JPS6077934A - Method for cooling steel sheet in continuous annealing - Google Patents

Method for cooling steel sheet in continuous annealing

Info

Publication number
JPS6077934A
JPS6077934A JP18441583A JP18441583A JPS6077934A JP S6077934 A JPS6077934 A JP S6077934A JP 18441583 A JP18441583 A JP 18441583A JP 18441583 A JP18441583 A JP 18441583A JP S6077934 A JPS6077934 A JP S6077934A
Authority
JP
Japan
Prior art keywords
cooling
cooled
steel sheet
chemical conversion
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18441583A
Other languages
Japanese (ja)
Other versions
JPH0355526B2 (en
Inventor
Takashi Sakata
敬 坂田
Osamu Hashimoto
修 橋本
Namio Suganuma
菅沼 七三雄
Ichiro Samejima
鮫島 一郎
Takeo Fukushima
丈雄 福島
Kanaaki Hyodo
兵頭 金章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18441583A priority Critical patent/JPS6077934A/en
Publication of JPS6077934A publication Critical patent/JPS6077934A/en
Publication of JPH0355526B2 publication Critical patent/JPH0355526B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To manufacture a steel sheet with high suitability to chemical conversion treatment at a low cost by successively carrying out cooling with cooling rolls and direct cooling with a cooling liq. under specified conditions when a steel sheet cooled to a prescribed temp. is further cooled. CONSTITUTION:When a cold rolled steel sheet cooled to 300-500 deg.C is further cooled to a lower temp. in continuous annealing, the sheet is cooled from 300- 500 deg.C to 100-200 deg.C by winding around plural cooling rolls. A refrigerant is being circulated through the rolls along the insides. Direct cooling is then carried out with a cooling liq. to cool the sheet to a lower temp.

Description

【発明の詳細な説明】 ′i3!:続焼なまし設(nttを用いて玲蛾された銅
板(以下単に鉛板という)を1!!造する隙における、
該鋼板の降濡過梶の冷却子Mgに関連してこの明細酊に
述べる技術内容は、化成処理性の劣化を引起すことのな
い対策に係り、この種鋼板の連続炉なまし・に関する技
術分野を占めている。
[Detailed Description of the Invention] 'i3! : During the gap between making a copper plate (hereinafter simply referred to as a lead plate) that has been annealed using NTT,
The technical contents described in this specification in connection with the Mg cooler of the steel plate are related to measures that do not cause deterioration of chemical conversion treatment properties, and the technology related to continuous furnace annealing of this type of steel plate. occupies the field.

f 景 技 術 この種鋼板の再結晶蜆なまし法の1つとして、連続炉な
まし炉が普及しつつあり、かような連続炉なまし炉によ
りCQ板を処理する場合、先づ14板を加熱帯、均熱帯
に通過させて再結晶焼なまし温度もしくは所定の加工性
を得るように650’C〜A1変態点(910℃)まで
加熱した後、300〜500°Cまで冷却し、続いて室
温近くの温度まで冷却する。この際鋼中に同浴している
炭素を析出させるため、300〜500°Cに数秒〜1
0分保持する所謂過時効処理が必要に応じて行われるこ
ともあり、この処理は炭素含有量が0.005 Wt 
4以上含まれるような鋼板の場合、加熱、均熱中に同宿
して炭素を加工性に無害になるようなバ■まで低減させ
るために施されるのに反し、炭素含有量が0.005 
wt係未満の鋼板ではもともと炭素炉が少ないため、必
ずしも必須ではない。
Continuous furnace annealing furnace is becoming popular as one of the recrystallization annealing methods for this type of steel plate.When treating CQ plate with such a continuous furnace annealing furnace, first 14 plates are processed. is passed through a heating zone and a soaking zone and heated to a recrystallization annealing temperature or a predetermined workability from 650'C to A1 transformation point (910°C), and then cooled to 300 to 500°C, It is then cooled to a temperature near room temperature. At this time, in order to precipitate the carbon present in the steel, it is heated to 300 to 500°C for a few seconds to 1
A so-called over-aging treatment, in which the carbon content is held for 0 minutes, is sometimes carried out as necessary.
In the case of steel sheets containing 0.005 or more carbon, the carbon content is 0.005 or more.
Since there are originally few carbon furnaces for steel plates of less than wt ratio, it is not necessarily essential.

