JPS607823A - Production of metal vacuum double container - Google Patents

Production of metal vacuum double container

Info

Publication number
JPS607823A
JPS607823A JP58117805A JP11780583A JPS607823A JP S607823 A JPS607823 A JP S607823A JP 58117805 A JP58117805 A JP 58117805A JP 11780583 A JP11780583 A JP 11780583A JP S607823 A JPS607823 A JP S607823A
Authority
JP
Japan
Prior art keywords
container
vacuum
metal
vapor deposition
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58117805A
Other languages
Japanese (ja)
Other versions
JPH0352972B2 (en
Inventor
喜信 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiger Vacuum Bottle Co Ltd
Original Assignee
Tiger Vacuum Bottle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiger Vacuum Bottle Co Ltd filed Critical Tiger Vacuum Bottle Co Ltd
Priority to JP58117805A priority Critical patent/JPS607823A/en
Publication of JPS607823A publication Critical patent/JPS607823A/en
Publication of JPH0352972B2 publication Critical patent/JPH0352972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Thermally Insulated Containers For Foods (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 技術分野 この発明は、金属製真空二重容器、殊に金属製の内容器
および外容器間に形成される真空断熱空間の内壁面に鍍
金層を設けて、輻射係数を/J%さくし、断熱性を高め
た形式の金属製真空二重容器に関する。
Detailed Description of the Invention Technical Field The present invention provides a metal vacuum double container, particularly a metal inner container and an outer container with a plating layer on the inner wall surface of a vacuum insulation space formed between an inner container and an outer container to improve the radiation coefficient. The present invention relates to a double-walled metal vacuum container with a /J% reduction in insulation properties.

従来技術 金属製真空二重容器の、内外容器間の輻射による熱損失
または熱侵入を防止するのに、熱遮蔽板を介在させたり
、壁面を鍍金しまた研磨して、輻射係数を小さくするこ
とは既に周知であるが、それらの工程はそれぞれ別個の
ものとしてしか行われず、作業が煩雑でコスト高になる
。これを解消するものとして、内外容器間にそれらを真
空加熱下で密閉するろう材よりも融点の高い金属板から
なる熱遮蔽板を設け、真空加熱処理による溶融完了後容
器全体を冷却することによシ熱遮蔽板金属材料を熱遮蔽
板と対応する内外容器壁面に蒸着させるようにした製造
方法が、特開昭57−110219号公報で知られてい
る。
Prior art In order to prevent heat loss or heat intrusion due to radiation between the inner and outer containers of a metal vacuum double container, the radiation coefficient is reduced by interposing a heat shield plate or by plating or polishing the wall surface. is already well known, but each of these steps is only performed separately, making the work complicated and costly. To solve this problem, we installed a heat shield made of a metal plate with a higher melting point than the brazing filler metal that seals the inner and outer containers under vacuum heating, and cooled the entire container after the vacuum heating process completed melting. A method for manufacturing a heat shielding plate in which a metal material is deposited on the inner and outer container wall surfaces corresponding to the heat shielding plate is known from Japanese Patent Laid-Open No. 110219/1983.

しかし、熱遮蔽板は、内外容器と共に三重構造をなし、
それだけで容器の構造複雑化と重量化を招く。増して熱
遮蔽板も内外容器にほぼ相似な容器状に形成して内外容
器に嵌め合されなければならないので、製法の簡略化、
コスト低下上まだ充分満足できない。しかも、熱遮蔽板
はその内外面がガス残留原因になり、ガス残留面積倍加
のため所定真空度を絣持し難い。
However, the heat shield plate has a triple structure with the inner and outer containers,
This alone makes the structure of the container more complicated and heavier. In addition, the heat shield plate must be formed into a container shape that is almost similar to the inner and outer containers, and must be fitted to the inner and outer containers, which simplifies the manufacturing process.
Still not fully satisfied due to cost reduction. Moreover, the inner and outer surfaces of the heat shield plate cause gas to remain, and the area where the gas remains doubles, making it difficult to maintain a predetermined degree of vacuum.

