JPS6077917A - Manufacture of alloy steel having superior resistance to stress corrosion cracking - Google Patents

Manufacture of alloy steel having superior resistance to stress corrosion cracking

Info

Publication number
JPS6077917A
JPS6077917A JP18641883A JP18641883A JPS6077917A JP S6077917 A JPS6077917 A JP S6077917A JP 18641883 A JP18641883 A JP 18641883A JP 18641883 A JP18641883 A JP 18641883A JP S6077917 A JPS6077917 A JP S6077917A
Authority
JP
Japan
Prior art keywords
less
resistance
alloy steel
treatment
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18641883A
Other languages
Japanese (ja)
Other versions
JPH0352527B2 (en
Inventor
Junichi Sakai
潤一 酒井
Iwao Matsushima
松島 厳
Masaharu Honda
本田 正春
Yoshiki Kamemura
亀村 佳樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP18641883A priority Critical patent/JPS6077917A/en
Publication of JPS6077917A publication Critical patent/JPS6077917A/en
Publication of JPH0352527B2 publication Critical patent/JPH0352527B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture an alloy steel having superior resistance to stress corrosion cracking by explaining the interaction between alloying elements on resistance to stress corrosion cracking and the relation between the interaction and conditions during soln. heat treatment. CONSTITUTION:The composition of an alloy steel is composed of, by weight, <0.03% C, <2% Si, <2% Mn, <0.02% P, <0.01% S, 20-30% Ni, 12-25% Cr, <10% Mo, <0.3% N, <0.1% Ca and/or <2% Cu, and the balance Fe with inevitable impurities while satisfying equation I , and the value of DELTA represented by equation II is regulated to >=5. The alloy steel is subjected to soln. heat treatment or semi-soln. heat treatment at a temp. Tf which is in the range of 950- 1,200 deg.C and satisfies conditions represented by equation III.

Description

【発明の詳細な説明】 本発明は耐応力腐食割れ性に優れた合金鋼の製造方法に
関し、合金元素を粁済的な範囲に限定した成分組成と熱
処理糸f(との組み合せにより、優れた耐応力腐食割れ
性を有す−る含金鋼苧を得せしめるようにしたものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing alloy steel with excellent stress corrosion cracking resistance. The present invention provides a metal-containing steel plate having stress corrosion cracking resistance.

塩化物応力腐食割れ(以下単にrsccJと称す)に及
ぼす合金元素の影響に関する報告のうち、熾も一般なも
のは、Copsonによるニッケルの耐SCC性への影
響に関する報告(plays i ca 1Meta+
+urgy or 5tress corrosion
 rracture。
Among the reports on the influence of alloying elements on chloride stress corrosion cracking (hereinafter simply referred to as rsccJ), one of the most common is the report on the influence of nickel on SCC resistance by Copson (plays i ca 1Meta+).
+urgy or 5tress corrosion
rracture.

P 247. I nterscience 、 N、
 Y、 (1959) )である。これによれば、18
%程度のクロムを含有づるクロム−ニッケi系合金の耐
SCC性は8%今ニッケル程度で最も劣り、ニッケルの
添加量の減少、或いは高ニツケル化により耐SCC性は
向上するとし、またオーステナイト系ステンレス鋼を対
象とした場合には、ニッケル含有量を45%以上とづる
ことにより、極めて高い耐SCC性が得られるとしてい
る。ニッケル以外の合金元素で耐SCC性に有効と一般
に認められているのは炭素と珪素であり、また、悪影響
を及ぼづ元素としては、リン、窒素、モリブデン、クロ
ムなどが知られている。だが、ここに述べた各成分元素
の耐SCC性に対Jる影響については、主として着目成
分濃度のみを変動因子として採ったものであり、これに
対して成分元素相互の作用については検討例が少なく、
含有率の小さい炭素−窒素、リン−窒素の組合せについ
てわずかに報告([遅沢、深瀬、横1月二日木金属学会
誌、 3G(1972) 170. J[小若、富士用
:日本金属学会誌、 34 (1970)1047、J
 )があるに過ぎない。そこでは、炭素と窒素の組合ぜ
にJ3いては、炭素の耐SCC性向が窒素mの増加とと
しに失なわれていぎ、またリン−窒素の組み合μではリ
ンの低減が極めて有効であることが確認されている。
P 247. Interscience, N.
Y. (1959)). According to this, 18
The SCC resistance of chromium-nickel i-based alloys containing about 8% chromium is currently the lowest at about 8% nickel, and it is said that reducing the amount of nickel added or increasing the nickel content improves SCC resistance. In the case of stainless steel, extremely high SCC resistance can be obtained by setting the nickel content to 45% or more. Among alloying elements other than nickel, carbon and silicon are generally recognized to be effective in improving SCC resistance, and phosphorus, nitrogen, molybdenum, chromium, etc. are known as elements that do not have an adverse effect. However, regarding the effects of each component element on SCC resistance described here, only the concentration of the component of interest was taken as a variable factor; on the other hand, there are no examples of studies regarding the interaction of component elements. less,
There are only a few reports on the combinations of carbon-nitrogen and phosphorus-nitrogen with small contents ([Yazawa, Fukase, Yoko, January 2, Thursday Journal of the Institute of Metals, 3G (1972) 170. J [Kowaka, Fuji: Japan Institute of Metals. Magazine, 34 (1970) 1047, J
). There, in the carbon-nitrogen combination J3, the SCC resistance of carbon is lost as nitrogen m increases, and in the phosphorus-nitrogen combination μ, reducing phosphorus is extremely effective. This has been confirmed.

