JPS6077175A - Manufacture of silicon nitride sintered body - Google Patents

Manufacture of silicon nitride sintered body

Info

Publication number
JPS6077175A
JPS6077175A JP58184157A JP18415783A JPS6077175A JP S6077175 A JPS6077175 A JP S6077175A JP 58184157 A JP58184157 A JP 58184157A JP 18415783 A JP18415783 A JP 18415783A JP S6077175 A JPS6077175 A JP S6077175A
Authority
JP
Japan
Prior art keywords
sintering
silicon nitride
sintered body
tungsten carbide
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58184157A
Other languages
Japanese (ja)
Inventor
土田 二朗
宏 山口
北村 耕二
森近 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58184157A priority Critical patent/JPS6077175A/en
Publication of JPS6077175A publication Critical patent/JPS6077175A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は窒化けい未焼結体の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing a silicon nitride green body.

窒化けい素セラミックは、高温域での強度などの機械的
性質にすぐれ、化学的にも安定であり、高温用途におけ
る機械構造材料としての応用が期待されている。
Silicon nitride ceramics have excellent mechanical properties such as strength in high-temperature ranges, and are chemically stable, so they are expected to be used as mechanical structural materials in high-temperature applications.

窒化けい素(8i8N4)は、自己焼結性に乏しいので
、焼結体の製造には、焼結促進および焼結体の諸性能改
善を目的として焼結助剤を配合するのが一般である。焼
結助剤としては、例えばマグネシア(MgO)、アルミ
ナ(AA’?OR)、酸化イツトリウム(Y2O2)な
どが単独まだは複合して使用されている。
Silicon nitride (8i8N4) has poor self-sintering properties, so when producing a sintered body, it is common to add a sintering aid to promote sintering and improve the performance of the sintered body. . As the sintering aid, for example, magnesia (MgO), alumina (AA'?OR), yttrium oxide (Y2O2), etc. are used singly or in combination.

焼結機構からみると、焼結助剤(および主原料である窒
化けい素)は微細である程好ましく、従って複数の助剤
を併用する場合は、単に混合物として添加するよシも、
それらの固溶体あるいは化合物として添加する方が有利
である。この点から、マグネシアとアルミナの混合使用
に代えて、マグネシア・アルミナ(MgO,A1203
)スピネルt−焼結助剤として焼結性の改善をこころみ
た例も報告されている。
From the viewpoint of the sintering mechanism, the finer the sintering aid (and silicon nitride, which is the main raw material), the better. Therefore, when using multiple aids together, it is better to simply add them as a mixture.
It is more advantageous to add them as solid solutions or compounds. From this point of view, instead of using a mixture of magnesia and alumina, magnesia alumina (MgO, A1203
) There have also been reports of attempts to improve sinterability by using spinel t-sintering aids.

上記MgO,Al2O8スピネルは焼結促進効果にすぐ
れ、焼結性の向上により焼結体の相対密度の改善等に奏
効する。しかし、焼結体の機械的性質の点で必ずしも十
分とは言えず、ことに靭性や強度の改善が望まれる。
The MgO and Al2O8 spinels have excellent sintering accelerating effects, and are effective in improving the relative density of the sintered body by improving sinterability. However, the mechanical properties of the sintered body are not necessarily sufficient, and improvements in toughness and strength are particularly desired.

本発明は上記に鑑みてなされたものである。The present invention has been made in view of the above.

本発明方法は、焼結助剤としてMgO,Al2O8スピ
ネルと他の助剤との組合せにより、該スピネルのすぐれ
た焼結性を発揮させるとともに焼結体の靭性および強度
を改善したものであり、その特徴とするところは、窒化
けい素粉床に、助剤として、MgO・Al 208スピ
ネルを3〜10重量%、および炭化タングステンを0.
01〜1重量%配合した混合物を調製し、これを成形、
焼結することにある。
The method of the present invention uses MgO, Al2O8 spinel as a sintering aid in combination with other aids to exhibit the excellent sinterability of the spinel and improve the toughness and strength of the sintered body. Its characteristics are that 3 to 10% by weight of MgO.Al 208 spinel and 0.0% of tungsten carbide are added to the silicon nitride powder bed as auxiliaries.
A mixture containing 01 to 1% by weight is prepared, and this is molded.
It consists in sintering.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明において助剤としてMgO,’Al□03スピネ
ルを添加するのは上記のように良好な焼結性を得るため
であシ、この効果を十分発揮させるには少くとも3重世
%の添加が必要である。添加量を増すとともに焼結性の
向上をみるが、10重量%を越えると、増量の割9に効
果は少く、しかも窒、化けい素の特徴である高温強度の
低下がみられる。
In the present invention, the purpose of adding MgO,'Al□03 spinel as an auxiliary agent is to obtain good sinterability as described above, and in order to fully exhibit this effect, at least 3% of addition is required. is necessary. As the amount added increases, the sinterability improves, but when the amount exceeds 10% by weight, the effect is small compared to the increase in amount, and furthermore, the high temperature strength, which is a characteristic of nitrogen and silicon carbide, decreases.