目 的 この発明は、真空断熱空間の内外容器が形成する内壁面
双方に鍍金層を有して二重に輻射係数の低下が計れる構
造において、前記従来の欠点を解消し得る金属製真空二
重容器の製造方法を提供することを目的とするものであ
る。
Purpose This invention provides a metal vacuum double wall structure that can eliminate the above-mentioned conventional drawbacks in a structure that has a plating layer on both the inner wall surfaces formed by the inner and outer containers of a vacuum insulation space so as to double reduce the radiation coefficient. The object of the present invention is to provide a method for manufacturing a container.

構 成 この発明では、金属製外容器と外周面に予め鍍金層が形
成されている金属製内容器とが二重容器に組合される。
Structure In this invention, a metal outer container and a metal inner container whose outer peripheral surface has been previously formed with a plating layer are combined into a double container.

次いで、それら内容器お・よび外容器間を真空化して密
閉する真空密閉工程と共にか真空密閉緩に、前記鍍金属
を蒸着源として外容器内周面に対する蒸着鍍金処理が行
われる。
Next, along with a vacuum sealing step of evacuating and sealing the space between the inner container and the outer container, or in a loose vacuum sealing process, a vapor deposition plating process is performed on the inner circumferential surface of the outer container using the plating metal as a vapor deposition source.

蒸着鍍金処理は、真空蒸着法や、スパッタリング法、イ
オンブレーティング法等、知られた種々の方法が採られ
る。
Various known methods such as a vacuum evaporation method, a sputtering method, and an ion blating method can be used for the vapor deposition plating process.

内容器外周面に予め形成される鍍金層は、外容器内周面
への蒸着鍍金層を見込んだ層厚としておくのが望ましい
し、電気的な処理が行われるスパッタリング法やイオン
ブレーティング法等の場合は、内容器および外容器間を
セラミック等の絶縁体が介装した気密接合部で絶縁して
電気的処理される。
It is desirable that the plating layer pre-formed on the outer circumferential surface of the inner container has a layer thickness that takes into account the plating layer deposited on the inner circumferential surface of the outer container. In this case, electrical treatment is performed by insulating the inner container and the outer container with an airtight joint interposed with an insulator such as ceramic.

作 用 内容器外周面に予め形成されていた鍍金層および、外容
器内周面に形成される蒸着鍍金層とが、金属製真空二重
容器の輻射係数を二重に低下させ、熱損失、熱侵入の抑
制作用を倍加する。
The plating layer previously formed on the outer circumferential surface of the inner container and the vapor-deposited plating layer formed on the inner circumferential surface of the outer container double reduce the radiation coefficient of the metal vacuum double container, reducing heat loss and Doubles the heat intrusion suppression effect.

内容器外周面に予め形成される鍍金層は、金属製真空二
重容器の組合せ容器ないし部材の数を増大することなし
に、内容器と既に組合された外容器の内周面に対し、内
外容器間の真空密閉工程と共にかそれに引き続いてカさ
れる蒸着鍍金のための蒸着源を提供する。
The plating layer pre-formed on the outer circumferential surface of the inner container can be applied to the inner and outer surfaces of the outer container already combined with the inner container, without increasing the number of containers or members to be combined in the double-metal vacuum container. To provide a deposition source for vapor deposition plating that is applied in conjunction with or subsequent to a vacuum sealing process between containers.

実施例 第1図を参照して、真空蒸着法により、金属製内容器1
外周面に形成された鍍金層2を蒸着源として金属製外容
器3内周面に蒸着鍍金処理する場合の一実施例について
説明する。
Embodiment Referring to FIG.
An embodiment will be described in which the inner circumferential surface of the metal outer container 3 is subjected to vapor deposition plating treatment using the plating layer 2 formed on the outer circumferential surface as a vapor deposition source.