従来技術とその問題点 さて、連続焼なましラインでは、上記の過時効処理の有
無にかかわらず、加熱、均熱後、800〜500℃まで
冷却された鋼板を室温近くの温度まで冷却する(以下こ
の処理を最終冷却と呼ぶ)必要がある。
Conventional technology and its problems Now, in a continuous annealing line, regardless of whether or not the above-mentioned overaging treatment is performed, a steel plate that has been cooled to 800 to 500°C after heating and soaking is cooled to a temperature close to room temperature ( This process is hereinafter referred to as final cooling).

最終冷却の方法としては、最も実用的なものとしてガス
ジェット冷却法が知られている。
As the final cooling method, the gas jet cooling method is known as the most practical method.

この方法は第1図に示したヒートサイクルにつき記号A
で示した如く、最終生動での冷却速度が10 ”C/ 
SeC程良しか得られず、従って最紋冷却帯のカJが長
大になる等の欠点を有しているが、ガスジェット冷却に
用いられる雰囲気カスが還元性の例えばHNカス(約7
%水素残り窒素、露点約−40°C)などが用いられる
ので、冷却中に…板表面に、テンパーカラーや肉眼で視
認できぬ程に薄い酸化皮膜の妬きを全く生成しない。そ
れ故山動車用鋼板の塗装前に施されるりん酸塩皮膜形成
処理(以下単に化成処理という)時にりん酸塩によるち
密な結晶皮膜が容易に形成され、その結果塗装後の耐食
性は著しくすぐれている。
This method uses the symbol A for the heat cycle shown in Figure 1.
As shown in Figure 2, the cooling rate at the final activation is 10"C/
SeC can only be obtained in a moderately good manner, and therefore has the drawback that the power J of the fringe cooling zone becomes long.
% hydrogen, residual nitrogen, dew point approximately -40°C), etc., so that no temper color or oxide film so thin that it cannot be seen with the naked eye is generated on the board surface during cooling. Therefore, during the phosphate film formation treatment (hereinafter simply referred to as chemical conversion treatment) that is applied before painting steel plates for mountain vehicles, a dense crystalline film of phosphate is easily formed, resulting in extremely high corrosion resistance after painting. ing.

これに対し力゛スジエツト冷却にl’=J随するコスト
高を低減するため過時効終了後に直ちに、水の如き冷却
液中に浸漬冷却する方法(第1図記号B参照)が考えら
れる。しかしこの方法においては、冷却に要するコスト
ははなはだ安価になるものの冷却時に形成されたごく薄
い酸化皮膜又はテンパーカラーの形成を伴い調板あ耐食
性劣化が余義なくされる。
On the other hand, in order to reduce the high cost associated with force jet cooling, l'=J, a method of cooling by immersion in a cooling liquid such as water immediately after the overaging is completed (see symbol B in FIG. 1) can be considered. However, in this method, although the cost required for cooling is extremely low, a very thin oxide film or temper color is formed during cooling, and the corrosion resistance of the tone plate is inevitably deteriorated.

両方法の欠点を補う方法として注目されているのが、例
えは特開昭54−118815号公報に示した回転冷却
体、すなわち内部に流体を通人させた冷却ロールに鋼板
を巻付けながら冷却、する方式(ロール冷却と云う)で
ある。この方法は冷却1水浸漬に起因する化成処理性不
良は、全くなく、また、カスジェット冷却よりも迷い冷
却速度が得られるが、150’C以下の低い温度域での
冷却速度は、第1図のOに示したように急激に減少する
ので、コスト的に充分安価とは言い鋳い。
A method that is attracting attention as a method to compensate for the shortcomings of both methods is, for example, the rotary cooling body shown in Japanese Patent Application Laid-Open No. 118815/1982, that is, cooling while winding a steel plate around a cooling roll with fluid passing through it. (referred to as roll cooling). This method does not suffer from any poor chemical conversion properties due to cooling 1 water immersion, and also provides a higher cooling rate than cass jet cooling, but the cooling rate in the low temperature range of 150'C or less is Since the amount decreases rapidly as shown in O in the figure, it is difficult to say that the cost is sufficiently low.