このため、スピネルの添加量は10重量%を上限とする
Therefore, the upper limit of the amount of spinel added is 10% by weight.

一方、炭化タングステン(wc、W2C)は、焼結体の
破壊靭性値(KIC)および強度の向上に奏効する。上
記スピネルのみの添加では、得られる焼結体内の粒界l
こガラス相が生成するため、強度面での十分な性能を期
待できないが、炭化タングステンの複合添加により、粒
界がA I −Mg−8i−W系結晶相となって、破壊
靭性値が上昇するとともに強度の向上をみるものと考え
られる。
On the other hand, tungsten carbide (WC, W2C) is effective in improving the fracture toughness value (KIC) and strength of the sintered body. When only spinel is added, the grain boundary l in the resulting sintered body is
Due to the formation of this glass phase, sufficient performance in terms of strength cannot be expected, but due to the combined addition of tungsten carbide, the grain boundaries become an A I -Mg-8i-W crystal phase, increasing the fracture toughness value. At the same time, it is thought that the strength will improve.

炭化タングステンの上記効果を確保するには、少くとも
0,01%の添加を必要とする。添加量の増加に伴って
効果も増すが、炭化タングステンは窒化けい素や上記ス
ピネルにくらべ比重が太きいため、あまシ多量に添加す
ると、比重差によシ均一な混練が困難となり、添加量に
見合う効果が発揮されないばかシか、得られる焼結晶の
組成および諸性能の均質性が損なわれてしまう。このた
め、添加量の上限を1重量%とする。炭化タングステン
としてWCおよびW2Cは同効物質であり、いづれか一
方を単独で使用してもよく、任意の割合で複合使用して
もよい。
To ensure the above effects of tungsten carbide, it is necessary to add at least 0.01%. The effect increases as the amount added increases, but since tungsten carbide has a higher specific gravity than silicon nitride or the above-mentioned spinel, if a large amount is added, uniform kneading becomes difficult due to the difference in specific gravity, so the amount added Either the effects commensurate with the results are not achieved or the homogeneity of the composition and performance of the resulting fired crystals is impaired. Therefore, the upper limit of the amount added is set at 1% by weight. WC and W2C have the same effect as tungsten carbide, and either one may be used alone or in combination in any proportion.

なお、炭化タングステンは適当な粒度の粉末として準備
されたものを使用する代シに、ボールミルによる窒化け
い素と焼結助剤の混線の際に、ミルのボールとして炭化
タングステン超硬ボール(例えば、WC−W2C−GO
系焼結ボール)を使用し、ボール表面から剥落する微細
粒子として添加することができる。炭化タングステンは
硬度が高く、微細粒子を得がたいが、この方法によれば
、混線過程で、超微粉として混練物中に供給されるので
、助剤としての効果が増す点で有利である。
In addition, instead of using tungsten carbide prepared as a powder with an appropriate particle size, when mixing silicon nitride and sintering aid in a ball mill, use tungsten carbide carbide balls (for example, WC-W2C-GO
It can be added as fine particles that peel off from the surface of the ball. Tungsten carbide has high hardness and it is difficult to obtain fine particles, but according to this method, it is supplied into the kneaded material as an ultrafine powder during the cross-mixing process, which is advantageous in that the effect as an auxiliary agent is increased.

