオン供給
源は、固体ばがりでなく液体でもよく、上記エレクトロ
クコミック材料に作用するイオンを含んでいるものであ
ればよい。
At the time of color development, it was observed that the intensity of the transmitted light of the -He-Ne laser beam (6328 people) was attenuated by 10 dB or more, forming a colored part of a single color. When a voltage of 6 V was applied to the electrode and erased by the electric field, the state returned to the state before the first color was developed, and the transmitted light intensity was the same as the transmitted light intensity of the He-Ne laser beam in the state before the first color was developed. Here, specifically Li -W-0
Although only the sputtered film of the mixture is shown, the two-color developing layer may be made of a so-called electrocomic material, and the ion supply source is not limited to the above-mentioned materials. The ion supply source may be not only solid but also liquid, as long as it contains ions that act on the electrocomic material.

照射光も一エキシマレーザに限られるものではなく一反
応に対するエネルギーの壁以上のエネルギーを与える光
であればよい。エネルギーの大きな紫外光は有効である
。照射光をレンズで絞ることによって、約1μm程度の
微細なパターンを発色させることができる。また光をス
キャンすることにより複雑なパターンを書き込むことも
できる〇発明の効果 以上のように一本発明は1発色層とそれに密着して設け
たイオン供給源とからなる2層構造を有する発色素子に
おいて一微弱な電界を印加しつつ光を照射することによ
り発色させ弱い光で微細な高密度のパターンを実現する
ことができる。また。
The irradiation light is not limited to one excimer laser, but may be any light that provides energy greater than the energy barrier for one reaction. Ultraviolet light with high energy is effective. By focusing the irradiated light with a lens, it is possible to develop a fine pattern of approximately 1 μm in color. It is also possible to write complex patterns by scanning light. Effects of the Invention As described above, the present invention provides a coloring element having a two-layer structure consisting of one coloring layer and an ion supply source provided in close contact with the coloring layer. By applying light while applying a weak electric field, color is generated, and a fine, high-density pattern can be realized with weak light. Also.

上記発色時と逆極性の電界を印加することにより。By applying an electric field of opposite polarity to that during color development.

簡単に発色部を消去することができ一微細な高密度の光
メモリや表示等に有効な消去可能な光学発色素子を実現
できる。
The colored portion can be easily erased, and an erasable optical coloring element that is effective for fine, high-density optical memories, displays, etc. can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光学発色素子の概略断面構造図、第2
図は本発明の光学発色素子における各状態でのエネルギ
ー図、第3図は本発明の光学発色素子の光による発色動
作図である。 1・−・・・・発色層、2・・団・イオン供給源、3,
4・・・・・・電極、6・・・・・・基板、6・・・・
・・光(紫外線)。
FIG. 1 is a schematic cross-sectional structural diagram of the optical coloring element of the present invention, and FIG.
The figure is an energy diagram of the optical coloring element of the present invention in each state, and FIG. 3 is a diagram of the coloring operation of the optical coloring element of the present invention due to light. 1.--Coloring layer, 2. Group/ion supply source, 3.
4...electrode, 6...substrate, 6...
...Light (ultraviolet light).

Claims (1)

【特許請求の範囲】 (1)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造を有し、上記2層構造の厚み方向
に微弱な電界を印加しつつ光を照射することにより発色
させることを特徴とする光学発色素子。 (2)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造に発色時と逆極性の電界を印加す
ることにより発色部を消色することを特徴とする特許請
求の範囲第1項記載の光学発色素子。 (3)光として、波長が6 Q Q 11m以下の紫外
光を用いることを特徴とする特許請求の範囲第2項記載
の光学発色素子。 (4)発色層と上記発色層に密着して設けたイオン供給
源とからなる2層構造をはさんで、少なくとも一方が紫
外線に対して透過性の1対の電極を設けたことを特徴と
する特許請求の範囲第1項又は第2項記載の光学発色素
子。 (6)発色層としてリチウムとタングステンの混合酸化
物のアルゴン雰囲気中でのスパッタ膜を一イオン供給源
として上記リチウムとタングステンの混合酸化物のアル
ゴン・酸素雰囲気中でのスパッタ膜を用いることを特徴
とする特許請求の範囲第1項又は第2項記載の光学発色
素子。 (6)紫外線に対して透過性の電極として−ITO膜を
用いたことを特徴とする特約請求の範囲第4項記載の光
学発色素子。
[Scope of Claims] (1) It has a two-layer structure consisting of a color-forming layer and an ion supply source provided in close contact with the color-forming layer, and a weak electric field is applied in the thickness direction of the two-layer structure and light is emitted. An optical coloring element that develops color by being irradiated with. (2) A patent claim characterized in that the colored portion is decolored by applying an electric field of opposite polarity to that during coloring to a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. The optical coloring element according to item 1. (3) The optical coloring element according to claim 2, wherein ultraviolet light having a wavelength of 6 Q Q 11 m or less is used as the light. (4) A pair of electrodes, at least one of which is transparent to ultraviolet rays, are provided sandwiching a two-layer structure consisting of a coloring layer and an ion supply source provided in close contact with the coloring layer. An optical coloring element according to claim 1 or 2. (6) As a coloring layer, a sputtered film of a mixed oxide of lithium and tungsten in an argon/oxygen atmosphere is used as an ion supply source, using a sputtered film of a mixed oxide of lithium and tungsten in an argon/oxygen atmosphere. An optical coloring element according to claim 1 or 2. (6) The optical coloring element according to claim 4, characterized in that an -ITO film is used as the electrode that is transparent to ultraviolet rays.
JP58174929A 1983-09-20 1983-09-20 Optical color developing element Pending JPS6066238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58174929A JPS6066238A (en) 1983-09-20 1983-09-20 Optical color developing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58174929A JPS6066238A (en) 1983-09-20 1983-09-20 Optical color developing element