発 想 の 端 緒 このような欠点を解決するため冷却システムの組合せが
検討され、例えば第1図に記号りに示した如きガスジェ
ット+冷却水浸漬及び同図Eに示したようなロール冷却
子冷却水浸漬が考えられ、とくに後者は化成処理性が問
題なけれは最も効率よく低コストで冷却できる方法であ
ると考えられる。
Origin of the idea In order to solve these drawbacks, combinations of cooling systems were considered, such as gas jet + cooling water immersion as shown in the symbol in Figure 1, and roll cooler as shown in Figure E. Immersion in cooling water is considered, and the latter in particular is considered to be the most efficient and low-cost cooling method unless there is a problem with chemical conversion treatment.

ロール冷却と冷却水浸漬との組合せについては特開昭5
7−23081号公報に提起されているが、この発明に
おいてはたとえば400〜450°Cでの過時効処理後
冷却効率の高い200〜800°C程度までは、複数本
の回転冷却体に巻回しながら冷却(ロール冷却)シ、次
いで水もしくは水溶性圧延剤のスプレー又は浸漬による
冷却にて50・℃以下まで冷aする。しかしながら後述
するようにこのような条件においても、鋼板の化成処理
性が十分でなし・ことが判明したのである。
Regarding the combination of roll cooling and cooling water immersion, see JP-A-5
As proposed in Japanese Patent No. 7-23081, in this invention, for example, after over-aging treatment at 400 to 450°C, the cooling efficiency is high at about 200 to 800°C. While cooling (roll cooling), the material is cooled down to 50.degree. C. or lower by spraying or immersion in water or a water-soluble rolling agent. However, as will be described later, it was found that even under such conditions, the chemical conversion treatment properties of the steel sheet were insufficient.

発 明 の 目 的 発明者等は数多くの実験、検討を加えた結果1化成処理
性の必要を充分に満すべき最終冷却手順を究明し、これ
に基いて化成処理性の良好な新規な連続焼なましにおけ
るw1帯の冷却法を与えることがこの発明の目的である
Purpose of the Invention As a result of numerous experiments and studies, the inventors have discovered a final cooling procedure that fully satisfies the requirements for 1) chemical conversion treatment properties, and based on this, they have developed a new continuous process with good chemical conversion treatment properties. It is an object of this invention to provide a method for cooling the w1 band during annealing.

発 明 の 構 成 上記目的は次の事項を骨子とする手順で有利に充足され
る。
Structure of the Invention The above object is advantageously achieved by a procedure consisting of the following matters.

すなわち冷延鋼板の連続かとなまし処理において加熱、
均熱の後800〜500°Cまで冷却された鋼板に、必
要に応じて過時効処理を施した後、さらに低温まで冷却
するに当り、 300〜500°Cから100°C以上200℃未満ま
での温度域は、内周面に冷媒を流通させた複数個の冷却
ロールに巻き回しなから冷却し、続いてそれ以下の温度
までは鋼板を直接冷却液で冷却することにより低コスト
で化成処理性の良好な鋼、板を製造する。
In other words, the continuous heating and annealing of cold-rolled steel sheets,
After soaking, the steel plate has been cooled to 800-500°C, is subjected to over-aging treatment if necessary, and then further cooled to a lower temperature from 300-500°C to 100°C or more and less than 200°C. In the above temperature range, the steel plate is cooled by being rolled around multiple cooling rolls with a coolant flowing through the inner circumferential surface, and then the steel plate is directly cooled with a cooling liquid until it reaches a temperature below that temperature range, allowing chemical conversion treatment to be performed at low cost. Manufactures steel and plates with good properties.

発明者らは、連続焼なましサイクルの最終冷却における
冷却方法と化成処理性との関係を検討するため以下に示
す条件で実験を行った。
The inventors conducted an experiment under the conditions shown below in order to examine the relationship between the cooling method in the final cooling of a continuous annealing cycle and chemical conversion treatment properties.