金属製の内容器1および外容器3は、断熱上熱伝導性の
低い例えばステンレススチール板により形成される。内
容器lは、その外周面に予め鍍金層2が形成されるが、
その形成法は、外周面であるため最も単純な鍍金液中へ
の浸漬による鍍金や化学鍍金と云った方法を含め、電気
鍍金、各種蒸着鍍金と云った所望の方法によって容易に
なされる。外容器3は、胴部3aと底部3bとが別体物
で形成され、胴部3aを前記鍍金層2を持った内容器1
と嵌合組合せた後に、胴部3aと底部3bとを溶接等に
より気密接合4して一体化し、内外容器1.3を二重容
器に組合せる。これら内外容器1,3は、それらの口縁
嵌合部を溶接等によって気密接合4して一体化される。
The metal inner container 1 and outer container 3 are made of, for example, a stainless steel plate that is heat insulating and has low thermal conductivity. The inner container l has a plating layer 2 formed on its outer peripheral surface in advance,
Since it is an outer peripheral surface, it can be easily formed by any desired method such as electroplating and various vapor deposition plating, including the simplest method of immersion plating in a plating solution or chemical plating. The outer container 3 has a body 3a and a bottom 3b formed as separate bodies, and the body 3a is connected to the inner container 1 having the plating layer 2.
After fitting and combining, the body 3a and the bottom 3b are hermetically sealed 4 and integrated by welding or the like, and the inner and outer containers 1.3 are assembled into a double container. These inner and outer containers 1 and 3 are integrated by airtightly joining 4 their lip fitting portions by welding or the like.

外容器3の底部3bに、銅製のチップ管5が溶接等によ
り気密接合4して設けられている。このチップ管5は底
部3bに一体形成されてもよいし・外容器1の所望位置
に設は得る。
A copper tip tube 5 is provided on the bottom 3b of the outer container 3 in an airtight manner 4 by welding or the like. The tip tube 5 may be integrally formed with the bottom portion 3b or may be placed at a desired position in the outer container 1.

内容器lおよび外容器3間は、チップ管5を通じた吸引
排気によって所定の真空度となしだ状態でチップ管5を
冷間圧接して閉じることにより、真空化および密閉され
、真空断熱空間6とされる。
The space between the inner container 1 and the outer container 3 is evacuated and sealed by cold welding and closing the chip tube 5 under a predetermined degree of vacuum by suction and exhaust through the chip tube 5, thereby creating a vacuum insulation space 6. It is said that

この真空断熱空間6を形成する真空密閉工程は、通常、
適当な加熱状態で力される。それは、内外容器1.3間
の空間内金属表面部や接合4部と云った粗面凹部や隅部
に残留しようとするガス成分を活性化して吸引排気され
易くし、また内外容器1.3間に配置される残留ガス吸
着用ゲッタ(図示せず)を活性化して、真空密閉後にお
ける真空断熱空間6の残留ガスによる真空度低下を抑止
するためである。
The vacuum sealing process for forming this vacuum insulation space 6 is usually
It is heated under appropriate conditions. It activates gas components that tend to remain in the rough surface recesses and corners such as the metal surfaces and joints 4 in the space between the inner and outer containers 1.3, making it easier to be sucked and exhausted. This is to activate a getter for adsorbing residual gas (not shown) disposed between them to prevent a decrease in the degree of vacuum due to residual gas in the vacuum heat insulating space 6 after vacuum sealing.

そこで、この加熱を前記内容器1外周面の鍍金層2をな
す金属材料を蒸発させ得る温度で行うことによって、前
記ガス成分およびゲッタの活性化促進と、内容器1外周
面に形成されている鍍金層2を蒸着源として外容器3の
内周面に対する蒸着鍍金が、内外容器1,3間の真空密
閉工程と共になされ、外容器3内周面にも第1図仮想線
で示されるように鍍金層7が形成される。
Therefore, by performing this heating at a temperature that can evaporate the metal material forming the plating layer 2 on the outer circumferential surface of the inner container 1, activation of the gas component and getter is promoted and the getter formed on the outer circumferential surface of the inner container 1 is heated. Vapor deposition plating is performed on the inner peripheral surface of the outer container 3 using the plating layer 2 as a vapor deposition source, together with the vacuum sealing process between the inner and outer containers 1 and 3, and the inner peripheral surface of the outer container 3 is also coated as shown by the imaginary line in FIG. A plating layer 7 is formed.