Publications (1)

Publication Number Publication Date
JPS6066238A true JPS6066238A (en) 1985-04-16

Family

ID=15987184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58174929A Pending JPS6066238A (en) 1983-09-20 1983-09-20 Optical color developing element

Country Status (1)

Country Link
JP (1) JPS6066238A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288134A (en) * 1990-04-04 1991-12-18 Matsushita Electric Ind Co Ltd Recording method
US7414332B2 (en) 2004-06-14 2008-08-19 Ricoh Company, Ltd. Electric power unit and electronics device obtaining power from a plurality of power sources
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US11960188B2 (en) 2022-03-24 2024-04-16 View, Inc. Counter electrode for electrochromic devices

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288134A (en) * 1990-04-04 1991-12-18 Matsushita Electric Ind Co Ltd Recording method
US7414332B2 (en) 2004-06-14 2008-08-19 Ricoh Company, Ltd. Electric power unit and electronics device obtaining power from a plurality of power sources
US11898233B2 (en) 2009-03-31 2024-02-13 View, Inc. Electrochromic devices
US11370699B2 (en) 2009-03-31 2022-06-28 View, Inc. Counter electrode for electrochromic devices
US10591795B2 (en) 2009-03-31 2020-03-17 View, Inc. Counter electrode for electrochromic devices
US10591797B2 (en) 2009-03-31 2020-03-17 View, Inc. Electrochromic devices
US11947232B2 (en) 2009-03-31 2024-04-02 View, Inc. Fabrication of low defectivity electrochromic devices
US10663830B2 (en) 2009-03-31 2020-05-26 View, Inc. Fabrication of low defectivity electrochromic devices
US11635665B2 (en) 2009-03-31 2023-04-25 View, Inc. Counter electrode material for electrochromic devices
US10690987B2 (en) 2009-03-31 2020-06-23 View, Inc. Counter electrode for electrochromic devices
US11525181B2 (en) 2009-03-31 2022-12-13 View, Inc. Electrochromic devices
US10852613B2 (en) 2009-03-31 2020-12-01 View, Inc. Counter electrode material for electrochromic devices
US11440838B2 (en) 2009-03-31 2022-09-13 View, Inc. Fabrication of low defectivity electrochromic devices
US11187954B2 (en) 2009-03-31 2021-11-30 View, Inc. Electrochromic cathode materials
US11409177B2 (en) 2009-03-31 2022-08-09 View, Inc. Counter electrode for electrochromic devices
US10599001B2 (en) 2010-04-30 2020-03-24 View, Inc. Electrochromic devices
US10996533B2 (en) 2010-04-30 2021-05-04 View, Inc. Electrochromic devices
JP2020149055A (en) * 2010-04-30 2020-09-17 ビュー, インコーポレイテッド Electrochromic device, manufacturing method of electrochromic device, and device for manufacturing electrochromic device
US11592722B2 (en) 2010-04-30 2023-02-28 View, Inc. Electrochromic devices
JP2018092190A (en) * 2010-04-30 2018-06-14 ビュー, インコーポレイテッド Electrochromic device precursor, device for manufacturing electrochromic device precursor, and manufacturing method of electrochromic device
US11891327B2 (en) 2014-05-02 2024-02-06 View, Inc. Fabrication of low defectivity electrochromic devices
US11422426B2 (en) 2014-09-05 2022-08-23 View, Inc. Counter electrode for electrochromic devices
US10684523B2 (en) 2014-09-05 2020-06-16 View, Inc. Counter electrode for electrochromic devices
US11327382B2 (en) 2014-11-26 2022-05-10 View, Inc. Counter electrode for electrochromic devices
US10585321B2 (en) 2014-11-26 2020-03-10 View, Inc. Counter electrode for electrochromic devices
US11960188B2 (en) 2022-03-24 2024-04-16 View, Inc. Counter electrode for electrochromic devices
US11966140B2 (en) 2022-07-05 2024-04-23 View, Inc. Counter electrode for electrochromic devices

Similar Documents

Publication Publication Date Title
JPS6066238A (en) Optical color developing element
US5285517A (en) High energy beam sensitive glasses
JPS6078424A (en) Optically color developing element
JPS6078423A (en) Optically color developing element
DE2332164A1 (en) LIQUID CRYSTAL DISPLAY DEVICE
JPS60202429A (en) Optical coloring element
US4126456A (en) Visual image recording device
JPS6123532B2 (en)
US4799770A (en) Liquid crystal cell for image projections and method of operating same
JPS6066237A (en) Optical color developing element
US5777776A (en) Full optical type optical element
JP4738860B2 (en) Electrochromic display element
JPS5852566B2 (en) Sanka Kangen Niyoru
US4166676A (en) Method of turning off the display in electrochromic display devices
JPS6015481A (en) Optical color developing material
JPH11119439A (en) Liquid crystal mask type exposure marking device
JPS6015482A (en) Preparation of optical color developing element
JP2574507B2 (en) Recording method
JPS6078427A (en) Projection type display device
JPS6012530A (en) Optical memory device
JPS5826011B2 (en) Image observation method
JPS6078426A (en) Projection type display device
JPS5936246B2 (en) Electro-optical calculation recording method
JP2000250020A (en) Liquid crystal shutter and photosensitive device
JP4210385B2 (en) Liquid crystal shutter and printer head using the shutter