場化物を含む厳しい腐食環境で用いられる耐食合金は、
#4SCC性と耐孔食性とが要求されその成分設計には
耐SCC性向」二のためにニッケルの添加が、また耐孔
食性向上のためにクロム、モリブテンの添加が行われ、
ともにその添加量は増づ傾向にある。しかし、前述した
J:うに、従来各々の合金元素の添加量は、個別元系の
個別現象への効果を基に定められており、耐SCC性等
の向上のため経済性を考慮しつつニッケル、モリブデン
、クロム等の合金元素の相互的な最適バランスが定量的
に考慮されている材料は未だ知られていない。
Corrosion-resistant alloys used in severe corrosive environments containing chemical substances are
#4 SCC properties and pitting corrosion resistance are required, and in its component design, nickel is added to improve SCC resistance, and chromium and molybdenum are added to improve pitting corrosion resistance.
The amount of both is on the rise. However, in the J: sea urchin mentioned above, the amount of each alloying element added has conventionally been determined based on the effect on individual phenomena of the individual element system. There is still no known material in which the mutual optimum balance of alloying elements such as , molybdenum, and chromium is quantitatively considered.

さらに、実際の製品製造において最も重要な要素の1つ
である熱履歴、特に溶体化処理条件と耐SCC性、耐孔
食性との相ひ―作用についても十分な解明がなされてい
ないのが現状である。
Furthermore, the thermal history, which is one of the most important factors in actual product manufacturing, and in particular the interaction between solution treatment conditions, SCC resistance, and pitting corrosion resistance, are not fully understood. It is.

本発明はこのような現状に鑑み創案されたもので、耐S
CC性に対重る合金元素の相互作用及びこれと溶体化(
又は卑情体化)処理条件との関係を解明し、従来のSU
S 304. 316?7の材料に劣らない耐SCC性
を有する合金鋼を経済的な合金元素の範囲で得ることに
成功したものである。
The present invention was devised in view of the current situation, and is
Interaction of alloying elements that affect CC properties and this and solutionization (
The relationship between the processing conditions (or vulgarization) and the conventional SU
S304. We have succeeded in obtaining an alloy steel with SCC resistance comparable to that of the No. 316-7 material using an economical range of alloying elements.

即ち、本発明にJ3いては、C: 0,03wt%以下
、3i:2wt%以下、IVIII:2wt%以下、P
:0.02wt%以下、3 : 0.01wt%以下、
Ni:20W[%以上30W【%未満、Cr : 12
〜25wt%、MO:10wt%以下、N : 0,3
wt%以−ト、さらにこれらに加え72wt%以下のC
u、0,1wt%以下のCa、1wt%以上のl−iの
うちの1種又は2種以上を含有し残部鉄及び不可避不純
物からなる組成であっで、 Or +1.5MO+0.8−1’−i + 0.5C
11≧15の条件を満し、■つ Δ= (N i +300−1−25N )[((Cr
 十L5M O−1−0,8−1−1−I−0,5Cu
−19) 2/ 12) −13]でめられる八ItQ
が5以上である組成を有する含泡 金r14+、950〜1200℃の温度範囲であって且
つ下式の条件を満す温度]−[にて溶体化又は卑情体化
処理するようにしたものである。
That is, in the present invention, J3 contains C: 0.03 wt% or less, 3i: 2 wt% or less, IVIII: 2 wt% or less, P
: 0.02wt% or less, 3: 0.01wt% or less,
Ni: 20W [% or more and 30W [less than %], Cr: 12
~25wt%, MO: 10wt% or less, N: 0.3
wt% or more, and in addition to these, 72wt% or less C
A composition containing one or more of u, 0.1 wt% or less of Ca, and 1 wt% or more of l-i, with the balance consisting of iron and unavoidable impurities, Or +1.5MO+0.8-1' -i + 0.5C
11≧15, ■ Δ= (N i +300-1-25N ) [((Cr
10L5M O-1-0,8-1-1-I-0,5Cu
-19) 2/ 12) -13] 8ItQ
Foamed gold r14+ having a composition of 5 or more, which is subjected to solution treatment or vulgarization treatment at a temperature in the temperature range of 950 to 1200 °C and satisfying the conditions of the following formula] - [ It is.