鍍金層2および7は、前記のようにして形成されん金属
製真空二重容器8の輻射係数を二重に小さくし、外部へ
の!損失や外部からの熱侵入を防止するよう形成される
もので、銀や銅、クロム、ニッケル、錫等の金属、ある
いはそれらをベースにした合金等の材料が適当である。
The plating layers 2 and 7 double the radiation coefficient of the metal vacuum double container 8 formed as described above, and reduce the radiation coefficient to the outside! It is formed to prevent loss and heat intrusion from the outside, and suitable materials include metals such as silver, copper, chromium, nickel, and tin, or alloys based on these metals.

それらの使用材料と、内外容器1.3間の排気による真
空度との関係から、使用材料を蒸発させ得る適当ガ加熱
温度を設定すればよい。
An appropriate heating temperature that can evaporate the materials may be set based on the relationship between the materials used and the degree of vacuum created by exhaust between the inner and outer containers 1.3.

例えば、第2図に代表的な材料、銀、銅、クロムについ
ての圧力と湿度とによる恭気圧線図が、tjl Ig+
 Ou 10rでそれぞれ示されている。この図で各材
料についてそれぞれの線Ag 、 Cu 。
For example, Figure 2 shows the pressure and humidity diagrams for representative materials, silver, copper, and chromium.
Ou 10r respectively. In this figure, the respective lines Ag, Cu for each material.

Orの高温側が蒸気領域を示しており、真空度が10”
 Torr台であるとすると、必要加熱温度は、銀の場
合約820℃、銅の場合約1020℃、クロムの場合約
1130℃となる。
The high temperature side of Or indicates the vapor region, and the degree of vacuum is 10”
Assuming a Torr table, the required heating temperature is approximately 820° C. for silver, approximately 1020° C. for copper, and approximately 1130° C. for chromium.

ちなみに、各材料の垂直全輻射率は、銀の場合0.00
44〜0.02、銅の場合0005〜0.018、クロ
ムの場合0.058〜006と、何れも、ステンレス鋼
5US−304粗面で0.44〜0.36、同研摩面で
0.074であるのに比し格段に高く、前記鍍金層2お
よび7によるステンレススチール製真空二重容器8に対
する二重の輻射率低下効果は大きく、その分断熱性を向
上させる。
By the way, the vertical total emissivity of each material is 0.00 for silver.
44-0.02, 0005-0.018 for copper, 0.058-006 for chromium, 0.44-0.36 for the rough surface of stainless steel 5US-304, and 0.44 for the polished surface. 074, the double emissivity reduction effect of the plating layers 2 and 7 on the stainless steel vacuum double container 8 is large, and the heat insulation properties are improved accordingly.

外にも1輻射率が0.022〜0.04と小さいニッケ
ル等の材料もあり種々の材料を用いて有効であるし、各
材料をベースにした合金であってもよいことは勿論であ
る。
In addition, there are materials such as nickel that have a small emissivity of 0.022 to 0.04, and various materials can be used effectively, and it goes without saying that alloys based on each material may also be used. .

なお、鍍金層2を蒸着源としだ外容器3内周面への蒸着
鍍金は、内外容器1,3間の真空密閉工程を通常の温度
域で行って後、引き続き必要温度にまで高めて蒸着鍍金
を行うこともでき、この場合でも必要温度への昇温は真
空密閉工程温度から容易かつ短時間に行えるし、その昇
温だけで蒸着鍍金は達成されるから、特に工程が複雑化
したシ長時間延長したりすることはなく、実質的に真空
密閉工程における同時処理であると云える。
In addition, the plating layer 2 is used as the vapor deposition source and the inner circumferential surface of the outer container 3 is vapor-deposited after the vacuum sealing process between the inner and outer containers 1 and 3 is performed in a normal temperature range, and then the temperature is raised to the required temperature for vapor deposition. Plating can also be performed, and even in this case, the temperature can be raised easily and quickly from the vacuum sealing process temperature to the required temperature, and vapor deposition plating can be achieved just by raising the temperature, so it is especially suitable for systems with complicated processes. The process does not take a long time and can be said to be a simultaneous process in the vacuum sealing process.