〔実験条件〕[Experimental conditions]

O素材 低炭素AtキルドW4 0限分/ (wt%) C/ 0.046 、Si/ 
0.01、In / 0.27 、P / 0.011
 、 S / 0.008、AI 10.041 、N
 / 0.0019.0 / 0.00810熱延条件
 仕上湛叫、870°C1巻取温度670°CO冷延条
件 圧下率75係、仕上板厚0.80かmO連続焼なま
しのヒートサイクル(第2図)O過時効処理後の冷却方
法 0.8係の調賀圧妙の後における鋼板の塗装後の耐食性
の絆価として、化成処理時に形成されるリン酸塩結晶の
結晶サイズを測定した。ここに化成処理液としてBt 
8030 (日本バーカー製)を用い、該液に120 
sec浸漬する方法によった。また同時に焼なまし後の
テンパーカラーの発生状態を肉眼で観察した。第8図に
その結果を示す。
O material Low carbon At killed W4 0 limit/ (wt%) C/ 0.046, Si/
0.01, In/0.27, P/0.011
, S/0.008, AI 10.041, N
/ 0.0019.0 / 0.00810 Hot rolling conditions: Finishing excitation, 870°C 1 coiling temperature: 670°CO Cold rolling conditions: Reduction rate: 75, Finished plate thickness: 0.80mO Continuous annealing heat cycle ( Figure 2) Cooling method after O over-aging treatment Measure the crystal size of phosphate crystals formed during chemical conversion treatment as a bond value of corrosion resistance after painting of steel plate after 0.8 choga compression did. Here, Bt is used as a chemical conversion treatment liquid.
8030 (manufactured by Nippon Barker), and added 120 to the liquid.
A method of immersion for 20 minutes was used. At the same time, the state of occurrence of temper color after annealing was observed with the naked eye. Figure 8 shows the results.

ロール冷却の後の水浸漬開始温度TVが230℃以上で
は肉眼で明らかに認められるテンパーカラーが発生し、
その結果化成処理時のりん酸塩結晶粒、径が著しく大き
く、従って塗装後の耐食性は良好ではない。
If the water immersion start temperature TV after cooling the roll is 230°C or higher, a temper color that is clearly visible to the naked eye will occur.
As a result, the diameter of the phosphate crystal grains during the chemical conversion treatment is extremely large, and therefore the corrosion resistance after painting is not good.

次にTwの低下につれテンパーカラーの発生が認められ
なくなるがりん酸結晶粒径がなお大きい温度域が存在す
る。さらにTVが200’C未満に低下すると、リン酸
塩結晶粒径が著しく小さくなり、従って耐食性が良好と
なることがわかる。
Next, as Tw decreases, there is a temperature range where the occurrence of temper color is no longer observed but the phosphoric acid crystal grain size is still large. Furthermore, it can be seen that when the TV is lowered to less than 200'C, the phosphate crystal grain size becomes significantly smaller, and therefore the corrosion resistance becomes better.

TVが200℃から230℃の温度域ではテンパーカラ
ーが認められないにもかかわらず、化成処理性が良好で
はないのは、肉眼では観察されないおそらく約100A
以下の薄いm・化膜が形成されているため化成処理性が
なお良々」でなかったと推定される2 以上の理由から水浸漬開始温度TVとして200°C未
満が好ましい。浸漬開始温度の1限は、化成決定される
Even though no temper color is observed on TVs in the temperature range of 200°C to 230°C, the chemical conversion properties are not good because the temperature is probably around 100 A, which is not observed with the naked eye.
It is presumed that the chemical conversion treatment properties were not very good due to the formation of the following thin m-conversion film.2 For the above reasons, the water immersion starting temperature TV is preferably less than 200°C. One limit of the immersion starting temperature is determined by chemical formation.

すなわちロール冷:tllで一板を100”C以下まで
冷却すると、ロール本数の増加などのコストアップを引
起す。よって水浸M開始温度の下限は100℃である。
That is, if a sheet is cooled to 100"C or less using roll cooling: tll, this will cause an increase in cost such as an increase in the number of rolls. Therefore, the lower limit of the water immersion M starting temperature is 100"C.

なお、この実験では、冷却液として水を用いたが、それ
以外に例えは、熱水もしくは、カスで流・動状態にある
固体微粉末に浸漬してもよく、また1浸漬の替りに吹付
けなどを用いても同様の効果が期待できる。
In this experiment, water was used as the cooling liquid, but it is also possible to immerse the solid fine powder in a flowing/moving state with hot water or dregs. A similar effect can be expected by using a method such as attachment.