T[≦12Δ+900 以下本発明の成分組成及び熱処理茶汁の限定理由を詳細
に説明覆る。
T [≦12Δ+900 The ingredient composition of the present invention and the reasons for limiting the heat-treated tea juice will be explained in detail below.

本発明の成分組成の限定理由は以下の通りである。The reasons for limiting the component composition of the present invention are as follows.

Cは、粒内型SCCの抑制に対して有効との説もあるが
、C含有量が0.03wj%を超えると粒界型SCCを
起し易くなり、特にCIN溶度が減少りる高Ni合金で
そのおそれが人ぎくなる。このようなことがらCはその
上限が0.03wt%以下に制限される。
There is a theory that C is effective in suppressing intragranular SCC, but if the C content exceeds 0.03 wj%, grain boundary SCC tends to occur, and in particular, if the CIN solubility decreases, With Ni alloys, this fear becomes more serious. For these reasons, the upper limit of C is limited to 0.03 wt% or less.

Siはl1ji酸成分どして必要ぐあり、また′#4S
CC性の向上に有効な元素であるが、2wt%を超えM
llはSiと同様++12V作用がある。このM 11
は耐SCC性にはほとんど影響を与えないが、2wt%
を超えるとマンガン硫化物等の析出物が孔食の起点とな
り易く、したがって2wt%が上限とされる。
Si is necessary as a l1ji acid component, and also '#4S
Although it is an effective element for improving CC properties, M
Like Si, ll has a +12V effect. This M 11
has almost no effect on SCC resistance, but 2wt%
If it exceeds 2 wt%, precipitates such as manganese sulfide tend to become the starting point of pitting corrosion, and therefore the upper limit is set at 2 wt%.

不可避不純物としての1〕はSCC感受性を高める作用
があるため、(参カ低減さゼる必要があり、このためそ
の上限が0,02wt%と定められる。
Since 1] as an unavoidable impurity has the effect of increasing SCC susceptibility, it is necessary to reduce the amount of 1], and therefore its upper limit is set at 0.02 wt%.

不可避不純物としてのSには熱間加工性を劣化させる作
用があり、マンガン硫化物等を作って耐孔食性を悪化さ
けるのC1その上限が0,0hvt%と定められる。
S as an unavoidable impurity has the effect of deteriorating hot workability, and the upper limit of C1 is set at 0.0 hvt% to avoid deterioration of pitting corrosion resistance by forming manganese sulfide and the like.

Niは、RI S CC性を向上さUるのに、有効な元
素であって、20wt%以上でその効果が顕著になり、
したがって、20w[%が下限とされる。一方、下記す
るCrfiiの上限が25wt%であることから、この
Crff1上限とのバランス上、Niの上限は30wt
%未渦に抑えられる。また本発明は合金元素の添加を経
済的な範囲どしつつ従来の5US304゜316並み或
いはでれ以上の耐SCC性を1りんとするものひあり、
したがって30W[%以」ニの添加は経済性を損ね、本
発明の目的を逸脱することになる。
Ni is an effective element for improving RI S CC properties, and its effect becomes noticeable at 20 wt% or more.
Therefore, the lower limit is 20w[%. On the other hand, since the upper limit of Crfii described below is 25 wt%, in balance with this upper limit of Crff1, the upper limit of Ni is 30 wt%.
% no vortex. In addition, the present invention allows the addition of alloying elements within an economical range while achieving SCC resistance of 1 phosphorus that is comparable to or better than that of conventional 5US304°316.
Therefore, adding more than 30W [%] will impair economic efficiency and deviate from the purpose of the present invention.

C,rは高台金鋼の耐食性、とくに不働態皮膜の強化に
よる耐食性向上に有効な元素であるが12W(%未満で
はその効果が十分eなく、また25wt%を超えると熱
間加工性の劣化が避(]難く、したがつて12〜25w
[%の範囲とされる。
C and r are effective elements for improving the corrosion resistance of high-base metal steel, especially by strengthening the passive film, but if it is less than 12W (%), the effect is not sufficient, and if it exceeds 25wt%, the hot workability deteriorates. is difficult to avoid, therefore 12~25w
[Supposed to be in the range of %.

MOは不働態皮膜の強化に対してOrの1.5倍程度の
効果があるが、その含有mが10w[%を超え己 ると熱間■稈時に耐食性を劣化さUるj相を容易に生成
りろうようになり、このためその上限が10W【%と定
められる。
MO is about 1.5 times as effective as Or in strengthening the passive film, but if its content exceeds 10%, it easily forms a phase that deteriorates corrosion resistance during hot heating. Therefore, the upper limit is set at 10W%.