一方、内外容器1.3間の真空密閉工程が、それらの最
終接合部(必要接合部全箇所でもよい)を所定の真空度
に達している真空空間内でろう接するいわゆる真空ブレ
ージング法で行われる場合にも、前記真空蒸着法による
外容器3内周面への蒸着鍍金が同様に行える。真空ブレ
ージング法では、ガス放出およびゲッタの活性化のため
の加熱とろう接のだめの加熱とが、前記真空空間内で行
われ、特にろう液温度は、前記鍍金層2を蒸着源としだ
外容器3内周面への蒸着鍍金に必要な温度に達しており
、内外容器1,3間の通常真空密閉工程中に、蒸着鍍金
が達成され、真空ブレージング法による真空密閉工程時
間が極く短時間であることと相俟ち、鍍金層2,7を持
った金属製真空二重容器8の生産性が格段に高いものと
なる。
On the other hand, the vacuum sealing process between the inner and outer containers 1.3 is carried out by the so-called vacuum brazing method, in which the final joints (or all necessary joints) are brazed in a vacuum space that has reached a predetermined degree of vacuum. In this case, vapor deposition plating on the inner circumferential surface of the outer container 3 can be performed in the same manner using the vacuum vapor deposition method described above. In the vacuum brazing method, heating for gas release and activation of the getter and heating of the soldering pot are performed in the vacuum space, and in particular, the temperature of the wax liquid is determined by using the plating layer 2 as a deposition source and the outer container. 3. The temperature required for vapor deposition plating on the inner peripheral surface has been reached, and vapor deposition plating is achieved during the normal vacuum sealing process between the inner and outer containers 1 and 3, and the vacuum sealing process time using the vacuum brazing method is extremely short. Coupled with this, the productivity of the metal vacuum double container 8 having the plating layers 2 and 7 is extremely high.

なお、真空ブレージング法によるこの実施例の場合、鍍
金層2の金属材料は、真空ブレージング法に用いられる
ろう材の融点、望ましくはろう液温度よりも融点の高い
ものが選定されなければならないが、ろう材としては1
銀ろうや黄銅ろう、アルミニウムろう、りん銅ろう、ニ
ッケルろうと云った各種のものを選択使用することがで
きる。
In the case of this embodiment using the vacuum brazing method, the metal material for the plating layer 2 must be selected to have a melting point higher than the melting point of the brazing filler metal used in the vacuum brazing method, preferably higher than the temperature of the brazing fluid. As a brazing material, 1
Various types of solder such as silver solder, brass solder, aluminum solder, phosphor solder, and nickel solder can be selected and used.

次に、第3図を参照して、スパッタリング法により、内
容器1外周而の鍍金層2を蒸着源として外容器3内周面
に蒸着鍍金処理する場合の一例について説明する。
Next, with reference to FIG. 3, a description will be given of an example of a case in which the inner peripheral surface of the outer container 3 is vapor-deposited and plated by sputtering using the plating layer 2 on the outer periphery of the inner container 1 as a vapor deposition source.