窒化けい素粉床に上記規定の焼結助剤を配合し、必要な
らば適当な成形助剤を添加した混合物を混練したのち、
常法に従って成形し、焼結することによシ目的とする焼
結体が得られる。ここに、成形し、焼結する、というの
は、例えばホットプレス法のように、成形と焼結とが一
工程で行なわれる場合や、熱間静水圧焼結法、常圧焼結
法等のように所要の形状に成形する工程と、その成形体
を焼結する工程とが各別に実施される場合を含む意味で
ある。いづれのプロセスも通常の条件で行ってよく、例
えばホットプレス法では、加圧力200〜400 kg
f/d、焼結温度1600〜1850°Cにて焼結を達
成する。熱間静水圧焼結法では、例えば加圧力500〜
25ooktif/d1温度1600〜1850℃で行
われる。また、常圧焼結法では、前記助剤とともに必要
に応じてメチルセルロースなどの成形助剤が加えられた
混線物を所要形状に成形し、窒素ガスなどの不活性雰囲
気下、例えば雰囲気圧力1〜10 kgf /cd、温
度L 600−1850 ’c ニーc焼結を行えばよ
い。
After mixing the sintering aid specified above with the silicon nitride powder bed and adding an appropriate forming aid if necessary, the mixture is kneaded.
The desired sintered body can be obtained by molding and sintering according to a conventional method. Here, "forming and sintering" refers to cases where molding and sintering are performed in one step, such as a hot press method, a hot isostatic sintering method, an atmospheric pressure sintering method, etc. This term includes the case where the step of molding into a required shape and the step of sintering the molded body are carried out separately. Either process may be carried out under normal conditions; for example, in the hot press method, a pressing force of 200 to 400 kg is used.
Sintering is achieved at a f/d, sintering temperature of 1600-1850°C. In the hot isostatic sintering method, for example, the pressing force is 500~
It is carried out at a temperature of 25 ooktif/d1 from 1600 to 1850°C. In addition, in the pressureless sintering method, a mixed wire to which a forming aid such as methylcellulose is added as necessary together with the above-mentioned aids is molded into a desired shape, and the mixture is molded into a desired shape under an inert atmosphere such as nitrogen gas, for example, at an atmospheric pressure of 1 to 1. Knee c sintering may be performed at 10 kgf/cd and temperature L 600-1850'c.

次に、実施例について説明する。Next, examples will be described.

実施例 窒化けい素粉床(α化率90%以上、平均粒径0.9μ
m)に、焼結助剤としテMgO−A 420Bスヒネル
を添加し、アルミナ製ポット中、純水を加えて炭化タン
グステン超硬ボールにて混練した。スラリーを乾燥して
粉末を得、とれを金型プレスにより 200 kg f
 /ct4のプレス圧で成形後、ラバープレスによシl
000kqf/cdで円板状成形体とな(−1ついで窒
素ガス雰囲気1気圧の焼結炉中、175゜°CK2時間
保持して円板状焼結体(直径5 Q XTIII X厚
き6間)を得た。比較例として、焼結助剤を異にする混
線物を調製し、上記と同じ成形・焼結プロセスによる焼
結体を得た。
Example silicon nitride powder bed (gelatinization rate 90% or more, average particle size 0.9μ
MgO-A 420B Schinel was added as a sintering aid to m), pure water was added in an alumina pot, and the mixture was kneaded with a tungsten carbide cemented carbide ball. Dry the slurry to obtain powder, and press the powder into 200 kg f
After molding with a press pressure of /ct4, seal it with a rubber press.
000 kqf/cd to form a disc-shaped compact (-1).Then, it was held at 175°C for 2 hours in a sintering furnace with a nitrogen gas atmosphere of 1 atm to form a disc-shaped sintered compact (diameter 5 Q XTIII ) was obtained.As a comparative example, mixed wires with different sintering aids were prepared, and sintered bodies were obtained by the same molding and sintering process as above.

各混練物における助剤成分と配合量、焼結体の機械的性
質および相対密度を第1表に示す。助剤成分のうち炭化
タングステンの配合量は炭化タングステン超硬ボールの
混練前後の重量変化から算出した値である。また、破壊
靭性値(KIC)はヌープ圧テ圧痕法によシ測定した。
Table 1 shows the auxiliary components and blending amounts in each kneaded product, as well as the mechanical properties and relative density of the sintered bodies. The blending amount of tungsten carbide among the auxiliary components is a value calculated from the weight change of the tungsten carbide carbide balls before and after kneading. Further, the fracture toughness value (KIC) was measured by the Knoop indentation method.

曲げ強度試鹸は、3 mW X 411M X 4 Q
 ff1l+の試片を用い、3点曲げ法(スパン距離3
Qxym)にて行った。
The bending strength test is 3 mW x 411M x 4 Q.
Using a specimen of ff1l+, the three-point bending method (span distance 3
Qxym).

第1表に示されるように、本発明例の焼結体は、スピネ
ルの焼結性による高い相対密度を有し、かつ炭化タング
ステンの複合添加効果によシ破壊靭性値にすぐれ、強度
も良好なことがわかる。上記例は常圧焼結法であるが、
ホットプレス”法などの加圧焼結法によっても同様の改
善効果が得られることは言うまでもない。
As shown in Table 1, the sintered bodies of the examples of the present invention have high relative density due to the sinterability of spinel, and have excellent fracture toughness and strength due to the combined effect of adding tungsten carbide. I understand that. The above example is a pressureless sintering method,
It goes without saying that similar improvement effects can be obtained by pressure sintering methods such as the "hot press" method.

上記のように、本発明によれば、Mg0−J。03スピ
ネル単独添加のものに比し、破壊靭性値にすぐれ、かつ
強度の良好な焼結体が得られる。また、従来使用されて
いるMgo添加にくらべ相対密度が高く、MgO,A/
208スピネル添加のものと同等のレベルにあシ、相対
密度を低下させることなく破壊靭性値を改善することが
でき、機械構造用材料として非常に有用である。
As mentioned above, according to the invention, Mg0-J. A sintered body with excellent fracture toughness and strength can be obtained compared to the case where 03 spinel is added alone. In addition, it has a higher relative density compared to conventionally used Mgo additions, and MgO, A/
The fracture toughness value can be improved to the same level as that of 208 spinel without reducing the relative density, making it very useful as a material for mechanical structures.

代理人 弁理士 宮 崎 新へ部 手続補正書 特許庁長官 若 杉 和 夫 殿 1、事件の表示 昭和58年 特 許 願 第184157号2、発明の
名称 窒化けい素焼粘体の製造法3、補正をする者 事件との関係 特許出願人 4、代理人 5、補正命令の日付 (自 発 ) i、補正の対象 明細書の「発明の詳細な説明」の欄 ′、補正の内容
Agent Patent Attorney Shinhe Miyazaki Procedural Amendments Director General of the Patent Office Kazuo Wakasugi 1. Indication of the case 1984 Patent Application No. 184157 2. Title of the invention Process for producing silicon nitride bisque viscous material 3. Amendment Patent applicant 4, agent 5, date of amendment order (initiated) i, “Detailed description of the invention” column of the specification to be amended, contents of the amendment

Claims (1)

【特許請求の範囲】[Claims] (1)窒化けい素粉末に、焼結助剤としてマグネシア・
アルミナスピネルを3〜10重量%および炭化タングス
テンを0.01〜1重量%配合した混合物を成形し焼結
することを特徴とする窒化けい未焼結体の製造法。
(1) Magnesia is added to silicon nitride powder as a sintering aid.
A method for producing a silicon nitride green body, which comprises molding and sintering a mixture containing 3 to 10% by weight of alumina spinel and 0.01 to 1% by weight of tungsten carbide.
JP58184157A 1983-10-01 1983-10-01 Manufacture of silicon nitride sintered body Pending JPS6077175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184157A JPS6077175A (en) 1983-10-01 1983-10-01 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184157A JPS6077175A (en) 1983-10-01 1983-10-01 Manufacture of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS6077175A true JPS6077175A (en) 1985-05-01

Family

ID=16148359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184157A Pending JPS6077175A (en) 1983-10-01 1983-10-01 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS6077175A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963710A (en) * 1972-10-24 1974-06-20
JPS5782178A (en) * 1980-11-06 1982-05-22 Asahi Glass Co Ltd Silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963710A (en) * 1972-10-24 1974-06-20
JPS5782178A (en) * 1980-11-06 1982-05-22 Asahi Glass Co Ltd Silicon nitride sintered body

Similar Documents

Publication Publication Date Title
JPS5924751B2 (en) Sintered shaped body
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JPS6077174A (en) Manufacture of silicon nitride sintered body
US4500644A (en) Preparation and composition of sialon grain and powder
JPH0228539B2 (en)
JPS6077175A (en) Manufacture of silicon nitride sintered body
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP3126059B2 (en) Alumina-based composite sintered body
JPH06100359A (en) Production of ceramic sintering auxiliary and production of mullite ceramic using the same
JPS6374978A (en) Ceramic composite body
JPH0753256A (en) Aluminous composite sintered compact and its production
JPS60141671A (en) Manufacture of zirconia sintered body
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JPS61117153A (en) Manufacture of alumina sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JP2684250B2 (en) Silicon nitride sintered body and method for producing the same
JPH08319168A (en) Production of sialon ceramic
JPS62275067A (en) Manufacture of silicon nitride sintered body
US5110772A (en) Fabrication of dense SI3 N4 ceramics using CaO-TiO2 SiO.sub.2
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPS63147867A (en) Manufacture of silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH01157466A (en) Silicon nitride sintered body