Nは耐SCC性の向上に対し必ずしも有効な元素とはい
い難いが、本発明鋼では耐孔食性を増づことが期待でき
る。高合金鋼のSCCは孔食を起点に伝帽づることが多
く、孔食のR1を防止り−ることは、SCCの防止につ
ながる。また、Nは粒界鋭敏化を抑制し、粒界型SCC
の発生をおさえる作用を右する。但し、Nは0.3%を
超えるとNら C1・、輛港、T1等の窒化物を形成して耐孔食性を劣
化せしめるとともに、加工性も低下せしめるので、0.
3%を上限とする。
Although N is not necessarily an effective element for improving SCC resistance, it can be expected to increase pitting corrosion resistance in the steel of the present invention. SCC of high alloy steel often develops due to pitting corrosion, and preventing R1 of pitting corrosion leads to prevention of SCC. In addition, N suppresses grain boundary sensitization and suppresses grain boundary type SCC.
It has the effect of suppressing the occurrence of. However, if N exceeds 0.3%, it forms nitrides such as N, C1, T1, etc., which deteriorates pitting corrosion resistance and also reduces workability.
The upper limit is 3%.

Ca 、Ti 、C1の各成分は、その1種又は2種以
上が含有ゼしめられるものである。これらの成分のうち
Cuは材料の耐食性を向上させるのに役立つが、2wt
%を超えると熱間加工性の劣化を招き、このl〔め、1
wt%が上限と定められる。また1−i とCaは熱間
加工性を向上させる作用があるとともに、Ti1.LC
を固定して結果的に粒界SCCを抑制づる効果をもつ。
Each of the components Ca, Ti, and C1 contains one or more of them. Among these components, Cu is useful for improving the corrosion resistance of the material, but at 2wt.
If it exceeds 1%, it will lead to deterioration of hot workability.
wt% is set as the upper limit. In addition, 1-i and Ca have the effect of improving hot workability, and Ti1. L.C.
This has the effect of suppressing grain boundary SCC by fixing it.

各成分がこのような発揮覆るのに、Caは0.1wt%
以下、T1はiwt%以下あれば十分であり、この上限
を超えて含有せしめてもそれ以上の効果は期待できない
。従ってこれらは、CaがQ、1wt%、l−iが1w
t%を上限にして含有せしめられる。
Although each component exhibits this kind of effect, Ca is 0.1wt%.
Hereinafter, it is sufficient if T1 is less than iwt%, and even if the content exceeds this upper limit, no further effect can be expected. Therefore, in these, Ca is Q, 1wt%, l-i is 1w
It can be contained up to t%.

本発明では、以上のJ、うな成分元素の組成条件に、さ
らに成分元素間で、次のような条1′1を満足させる必
要かあり、このような成分元累相亙の関係を満足さける
ことによって、Δ\発明が目的と覆る優れた耐s c 
C+1か((1られる。刃なわら、本発明ではまず、 CI” +1.5MO+ 0.8−1’i l−0,5
CU >15となるにう各成分値が調整される必要があ
る。全面腐食及び孔食を含む耐食性を得るためには上記
条件を満足さける必要がある。さらに本発明では、上記
組成条イ′1に加え、 八−(N i 4−30G +25N )−[((Cr
 + 1.5Mo + 0.8’T’i十〇、5Cu 
−19) 2 /12) −13]の式で定義されるΔ
値が5以」二となるよう組成条件が調整される必要があ
り、絹成条イ′1上このΔ賄を満足しないと所望の耐S
CC性か19られない。
In the present invention, in addition to the above compositional conditions of the component elements J and U, it is necessary to satisfy the following clause 1'1 among the component elements, and such a relationship between the component elements and the relative relationship is to be satisfied. By this, the purpose of the invention is to achieve excellent sc resistance.
C+1?
Each component value needs to be adjusted so that CU>15. In order to obtain corrosion resistance including general corrosion and pitting corrosion, it is necessary to satisfy the above conditions. Furthermore, in the present invention, in addition to the above composition A'1, 8-(N i 4-30G +25N )-[((Cr
+ 1.5Mo + 0.8'T'i〇, 5Cu
-19) 2 /12) -13] Δ
It is necessary to adjust the composition conditions so that the value is 5 or more, and if this Δ value is not satisfied, the desired S resistance
I can't get CC sex or 19.