内容器lと外容器3とは、セラミック11等の絶縁材料
を介装してろう接した気密接合4部で1電気的に絶縁さ
れる。この状態で、外周面に予め鍍金層2が形成されて
いる内容器1に対して高圧直流の気化源電源12の陰極
を、また外容器3に対しては電源12の陽極をそれぞれ
結紗し、内外容器1.2間の真空密閉工程中か同工程終
了後に必要時間電圧を印加し、外容器3内局面に対する
内容器1外周面の鍍金層2を蒸着源とした蒸着鍍金がな
される。電源12は高周波電源に代え召る。
The inner container 1 and the outer container 3 are electrically insulated by four airtight joints that are brazed together with an insulating material such as ceramic 11 interposed therebetween. In this state, the cathode of the high-voltage DC vaporization source power supply 12 is connected to the inner container 1, which has the plating layer 2 formed on the outer circumferential surface in advance, and the anode of the power source 12 is connected to the outer container 3, respectively. During or after the completion of the vacuum sealing process between the inner and outer containers 1 and 2, a voltage is applied for a necessary period of time to perform vapor deposition plating using the plating layer 2 on the outer peripheral surface of the inner container 1 as a vapor deposition source on the inner surface of the outer container 3. The power source 12 can be replaced with a high frequency power source.

この場合、蒸着源としての鍍金層2は、スパッタリング
法におけるターゲットとして、内外容器1.3間にでき
るイオンによって金属材料原子を加熱蒸発の場合の10
0倍近い速さでたたき出されて気化(擬似蒸気化)し、
しかも外容器3内周面には電気的吸引作用によりさらに
加速された状態で衝突し何着するので、密着性のよい高
密度な鍍金層7が、充分な層厚をもって極く短時間に得
られる。外容器3に対する電源12の陰極結線による負
電圧の印加を省略してもよいし、真空密閉工程が鍍金層
2の蒸発温度域でなされる場合は・真空蒸着法による鍍
金処理も同時進行する。
In this case, the plating layer 2 as a vapor deposition source is used as a target in a sputtering method, and metal material atoms are heated and evaporated by ions formed between the inner and outer containers 1.3.
It is ejected and vaporized (pseudo-vaporization) at nearly 0 times the speed,
Moreover, since the inner circumferential surface of the outer container 3 collides with the inner peripheral surface of the outer container 3 in an accelerated state due to the electric attraction effect, a high-density plating layer 7 with good adhesion can be obtained in a very short time with a sufficient layer thickness. It will be done. The application of a negative voltage to the outer container 3 by cathode connection of the power source 12 may be omitted, and if the vacuum sealing process is performed in the evaporation temperature range of the plating layer 2, the plating process using the vacuum evaporation method also proceeds at the same time.

さらに、第4図を参照して、イオンブレーティング法に
より、内容器1外周面の鍍金層2を蒸着源として外容器
3内周面に蒸着鍍金処理する場合の一例について説明す
る。
Furthermore, with reference to FIG. 4, an example of a case where the inner circumferential surface of the outer container 3 is vapor-deposited and plated by using the plating layer 2 on the outer circumferential surface of the inner container 1 as a vapor deposition source will be described with reference to FIG.

内外容器1,3は前記スパッタリング法の場合同様に電
気的に絶縁されている。内容器1には、高周波電源等の
蒸着源電源21が結線され、別に高圧直流電源22の陽
極が内容器1に電源22の陰極が外容器3にそれぞれ結
線される。そして、内外容器1.3間の真空密閉工程中
か、同工程終了後に、電源21から内容器1を通じて蒸
着源たる鍍金層2に通電し、鍍金層2の金属材料を蒸発
させると共に、電源22による内外容器1,3に対する
異極電荷の印加を行い、前記蒸発原子をイオン化して外
容器3内周面に向は加速衝突させ付着させることにより
、蒸気鍍金処理が行われる。
The inner and outer containers 1 and 3 are electrically insulated as in the case of the sputtering method. An evaporation source power source 21 such as a high frequency power source is connected to the inner container 1, and an anode of a high voltage DC power source 22 is connected to the inner container 1, and a cathode of the power source 22 is connected to the outer container 3, respectively. Then, during or after the vacuum sealing process between the inner and outer containers 1.3, electricity is applied from the power source 21 to the plating layer 2, which is the vapor deposition source, through the inner container 1 to evaporate the metal material of the plating layer 2. The vapor plating process is performed by applying different polar charges to the inner and outer containers 1 and 3 to ionize the evaporated atoms and causing them to accelerate and collide and adhere to the inner peripheral surface of the outer container 3.