釦 朋 の 効 果 以上のようにこの発明は、低コストで化成処理性の良好
な冷(A h1+帯を製造する方法を与えるものであり
、その効果は大きい。
As described above, the present invention provides a method for producing a cold (Ah1+) band with good chemical conversion treatment properties at low cost, and its effects are significant.

実 施 例 下記に示す成分、熱延詮延条件の一板1および2を連続
貌なましラインで第4図に示す各別のサイクル(記号α
およびβ)で熱処理した。
EXAMPLE One plate 1 and 2 with the components shown below and the hot rolling conditions were subjected to each separate cycle (symbol α
and β).

−板1 成分7 00.051 %、Si o、o2 %、Mn
 0.21 % 。
-Plate 1 Component 7 00.051%, SiO, O2%, Mn
0.21%.

P O,011% 、S O0旧〕8 係 、AI 0
.031 % 、N O,0037%、Q O,005
1%鋼板2 成分: CO,0017%、si、 o、olcs、M
n O,17%、P O,010%、S O,006%
、flo、047%、Nb O,017%、N O,0
021チ、OO,0027%熱延条件;仕上温度860
°C1巻取fFA度700°C冷廷条I4::冷廷圧下
率75%、冷延板厚0.8關連続炒・なまし後、0.6
〜0.8係のW1情質圧廷を施した後、il+常の工程
で化成処理を行い、りん酸塩結晶の粒径を測定した。な
お化成処理の条件は前掲の実験と同じである。
PO, 011%, SO0 old] 8, AI 0
.. 031%, N O,0037%, Q O,005
1% steel plate 2 Ingredients: CO, 0017%, si, o, olcs, M
n O, 17%, P O, 010%, S O, 006%
, flo, 047%, Nb O, 017%, N O, 0
021chi, OO, 0027% hot rolling conditions; finishing temperature 860
°C1 winding fFA degree 700°C cold rolling strip I4: Cold rolling reduction rate 75%, cold rolled plate thickness 0.8 After continuous roasting and annealing, 0.6
After applying a W1 stress test of ~0.8, a chemical conversion treatment was performed in an il + normal process, and the particle size of phosphate crystals was measured. The conditions for the chemical conversion treatment were the same as in the experiment described above.

結果を表1に示す。The results are shown in Table 1.

化成処理後のリンρ結晶の析出状態を示す走査電顕写真
を第5図に示す。
FIG. 5 shows a scanning electron micrograph showing the state of precipitation of phosphorus ρ crystals after the chemical conversion treatment.

表1 水浸漬開始温度がこの発明の範囲内ではりん酸塩結晶粒
径が著しく小さく、従って塗装後の耐食性が良好であっ
たが、範囲外では、リン酸塩粒径が大きく、耐食性が著
しく劣る。
Table 1 When the starting temperature of water immersion was within the range of this invention, the phosphate crystal grain size was extremely small, and therefore the corrosion resistance after painting was good; however, outside the range, the phosphate grain size was large and the corrosion resistance was extremely poor. Inferior.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続蜆なましのヒートサイクルと神々の最終冷
却法による冷却速度を示す線図、第2図は実験1に用い
た連続貌なましのヒートサイクルを示す線図、 第8図はりん酢塩結晶粒度と水浸漬開始温度の関係を示
す図表であり、 第4図は実施例に用いた連続焼なましのヒートサイクル
を示す線図、 第5図は化成処理後のりん酸塩結晶の析出汎゛部を示す
走査電顕写真である。 特許出願人 川崎製鉄株式会社 同 出願人 三菱重工業株式会社 第1図 第2図 第3図 第4図 第1頁の続き 0発 明 者 福 島 丈 雄 広島市西区観音新町。 造船所内 0発 明 者 兵 頭 金 章 広島市西区観音新町・
造船所内 L−6−22三菱重工業株式会社広島 L−6−22三菱重工業株式会社広島
Figure 1 is a diagram showing the heat cycle of continuous annealing and the cooling rate by the final cooling method of the gods. Figure 2 is a diagram showing the heat cycle of continuous annealing used in Experiment 1. Figure 8 is a diagram showing the heat cycle of continuous annealing. FIG. 4 is a diagram showing the relationship between phosphate salt crystal grain size and water immersion start temperature; FIG. 4 is a diagram showing the heat cycle of continuous annealing used in Examples; FIG. This is a scanning electron micrograph showing the area where crystals are deposited. Patent Applicant: Kawasaki Steel Corporation Applicant: Mitsubishi Heavy Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Continued from page 1 0 Inventor Takeo Fukushima Kannon Shinmachi, Nishi-ku, Hiroshima City. Inventor Hyodo Kin Akira Kannon Shinmachi, Nishi-ku, Hiroshima City
L-6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima L-6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima

Claims (1)

【特許請求の範囲】 L 冷延鋼板の連続炉なまし処理において、800〜5
00°Cまで冷却された鋼板をさらに低い温度まで冷却
するに当り、 800〜500℃から1. OO″C以上200°C未
l読までの温度域は、内周面に冷媒を流通させた複数個
の冷却ロールに巻き回しながら冷却し、続いてそれ以下
の温度までは、鋼板を直接冷却液で冷却すること を特徴とする連続炉なましにおける鋼板の冷却方法。
[Claims] L In continuous furnace annealing treatment of cold-rolled steel sheets, 800 to 5
When cooling a steel plate that has been cooled to 00°C to an even lower temperature, 1. For temperatures above OO''C and up to 200°C, the steel plate is cooled by winding it around multiple cooling rolls with coolant flowing through the inner circumferential surface, and then for temperatures below that, the steel plate is directly cooled. A method for cooling a steel plate in continuous furnace annealing, characterized by cooling with a liquid.
JP18441583A 1983-10-04 1983-10-04 Method for cooling steel sheet in continuous annealing Granted JPS6077934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18441583A JPS6077934A (en) 1983-10-04 1983-10-04 Method for cooling steel sheet in continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18441583A JPS6077934A (en) 1983-10-04 1983-10-04 Method for cooling steel sheet in continuous annealing

Publications (2)

Publication Number Publication Date
JPS6077934A true JPS6077934A (en) 1985-05-02
JPH0355526B2 JPH0355526B2 (en) 1991-08-23

Family

ID=16152764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18441583A Granted JPS6077934A (en) 1983-10-04 1983-10-04 Method for cooling steel sheet in continuous annealing

Country Status (1)

Country Link
JP (1) JPS6077934A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723031A (en) * 1980-07-11 1982-02-06 Nippon Steel Corp Cooling method for metal strip
JPS5726127A (en) * 1980-07-25 1982-02-12 Nippon Steel Corp Cooler for continuous annealing line for high tensile steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723031A (en) * 1980-07-11 1982-02-06 Nippon Steel Corp Cooling method for metal strip
JPS5726127A (en) * 1980-07-25 1982-02-12 Nippon Steel Corp Cooler for continuous annealing line for high tensile steel

Also Published As

Publication number Publication date
JPH0355526B2 (en) 1991-08-23

Similar Documents

Publication Publication Date Title
EP3064607B1 (en) Grain oriented electrical steel sheet having excellent magnetic characteristics and coating adhesion
JP2698003B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3387914B1 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with excellent film properties and high magnetic field iron loss
JP6531864B2 (en) Method of manufacturing directional magnetic steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPS6077934A (en) Method for cooling steel sheet in continuous annealing
CN107429307A (en) The manufacture method of one-way electromagnetic steel plate
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
GB2095287A (en) Method for producing grain- oriented silicon steel
JPS5825425A (en) Manufacture of directional electromagnetic steel plate
JPS60251227A (en) Production of low-expansion fe-ni steel sheet
KR19980044925A (en) A method for manufacturing a high magnetic flux density directional electric steel sheet by a low temperature slab heating method
WO2020149346A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149323A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPS6114216B2 (en)
JPS60255921A (en) Manufacture of hot rolled austenitic stainless steel strip
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH02101120A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0617513B2 (en) Method for flattening annealing of unidirectional silicon steel sheet with excellent magnetic properties and coating adhesion
JPH02111846A (en) Martensitic stainless steel excellent in press formability
JP2612453B2 (en) Method for producing hot-rolled mild steel sheet with excellent drawability
JPS62136561A (en) Hot rolled steel sheet having superior adhesion to scale and its manufacture
JPS59205420A (en) Manufacture of unidirectional silicon steel sheet
JP2000239795A (en) Rolled wire rod excellent in softening characteristic