第1図は上記Δ値と耐s c c taとの関係を調べ
、これを%(CI’ +1.5MO+ 0.8T−i 
+ 0.5Cu )をX軸に、また%(N i ト30
c +25N )をY軸に取って表わしたものであり、
この場合のSCC感受性は、950℃で熱処理した試験
j′1に降伏強さの1.2倍の応力を負荷したまま、 
150℃沸騰塩化マグネシウム溶液に浸漬し、G 00
11¥間紅過後の割れの有無で判定したものである。同
図から明らかなにうに、(Cr + 1.5Mo 十0
.8’l’i +〇、5Cu )≧15の範囲であって
も、△≧5の範囲にJ5いてのみ満足づべき耐s c 
c 1qが得られCおり、したがって本発明が目的とす
る耐SCC性を十分満足させるには、少なくとも上記組
成条イ′1を満足しなければならないことが判る。なJ
5同図中破線に示すように、(N i +30c +2
5N )の値は30以下に抑えらtt 4 ;X kが
好ましパ・ 製本発明では上記した成分条件の合金鋼を
溶掃した後、熱間圧延以降の工程で所謂溶体化処理又は
事情体化処理が行われる。ここで事情体化処理とは、完
全とはいかないまでb組織中のカーバイトの溶解が進行
し成分元素の不均一が均一化される状態を示ず。そして
、本発明ではまず、かかる熱処理を950〜1200℃
の湿度範囲で行うことが条件とされる。ここで、熱処理
温度が950℃未満では金属組織の均一化が必要とされ
る程度まで1qられない!こめ十分な耐SCC性がl!
IJ持できず、また、1200℃を越え!ζ熱処理では
、結晶粒が粗大化して降伏応ツノが低下Jるので1)I
ましくない。成分組成によって差はあるが、一般的には
このような950〜1200℃の温度範囲中、高温側で
の熱処理が溶体化処理、低温側での熱ff1l!I!が
卑情体化処理化となる。本発明の熱処理は、このにうな
温度範囲において、ざらにΔとの関係で下式の条件を満
づ温度T[で行うことが条件とされる。
Fig. 1 examines the relationship between the above Δ value and the resistance sc
+ 0.5 Cu) on the X axis, and % (N i to 30
c +25N) is expressed on the Y axis,
The SCC susceptibility in this case is determined by applying a stress 1.2 times the yield strength to test j′1 heat-treated at 950°C.
Immersed in 150℃ boiling magnesium chloride solution, G 00
Judgment was made based on the presence or absence of cracks after being stained for 11 yen. As is clear from the figure, (Cr + 1.5Mo 10
.. Even if the range is 8'l'i +〇,5Cu)≧15, the resistance s c should be satisfied only if J5 is in the range of △≧5.
c1q was obtained, and therefore, it can be seen that at least the above composition condition A'1 must be satisfied in order to sufficiently satisfy the SCC resistance aimed at by the present invention. NaJ
5 As shown by the broken line in the figure, (N i +30c +2
The value of tt 4 ; processing is performed. Here, the conditionalization treatment does not refer to a state in which the dissolution of carbide in the b-structure progresses until it is not complete, and the non-uniformity of the component elements is made uniform. In the present invention, first, such heat treatment is performed at 950 to 1200°C.
The condition is that the test be carried out within the humidity range of . Here, if the heat treatment temperature is less than 950°C, the metal structure cannot be made uniform to the required level! It has sufficient SCC resistance!
IJ could not hold and the temperature exceeded 1200℃ again! In heat treatment, the crystal grains become coarser and the yield angle decreases, so 1) I
Not good. Although there are differences depending on the component composition, in general, within the temperature range of 950 to 1200°C, heat treatment on the high temperature side is solution treatment, and heat treatment on the low temperature side is ff1l! I! becomes an obscene treatment. The heat treatment of the present invention is conditioned to be carried out within this temperature range at a temperature T[ that roughly satisfies the condition of the following formula in relation to Δ.

Tr ≦12Δ+900 温度]ゴは成分元素相互の含有量に関係してめられるΔ
値に基づき決定されるもので、このように成分元素の相
H的な関係から決定される温度で溶体化処理又は事情体
化処理をhうことにより、本発明の目的と覆る優れた耐
SCC性が得られる。
Tr ≦12Δ+900 Temperature] Δ is determined in relation to the mutual content of component elements.
By carrying out solution treatment or conditioning treatment at a temperature determined based on the phase relationship of the component elements, excellent SCC resistance can be obtained, which meets the objective of the present invention. You can get sex.

第2図は、Δ餡と熱9JX埋渇度−1ゴどの関係から耐
SCC性を調べたものであるが、同図から明らかなよう
に、950〜1200℃の温度範囲であっても、Δ値と
の関係から1ゴ> 12Δ’+ 900の範囲では耐S
CC性が劣り、耐SCC性を十分満足さびるには、成分
元素相互の関係でめられるΔの(山に基づいた温度で熱
処理7ることが不ijJ欠であることが判る。
Figure 2 shows the investigation of SCC resistance from the relationship between Δ bean paste and heat 9J From the relationship with the Δ value, in the range of 1 Go > 12 Δ' + 900, the S resistance is
It can be seen that in order to achieve rusting that satisfactorily satisfies SCC resistance due to poor CC properties, heat treatment at a temperature based on the peak of Δ, which is determined by the relationship between the component elements, is essential.