この場合、鍍金層2の蒸発および蒸発原子の外容器3内
周面への付着が最も活発になされ、ス、<ツタリング法
の場合よりもさらに密着性がよく高密度な鍍金層7が得
られる。また、真空密閉工程が鍍金層2の蒸発温度域で
なされる場合は、それによる鍍金層2の蒸発促進が期待
でき、鍍金層7の生成速度を速め得るし、場合によって
は魚発源電源21を省略してもよい。
In this case, the evaporation of the plating layer 2 and the adhesion of the evaporated atoms to the inner circumferential surface of the outer container 3 are most active, and a plating layer 7 with better adhesion and higher density is obtained than in the case of the tuttering method. . Further, if the vacuum sealing process is performed in the evaporation temperature range of the plating layer 2, it can be expected that the evaporation of the plating layer 2 will be accelerated, and the formation speed of the plating layer 7 can be increased. may be omitted.

効 果 この発明によれば、金属製外容器と外周面に予め鍍金層
が形成されている金属製内容器とを二重容器に組合せ、
それら内容器および外容器間を真空化して密閉する真空
密閉工程と共にか真空密閉後に、前記鍍金層を蒸着源と
して外容器内周面に対する蒸着鍍金処理を行うようにし
たから、内容器および外容器によって形成される真空断
熱空間の内壁面双方に鍍金層を有して二重に輻射率を小
さくされる金属製真空二重容器が、内外容器間介材物に
よる構造や組立ての複雑化、およびガス残留域増大によ
る所定真空度の経時的低下と云った問題なく、容易かつ
安価に製造できる。
Effects According to the present invention, a metal outer container and a metal inner container whose outer peripheral surface has been previously formed with a plating layer are combined into a double container,
At the same time or after the vacuum sealing step of evacuating and sealing the space between the inner container and the outer container, vapor deposition plating treatment is performed on the inner peripheral surface of the outer container using the plating layer as a vapor deposition source. The vacuum double container made of metal has a plating layer on both inner walls of the vacuum insulation space formed by the method, and the emissivity is doubled. It can be easily and inexpensively manufactured without the problem of a decrease in the predetermined degree of vacuum over time due to an increase in the gas residual area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の真空蒸着法を適用する場合の説明図
、第2図は主な鍍金材料の蒸気圧力線図、第3図はスパ
ッタリング法を適用する場合の説明図、第4図はイオン
ブレーティング法を適用する場合の説明図である。 l・・・金属製内容器、2.7・・・鍍金層、3・・・
金属製外容器、4・・・気密接合、5・・・チップ管、
6・・・真空断熱空間、8・・・金属N真空二重容器出
願人 タイガー魔法瓶株式会社 代理人 五 歩 −敬 治
Fig. 1 is an explanatory diagram when applying the vacuum evaporation method of this invention, Fig. 2 is a vapor pressure diagram of main plating materials, Fig. 3 is an explanatory diagram when applying the sputtering method, and Fig. 4 is an explanatory diagram when applying the sputtering method. It is an explanatory diagram when applying an ion brating method. l... Metal inner container, 2.7... Plating layer, 3...
Metal outer container, 4...airtight joint, 5...chip tube,
6...Vacuum insulation space, 8...Metal N vacuum double container Applicant: Agent Tiger Thermos Co., Ltd. Go Ayumu - Keiji

Claims (3)