上記した溶体化処理又は事情体化処理は、熱間加工以降
の種々の段階で行うことができ、例えば■熱間圧延−冷
間圧延−溶1本化処理又は事情体化処理、■熱間圧延−
溶体化処理又は卑情体化処理−冷間圧延、等の各工程を
採ることができる。また溶体化処理後、固溶Cを過飽和
の状態から飽和状態にして組織の安定化を図るための熱
処理、所謂安定化処理を行うことができ、この場合には
、例えば■熱間圧延−溶体化処理−冷間圧延一安定化処
理、■熱間圧延−溶体化処理−安定化処理一冷間圧延、
■熱間圧延−冷間圧延−溶体化処理一冷間I■延−安定
化処理、等の各工程を採ることができる。ここで上記l
1I−溶体化処理は、組織中のカ−バイトの溶解前゛あ
る程度進りせしめることによって成分元素の均一化くミ
クロ的な成分濃度の均一化を含む)が図られるようにし
だ熱処理であることば前)ホした通りであり、このよう
にして得られる組織は溶体化処理−安定化処理を経て均
一化、安定化された組織に近いものとなる。なお、上記
した■、■で示−4J:うなニに程では、溶体化処理ど
ることかできる。
The above-mentioned solution treatment or conditioning treatment can be performed at various stages after hot working, such as ■Hot rolling-cold rolling-melting treatment or conditioning treatment, ■Hot rolling Rolling-
Processes such as solution treatment or obscene treatment-cold rolling can be employed. Further, after the solution treatment, a so-called stabilization treatment, which is a heat treatment for changing the solid solution C from a supersaturated state to a saturated state and stabilizing the structure, can be performed. In this case, for example, hot rolling - solution treatment - stabilization treatment - cold rolling,
The following steps can be taken: (1) hot rolling, cold rolling, solution treatment, cold rolling, and stabilization treatment. Here, the above l
1I-Solution treatment is a term for heat treatment in which the dissolution of carbide in the structure is progressed to a certain extent, including uniformity of component elements and uniformity of microscopic concentration of components. As mentioned above, the structure obtained in this way becomes similar to a homogeneous and stabilized structure through solution treatment and stabilization treatment. It should be noted that solution treatment can be applied to the level of -4J: eel ni as indicated by (1) and (2) above.

「実施例」 第1表に本発明鋼(Δ−1〜△−6)及び比較1(B−
1〜B−4)の化学成分を示す。これらはいずれも通富
のステンレス鋼の製造ラインで製造されたもので、熱間
圧延−焼鈍−冷間圧延後、950〜1050℃の温度範
囲で10〜30分間加熱して急冷する溶体化処理後は事
情体化処理を行った。な113、いくつかの条件では上
記焼鈍工程に相当づる段階で溶体化処理又は事情体化処
理を行い、冷間圧延後の熱処理と省略した。工程上にJ
ハノる熱処理の位置或いは当該熱処理におりる保持tI
W間は結果に影響を与えないので、それらの項目は省略
した。各供試鋼のiIJ S CC性に関りる試験結果
を第1表に併せて示した。
"Example" Table 1 shows the steels of the present invention (Δ-1 to Δ-6) and comparative 1 (B-
1 to B-4) are shown below. All of these were manufactured on Tsutomi's stainless steel production line, and after hot rolling, annealing, and cold rolling, they were subjected to solution treatment, which involved heating at a temperature range of 950 to 1050°C for 10 to 30 minutes and then quenching. After that, I processed the situation. 113, under some conditions, solution treatment or conditioning treatment was performed at a stage corresponding to the above-mentioned annealing step, and the heat treatment after cold rolling was omitted. J on the process
The position of the heat treatment or the holding time after the heat treatment
Since the W interval did not affect the results, those items were omitted. The test results regarding the iIJ S CC properties of each sample steel are also shown in Table 1.

(以下余白) 同表からも明らかなように、本発明鋼は劇SCC性に優
れた性質を有してい寺かに対し、比較鋼では、いずれの
熱処理温度においても悪影習が現われていることが判る
(Left below) As is clear from the table, the steel of the present invention has excellent SCC properties, whereas the comparative steel exhibits adverse effects at all heat treatment temperatures. I understand that.