【特許請求の範囲】[Claims] (1)金属製外容器と外周面に予め鍍金層が形成されて
いる金属製内容器とを二重容器に組合せ、それら内容器
および外容器間を真空化して密閉する真空密閉工程と共
にか真空密閉後、前記鍍金属を蒸着源として外容器内周
面に対する蒸着鍍金処理を行うことを特徴とする金属製
真空二重容器の製造方法
(1) A vacuum sealing process in which a metal outer container and a metal inner container with a plating layer pre-formed on the outer circumferential surface are combined into a double container, and the space between the inner container and the outer container is evacuated and sealed. After sealing, a method for manufacturing a metal vacuum double container, characterized in that vapor deposition plating is performed on the inner circumferential surface of the outer container using the plating metal as a vapor deposition source.
(2)外容器内周面に対する蒸着鍍金処理は、真空蒸着
法によってなされる特許請求の範囲第1項記載の金属製
真空二重容器の製造方法
(2) The method for manufacturing a metal vacuum double container according to claim 1, wherein the vapor deposition plating treatment on the inner circumferential surface of the outer container is performed by a vacuum evaporation method.
(3)外容器内周面に対する蒸着鍍金処理は、スパッタ
リング法によってなされる特許請求の範囲第1項記載の
金属製真空二重容器の製造方法(4)外容器内周面に対
する蒸着鍍金処理は、イオンブレーティング法によって
なされる特許請求の範囲第1項記載の金属製真空二重容
器の製造方法
(3) The method for manufacturing a metal vacuum double container according to claim 1, in which the vapor deposition plating treatment on the inner peripheral surface of the outer container is performed by a sputtering method. (4) The vapor deposition plating treatment on the inner peripheral surface of the outer container is performed by a sputtering method. , a method for manufacturing a metal vacuum double container according to claim 1, which is performed by an ion blating method.
JP58117805A 1983-06-28 1983-06-28 Production of metal vacuum double container Granted JPS607823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117805A JPS607823A (en) 1983-06-28 1983-06-28 Production of metal vacuum double container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117805A JPS607823A (en) 1983-06-28 1983-06-28 Production of metal vacuum double container

Publications (2)

Publication Number Publication Date
JPS607823A true JPS607823A (en) 1985-01-16
JPH0352972B2 JPH0352972B2 (en) 1991-08-13

Family

ID=14720708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117805A Granted JPS607823A (en) 1983-06-28 1983-06-28 Production of metal vacuum double container

Country Status (1)

Country Link
JP (1) JPS607823A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211636A (en) * 1975-07-15 1977-01-28 Matsushita Electric Works Ltd Fence
JPS57110219A (en) * 1980-12-29 1982-07-09 Nippon Oxygen Co Ltd Production of metalmagic pot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5211636A (en) * 1975-07-15 1977-01-28 Matsushita Electric Works Ltd Fence
JPS57110219A (en) * 1980-12-29 1982-07-09 Nippon Oxygen Co Ltd Production of metalmagic pot

Also Published As

Publication number Publication date
JPH0352972B2 (en) 1991-08-13

Similar Documents

Publication Publication Date Title
US5406444A (en) Coated tantalum feedthrough pin
JP2004518252A (en) Compact X-ray apparatus and manufacturing method thereof
US4746054A (en) Method of joining concentric cylinders
US4098452A (en) Lead bonding method
JPS5864017A (en) Ceramic condenser and method of producing same
JP3136390B2 (en) Solder joining method and power semiconductor device
US2229436A (en) Method of making metal-enclosed vacuum tubes
US3473217A (en) Manufacture of superconductors
CN1011368B (en) X-ray tube target
JPH08316299A (en) Electrostatic chuck
JPS607823A (en) Production of metal vacuum double container
US4795866A (en) Vacuum tube switch which uses low temperature solder
US2792272A (en) Metallic bond
JPH0255153B2 (en)
US2154278A (en) Carbon exterior anode
US3932227A (en) Electroformed hermetic glass-metal seal
US3947735A (en) Glass encapsulated capacitor with pressure connected cathode lead
JPS5925337B2 (en) Manufacturing method of electron tube grid electrode
JPS6258247B2 (en)
JP3245930B2 (en) Manufacturing method of vacuum capacitor
JP3107414B2 (en) Quartz crystal resonator and sealing method thereof
JPS5937564B2 (en) Method for forming end face electrodes of electronic components
US3464725A (en) Hermetic electrical lead-in assembly
JP3302121B2 (en) Manufacturing method of vacuum valve
JPS6345002Y2 (en)