以上述べたように本発明によれば、耐SCC性に対する
合金元素の相H作用及びそれらと熱処理条flどの関係
をhγ明し、それらを特定の範囲に選定づることにJこ
り、優れた耐SCC性を有する合金鋼の製造を可能なら
しめたものであって、この仝 種合金鋼に関する1業的な効果の大きい発明である。
As described above, according to the present invention, it is possible to clarify the phase H effect of alloying elements on SCC resistance and the relationship between them and heat treatment conditions, and to select them within a specific range, thereby achieving excellent resistance. This invention has made it possible to manufacture alloy steel having SCC properties, and is a highly effective invention for this type of alloy steel in the industry.

←1法−−田姉哨44+H− イ田←4!I!イーーーー原−−!i−→→4→←1 method--Ten-ebo 44+H- Ida←4! I! Eeeee Hara--! i-→→4→

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はΔ値と耐SCC性との関係を示すものである。 第2図はΔftr+と熱処理温度との関係からgl s
 c c性を調べたものである。 特 許 出願人 +j本鋼管株式会社 代理人 弁理士 吉 原 省 三 (他2名) (Nにど↓つ(X’+!N)% 句 於 手続補正書 を 昭和、1−P年lλ月手日 特許庁長官 若 杉 イ・口 大殿 (特許庁審査官 殿) 1 事件の表示 昭和夕? 年 待 γ「 願第1?z弘/と 号2、発
明の名称 有り℃カ塵名ンを1しzJz4〜心合金4岡め蓼ルカ凧
3 補正をする者 事件との関係 出願人 日本鋼管株式会社4、代理人 5 補正命令の日付 補 正 内 容 1本願明細書中鎖2頁14行目末尾〜15行目冒頭にか
けてr (physical Metallurg7 
JとあるヲI+″(Pl+ysical rnetal
lurgy Jlと訂正する。 コ、同曹第3頁14行目末尾にr170.J Jとある
ir 170.J Jと削正する。 3、同書第3頁16行目冒頭にr’1047.J)Jと
あるをr 1047.J )Jと訂正する。 り同1゛第4頁19行目末尾〜20行目冒頭にかけて「
材料に劣らない」とあるを「材料より優れた」と訂正す
る。 よ同唇第7頁14行目冒頭に「316並み或いはその以
上の」とあるを「316よシ優れた」と訂正する。 6同書第10頁1行目を以下のように訂正する。 「△= (Ni+aoc+2sN) 」同署、第10頁
12行目中「150℃沸騰」とあるを「154℃沸騰」
と訂正する。 ざ同m第ix頁1行目中[(NトドlOc+25N)J
とあるをr (Ni+30C+ 25N)J と訂正す
る。 7同列第12頁20行目中「溶体化処理後、固溶Cを」
とあるな「溶体化処理(若しくは卑情体化処理)後、固
溶C愛」と訂正する。 70回同第13頁16行目を以下のように訂正する。 「用地によってNb C,Ti C等の析出が促進さオ
′シる7tめよシ安定化した組織を得」//同S−第1
6頁2行目中「性質を有しているかに対し、」とある全
「性質を有しているのに対し、」と訂正する。
FIG. 1 shows the relationship between Δ value and SCC resistance. Figure 2 shows gl s from the relationship between Δftr+ and heat treatment temperature.
This is a study of cc characteristics. Patent Applicant: +Jhon Steel Tube Co., Ltd. Agent, Patent Attorney: Shozo Yoshihara (and 2 others) Mr. Wakasugi I. Kuchi, Commissioner of the Japan Patent Office (Mr. Patent Office Examiner) 1. Indication of the case Showa evening? 1 ShizJz4 ~ Core Alloy 4 Okameyoruka Kite 3 Relationship with the case of the person making the amendment Applicant Nippon Kokan Co., Ltd. 4, Agent 5 Correction of date of amendment order Contents 1 Specification of the application, middle chain page 2, line 14 r from the end of the second line to the beginning of the 15th line (physical Metalurg7
J toaruwoI+''(Pl+systemal rnetal
I corrected it as rugy Jl. Co. r170 at the end of page 3, line 14. JJ and a certain ir 170. Edit J J. 3. r'1047 at the beginning of page 3, line 16 of the same book. J) J and aru wo r 1047. J) Correct it as J. From the end of line 19 to the beginning of line 20 on page 4, ``
The phrase "not inferior to the materials" should be corrected to "superior to the materials." At the beginning of the 14th line of page 7 of Yodo Lip, the statement ``as good as 316 or better'' is corrected to ``excellent as compared to 316.'' 6 The first line of page 10 of the same book is corrected as follows. "△= (Ni+aoc+2sN)" The police station, page 10, line 12, replaces "boiling at 150 degrees Celsius" with "boiling at 154 degrees Celsius."
I am corrected. Same page ix, line 1 [(N Todo lOc+25N)J
Correct the statement to r (Ni+30C+ 25N)J. 7 Same column, page 12, line 20, “After solution treatment, solid solution C”
I am correcting it to say, ``After solution treatment (or obscene treatment), solid solution C love''. 70th edition, page 13, line 16 is corrected as follows. ``The precipitation of Nb C, Ti C, etc. is promoted depending on the site, but a stabilized structure of 7 tons was obtained.''//S-1
In the second line of page 6, the phrase ``in contrast to having the property'' is corrected to ``in contrast to having the property.''

Claims (1)

【特許請求の範囲】 (:、 + 0.03wt%以下、3i:2wL%以下
、Mn:2wt%以下、p : 0.02wt%以下、
S: 0,01wt%以下、 Ni:20wt%以上30Vlt%未満、Cr : 1
2〜25wt%Mo:10wt%以下、N + 0,3
wt%以下、ざらにこれらに加えて2wt%以下のCI
 10,1wt%以下のCa、1wt%以下のT1のう
ちの1種又は2種以上を含有し残部鉄及び不可避不純物
からなる組成であって、 Cr + 1.5Mo 十0.8Ti + 0.5Cu
 >15を の条件〜満し、且つ Δ= (Ni +30C+25N) [((Cr + 1.5MO+ 0.8T t+ 0,
5Cu −19) 2 /12) −13]合 でめられるΔ値が5以上である組成を有すi菖鋼を、9
50〜1200℃の範囲であって、且つ下式の条件を満
′g′温度Tfにて溶体化又は卑情体化処理することを
ことを特徴とする耐応力腐食割れ性に優れた合金鋼の製
造方法。 T「≦12Δ+900
[Claims] (:, +0.03wt% or less, 3i: 2wL% or less, Mn: 2wt% or less, p: 0.02wt% or less,
S: 0.01wt% or less, Ni: 20wt% or more and less than 30Vlt%, Cr: 1
2-25wt% Mo: 10wt% or less, N + 0.3
wt% or less, and in addition to these, CI of 2wt% or less
A composition containing one or more of 10.1 wt% or less Ca, 1 wt% or less T1, and the balance consisting of iron and inevitable impurities, Cr + 1.5Mo + 0.8Ti + 0.5Cu
>15, and Δ= (Ni +30C+25N) [((Cr + 1.5MO+ 0.8T t+ 0,
5Cu -19) 2 /12) -13] I-stainless steel having a composition with a Δ value of 5 or more,
An alloy steel with excellent stress corrosion cracking resistance characterized by being subjected to solution treatment or vulcanization treatment at a temperature Tf in the range of 50 to 1200°C and satisfying the conditions of the following formula: manufacturing method. T"≦12Δ+900
JP18641883A 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to stress corrosion cracking Granted JPS6077917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18641883A JPS6077917A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to stress corrosion cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18641883A JPS6077917A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to stress corrosion cracking

Publications (2)

Publication Number Publication Date
JPS6077917A true JPS6077917A (en) 1985-05-02
JPH0352527B2 JPH0352527B2 (en) 1991-08-12

Family

ID=16188075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18641883A Granted JPS6077917A (en) 1983-10-05 1983-10-05 Manufacture of alloy steel having superior resistance to stress corrosion cracking

Country Status (1)

Country Link
JP (1) JPS6077917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911886A (en) * 1988-03-17 1990-03-27 Allegheny Ludlum Corporation Austentitic stainless steel

Also Published As

Publication number Publication date
JPH0352527B2 (en) 1991-08-12

Similar Documents

Publication Publication Date Title
EP0639691B1 (en) Rotor for steam turbine and manufacturing method thereof
US4295769A (en) Copper and nitrogen containing austenitic stainless steel and fastener
US5288347A (en) Method of manufacturing high strength and high toughness stainless steel
JPH07278762A (en) Stainless steel for nitrogen case hardening
EP1469095B1 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
JP2716301B2 (en) Manufacturing method of grain size stabilized case hardening steel
JPS649391B2 (en)
JPS6048582B2 (en) Stainless steel for razor blades with high heat treatment hardness
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPS6077917A (en) Manufacture of alloy steel having superior resistance to stress corrosion cracking
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP6987651B2 (en) High hardness precipitation hardening stainless steel with excellent hot workability and no sub-zero treatment required
JP2537679B2 (en) High-strength stainless steel and its steel material
JP2000063947A (en) Manufacture of high strength stainless steel
JP2004143576A (en) Low nickel austenitic stainless steel
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
JP7447377B2 (en) Manufacturing method of Ti-free maraging steel
JPS5816024A (en) Production of case hardening steel for high temperature carburization
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JP2700060B2 (en) Non-heat treated steel
JPH0463247A (en) High strength and high ductility stainless steel
JPH0813093A (en) Superplastic duplex stainless steel small in deformation resistance and excellent in elongating property
JPH05339674A (en) Low carbon 0.5% mo steel sheet excellent in weld crack resistance
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid