JPS6076604A - Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer - Google Patents

Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer

Info

Publication number
JPS6076604A
JPS6076604A JP18493283A JP18493283A JPS6076604A JP S6076604 A JPS6076604 A JP S6076604A JP 18493283 A JP18493283 A JP 18493283A JP 18493283 A JP18493283 A JP 18493283A JP S6076604 A JPS6076604 A JP S6076604A
Authority
JP
Japan
Prior art keywords
deformation
phase
laser beam
measured
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18493283A
Other languages
Japanese (ja)
Other versions
JPH052924B2 (en
Inventor
Suezo Nakatate
中楯 末三
Katsuhisa Tsutsumi
勝久 堤
Toyohiko Yatagai
豊彦 谷田貝
Hiroyoshi Saito
斎藤 弘義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP18493283A priority Critical patent/JPS6076604A/en
Publication of JPS6076604A publication Critical patent/JPS6076604A/en
Publication of JPH052924B2 publication Critical patent/JPH052924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/161Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means
    • G01B11/162Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by interferometric means by speckle- or shearing interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02094Speckle interferometers, i.e. for detecting changes in speckle pattern
    • G01B9/02095Speckle interferometers, i.e. for detecting changes in speckle pattern detecting deformation from original shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform automatic analysis of the amount of deformation, by obtaining the phase of three sheets or more of speckle images caused by the interference of laser light before the deformation of a body to be measured, and determining the amount of the deformation based on the difference between said phase and the phase obtained by the same way after the deformation. CONSTITUTION:Laser light 2 from a laser light source 1 is divided into light paths 6 and 7 through a mirror 3 and an objective lens 4 by a semitransparent mirror 5. The laser light beams of the light paths 6 and 7 are projected on a body to be measured 8 and a reference surface 9. Scattered light rays 10 and 11 are combined by the semitransparent mirror 5, and an image is formed on a photoelectric converter device 12. The phase of the reference light 11 is changed by N times by 2pi/N (N>=3) by a driving device 4, and the interference intensity is stored in a memory 15. The phase theta1 of a speckle image before deformation is obtained by using the data of a large-capacity memory 17 by an operating device 16. The phase theta2 after the deformation is obtained by the same way. The amount of the deformation is computed by theta2-theta1, and the result is displayed on a display device 18.

Description

【発明の詳細な説明】 本発明は、位相変訓スペックル干渉計により粗面物体の
変形11を自重!+ jlll定する測定方法およびそ
の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a phase variation speckle interferometer to measure the deformation 11 of a rough surface object! +Jllll related to a measuring method and a measuring device thereof.

物体の変形t1を計測ずることは、工学、医学、歯学な
どの広範囲の学問分IIIrばかりでなく、電気電子機
器、炉空や衿合旧和などの製造業にとっても、イ販めて
重要な計8111となっている。特に製造業では、構造
物の変形解析は、目ヒ物の基本的な設計思想をも決定す
るものであるので、実時間で簡便な言1測法に対ずる請
求はヴ!;い。現在の変形測定法の主流は、歪ケ゛−ジ
からの多次元14;気信号を処理、解析するものである
。しかし、物体の変形が複雑になる場合では、このよう
な多点言t iliでは不十分となり、偵1情報を得る
ことが不可欠となる。
Measuring the deformation t1 of an object is extremely important not only in a wide range of academic disciplines such as engineering, medicine, and dentistry, but also in manufacturing industries such as electrical and electronic equipment, furnaces, and joints. A total of 8111. Particularly in the manufacturing industry, deformation analysis of structures also determines the basic design concept of the eye-catching product, so there is no need for a simple, real-time measurement method! ;stomach. The mainstream of current deformation measurement methods is to process and analyze multidimensional signals from strain cages. However, when the deformation of an object becomes complex, such multi-point information becomes insufficient, and it becomes essential to obtain one-dimensional information.

また医学などの分野では対象物が柔らかく、歪ゲージを
張り付けるのが不可能となる。このような要求を満たす
測定法としてスペックル干渉法があるが、従来は変形量
の等高純を表わす縞模様を観察するだけの定性的測定法
であった。
Furthermore, in fields such as medicine, objects are soft and it is impossible to attach strain gauges to them. Speckle interferometry is a measurement method that satisfies these requirements, but in the past it was a qualitative measurement method that simply observed a striped pattern representing the uniformity of the amount of deformation.

本発明は上記に鑑みなされたものであって、位相変調ス
ペックル干渉法と計q機システムを用いて、変形量を自
動解析する手法および自動解析装置を提供することを目
的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method and an automatic analysis device for automatically analyzing the amount of deformation using a phase modulation speckle interferometry method and a measurement system.

この目的は、以下に述べる方法および@信により達成す
ることができる。
This objective can be achieved by the methods and @communications described below.

変形前の被測定物体の表面からの物体レーザー光と、位
相の異なる参照レーザー光とを干渉させて少なくとも3
枚の第/の干渉スペックル像をつくって変形前のスペッ
クル像の位相θ,をめ、変形後の被測定物体からの物体
レーザー光と位相の異なる参照レーザー光とを干渉させ
て少な《とも3枚の第2の干渉スペックル像をつくって
変形後のスペックル像の位相θ2 をめ、そして被側定
物体の変形量を02−01として決定することができる
。第一の方法は、物体変形前の被測定物体の表面からの
物体レーザー光と、参照レーザー光とを干渉させて第l
の干渉スペックル像I,をつくり、変形後の被測定物体
の表面からの物体レーザー光と、位相の異なる参照レー
ザー光とを干渉させて、少なくとも3枚の第一の干渉ス
ペックル像をつくり、第一の干渉スペックル像と第1の
干渉スペックル像との差の自乗をめ、そしてこれらの差
の自兜から被沖1定物体の変形量を決定することができ
る。
At least 3
The phase θ of the speckle image before deformation is determined by creating a third interference speckle image, and the object laser beam from the object to be measured after deformation is caused to interfere with the reference laser beam having a different phase. In both cases, three second interference speckle images are created, the phase θ2 of the deformed speckle images is determined, and the amount of deformation of the fixed object on the fixed side can be determined as 02-01. The first method is to interfere the object laser beam from the surface of the object to be measured before object deformation with the reference laser beam.
The object laser beam from the surface of the deformed object to be measured and the reference laser beam having different phases are made to interfere with each other to create at least three first interference speckle images I. , the square of the difference between the first interference speckle image and the first interference speckle image can be determined, and the amount of deformation of the offshore object can be determined from the value of these differences.

第1図は本発明を達hlt、−j−るためのブロック図
の7例である。レーザー沖1からのレーザー光2をミラ
ー3及び対物レンズ4により広げ、半透鏡5により光路
6および光M7に分ける。光路6のレーザー光は被測定
物体8を照明し、光路7のレーザー光は参照面9を照明
する。被測定面8および参照面9より散乱した光10.
11を再び半透鏡5により重ね合わせ、光1イ゛変換装
僧(TVカメラCODカメラなど)12に結像する。こ
こで移相装置(PZT、ファラデーローチーター、半波
長板など)13その駆動装置14(高圧電源、回転駆動
回路など)により参照光110位相をφだけ変化させる
とすると、光電変換装g#12での光強度Iは、I=α
+βcos(θ、+φ)と書ける。ここで、φをi/N
(rad)(N≧3)ずつN回変えて、このIを表わす
光電変換装置12の出力信号をメモリ15に記録した後
、信号処理・演算装置16を通して、大容量メモリ17
に記録する0ここで01 は干渉スペックル像の位相で
ある。大容量メモリ17のデータを用いて偏量fX4装
g!、 16により演算を行ない、スペックル像の位相
θ、をめる。φを2π外〔rad〕ずつN回かえて、ス
ペックル形後12、φを2π外[:rad’]ずつN回
かえて、ス(ックル像1’1z 1’2+・・・・・・
・・・IlNをつくり、演算を行なうことにより、変形
後のスペックル像の位相θ2 がまる。そして、θ2−
01を!1勺−すると、これが被測定物体の変形量とな
る。
FIG. 1 shows seven examples of block diagrams for implementing the present invention. A laser beam 2 from a laser beam 1 is spread by a mirror 3 and an objective lens 4, and is divided into an optical path 6 and a beam M7 by a semi-transparent mirror 5. The laser light on the optical path 6 illuminates the object to be measured 8 , and the laser light on the optical path 7 illuminates the reference surface 9 . Light scattered from the measured surface 8 and the reference surface 9 10.
11 are superimposed again by a semi-transparent mirror 5, and an image is formed on a light 1 image conversion device 12 (such as a TV camera or COD camera). Here, if the phase shifter (PZT, Faraday Rocheetah, half-wave plate, etc.) 13 and its drive device 14 (high-voltage power supply, rotary drive circuit, etc.) changes the phase of the reference light 110 by φ, then the photoelectric conversion device g#12 The light intensity I at is I=α
It can be written as +βcos(θ, +φ). Here, φ is i/N
(rad) (N≧3) N times and the output signal of the photoelectric conversion device 12 representing this I is recorded in the memory 15, and then passed through the signal processing/arithmetic device 16 to the large capacity memory 17.
0 recorded here, 01 is the phase of the interference speckle image. Using the data in the large-capacity memory 17, the deviation amount fX4 g! , 16 to determine the phase θ of the speckle image. By changing φ by 2π outside [rad] N times, the speckle shape is 12, and by changing φ by 2π outside [:rad'] N times, we get the following image: 1'1z 1'2+...
By creating IIN and performing calculations, the phase θ2 of the deformed speckle image is adjusted. And θ2−
01! 1. This becomes the amount of deformation of the object to be measured.

さらに、第1図に示したシステムを用いて、次のような
方法によっても変形量を自動解析することができる。物
体変形前の被測定物体の表面8からの散乱光10と、参
照面9で散乱される光11とを光電変換装P112の中
で干渉させ、スRツクル像■、シ得る。こitを光電ψ
換装置^°12により電気信号とし、メモリ15に記録
した後に演巽装wt16を介して太容1層メモリ17に
記録する。次に、物体8が変形の徒に、移相装置13お
よびその駆動回路14を用いて参照レーザー光11の位
dを:ln/N[rad’J(N > 3 ) 4’つ
N回メ:えて、N枚の第一の干渉スペックル像11. 
、 P2・・・・・・・・・IINをつくり、光電変換
装g112 Kよりそれらの光強11’を表わす電気信
号に変換した後メモリl 5に記録し、演算装置16を
介し゛〔大容量メモリ17に記録する。これら太容」メ
モリ17に記録されたデータをもとに言1Nするのであ
るが、まず、/+−(+、−t、)2(+=1.2.・
・・・・・・・・、N)を計算し、N枚のスペックル干
渉縞を形成する。このとき、スペックル干渉縞f1 は
、物体変形前後の位相差を02−〇、と(2πI/N 
) l/(Σflcos(2πlΔ0)〕を行なうこと
によ1=1 りめられる。この計装結果は、まだ雑音を含んでいるの
で、演ヤ・処理装置16により、空間フィルタリング、
メディアンフィルタ、および空間微分操作などを行なっ
て、変形量、i、応力、曲すモーメントなどを表示装置
18に出力する。
Furthermore, using the system shown in FIG. 1, the amount of deformation can also be automatically analyzed by the following method. Scattered light 10 from the surface 8 of the object to be measured before the object is deformed and light 11 scattered by the reference surface 9 are caused to interfere in the photoelectric conversion device P112, and a streak image (2) is obtained. This is photoelectric ψ
The converted signal is converted into an electric signal by a conversion device ^°12, and after being recorded in a memory 15, it is recorded in a thick one-layer memory 17 via a converter wt16. Next, while the object 8 is being deformed, the phase shifter 13 and its drive circuit 14 are used to change the position d of the reference laser beam 11 to:ln/N[rad'J (N > 3) 4'N times. : Also, N first interference speckle images 11.
, P2...IIN is created, converted into an electric signal representing the light intensity 11' by the photoelectric conversion device g112K, recorded in the memory l5, and transmitted through the arithmetic unit 16 to the electric signal representing the light intensity 11'. It is recorded in the capacity memory 17. Based on the data recorded in the "thick" memory 17, we will first say /+-(+,-t,)2(+=1.2..
......, N) to form N speckle interference fringes. At this time, the speckle interference pattern f1 has a phase difference of 02-0 before and after the object deformation, and (2πI/N
) l/(Σflcos(2πlΔ0)], it is determined that 1=1. Since this instrumentation result still contains noise, the performer/processor 16 performs spatial filtering,
A median filter, a spatial differential operation, etc. are performed, and the amount of deformation, i, stress, bending moment, etc. are output to the display device 18.

実施例 変形する対象物8として直径、20πm1埋さθ、/即
のアルミ円板を用い、その表面は白色スプレーを塗装し
た。この物体の外周を固定し、中心に直径31umのP
ZTを接着し、高電圧を加えることにより変形を与えた
。レーザー源1としてはSθmWのHe −Neレーザ
ーを用い、移相装置13としてはPZTに表面を白色塗
装したアクリル平板を接着したものを用い、このPZT
の出動装@14として高電圧回路を用い、参照レーザー
光J1の位相を変えた。光電変換装置12とし−(はT
Vカメラを用い、メモリ15としては/フレーム分のT
V画像を記録するディジタルフレームメモリ、演η・処
理装置16としてはミニコンピユータを、大容量メモリ
17としては磁り(ディスクを用いた。
EXAMPLE An aluminum disc with a diameter of 20πm1 and a depth θ/2 was used as the object 8 to be deformed, and its surface was spray-painted white. The outer circumference of this object is fixed, and a P with a diameter of 31 um is placed in the center.
ZT was bonded and deformed by applying high voltage. As the laser source 1, a He-Ne laser of SθmW was used, and as the phase shifter 13, an acrylic flat plate with a white surface coated on PZT was used.
A high voltage circuit was used as the dispatch device @14 to change the phase of the reference laser beam J1. The photoelectric conversion device 12 - (is T
A V camera is used, and the memory 15 is T for /frame.
A mini-computer was used as the digital frame memory for recording V images and the processing unit 16, and a magnetic disk was used as the large-capacity memory 17.

TV左カメラ2からの出力信号はVD変換した。The output signal from the TV left camera 2 was converted to VD.

出力表示装置18としてはグロツターを用いた。A Glotter was used as the output display device 18.

第2図が出力結果を等変位線として示したものであり、
線間隔は0.3μm の面外変位に相当する。
Figure 2 shows the output results as equal displacement lines,
The line spacing corresponds to an out-of-plane displacement of 0.3 μm.

第3図が第2図と同じ出力を鳥徹図として表現したもの
であり、対象物の変形のようすが浪くわかる。
Figure 3 is a representation of the same output as Figure 2 as a Totetsu diagram, and the deformation of the object can be clearly seen.

以上詳述したように、本発明は対象物の累形針を非接触
でかつ自動的にオンライン割泪11できる手法および装
置を提供するものであるので、製造品特に航空用のタイ
ヤやICなどの熱変形による破損および複合拐料の異常
検出など、品)内管理、工程制御などの迅速化、高精度
化に寄与することができる。
As described in detail above, the present invention provides a method and device that can automatically and non-contact online split 11 the shaped needles of an object, so that it can be used for manufacturing products, especially aviation tires, ICs, etc. It can contribute to faster and more accurate internal product management and process control, such as detecting damage due to thermal deformation and abnormalities in composite particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を鮨、明するためのブロック図、第一回
及び第3図は本発明の実施例で得られた変位量の等高線
図及び鳥睡図である。 図中の符号:1・・・・・・レーザー装面“、2161
7.10.11・・・・・・レーザー光、 4・・・・
・・対物レンズ、5・・・・・・半透鏡、8・・・・・
・対象物、9・・・・・・参照面、 12・・・・・・
光重変換装置、13・・・・・・移相装置、14・・・
・・・多相装置り駆動製餡、15・・・・・・メモリ、
16・・・・・・演算・処理装置、17・・・・・・大
容量メモリ、18・・・・・・表示装置。 第2図 第3図 昭和 年 月 日 1、事件の表示 昭和58年特許願第184932号3
、補正をする者 事件との関係 出願人 名称 (679)理化学研究所 4、代理人 5、補正命令の日付 自 発 6、補正の対象 明細書の特許請求の範囲の欄7、補正
の内容 別紙記、91N、 特許請求の範囲 (1)変形前の被測定物体の表面からの物体レーザー光
き、位相の異なる参照レーザー光とを干渉させて、少な
くとも3枚の第1の干渉スペックル像をつくって変形前
のスペックル像の位相θ1をめ、変形後の被測定物体か
らの物体レーザー光と、位相の異なる参照レーザー光と
を干渉させて少なくとも3枚の第2の干渉スペックル像
をつくって変形後のスペックル像の位相θ2をめ、そし
て、被測定物体の変形量を02−θ1として決定するこ
とを特徴とした物体の変形測定法。 (2) 参照レーザー光の位相を2πハ[rad ] 
(N≧3)ずつN回度化させ、それに対応したN枚の第
1の干渉スペックル像1. 、L 、・・・ IM を
つくって変形前のスペックル像の位相θ1を変形後に、
参照光の位相を2πハ[rad ]ずつN回変化させて
、それに対応したN枚の第2の干渉スペックル像1’、
、I’2 、・・・ l′2をつくり、変形後のスペッ
クル像の位相θ2をjE I ′3 cos(2πj 
/N) ) ]から決定し、そJ=1 して、被測定物体の変形量をθ2〜θ1 として決定す
る特許請求の範囲第1項に記載の物体の変形測定法。 (3)物体変形前の被測定物体の表面からの物体レーザ
ー光と、参照レーザー光とを干渉させて第1の干渉スペ
ックル像11 をつくり、変形後の被測定物体の表面か
らの物体レーザー光と、位相の異なる参照レーザー光と
を干渉させて、少なくとも3枚の第2の干渉スペックル
像をつくり、第2の干渉スペックル像と第1の干渉スペ
ックル像との差の自乗をめ、そしてこれらの差の自乗か
ら被測定物体の変形量を決定することを特徴とした物体
の変形測定法。 〔4)物体変形後に、参照レーザー光の位相を360 
” /N(N≧1)ずつN回変化させて、それに対応し
たN枚の第2の干渉スペックル像1′1゜1′2.・・
・ I′oをつくり、第2の干渉スペックル像と第1°
の干渉スペックル像との差の自乗f1−(ド、 、+、
>2. f2=(ド、 −+、)”。 ・・・、fN=(1′w +、f をめ、そして被測定
物体の変形量を 特許請求の範囲第4項に記載の物体の変形測定法。 (5〕 レーザー光源から被測定物体の表面に至り、そ
して被測定物体の表面から撮像管に至る第1の光路、レ
ーザー光源から移相手段を介して撮像管に至る第2の光
路、及び前記の移相手段を駆動する駆動装置を備えた物
体の干渉スペックル像をつくる装置。 (6) 前記の移相手段が振動反射面である特許請求の
範囲第7項に記載の装置。 (7) 前記の移相手段が電気制御されるファラデイー
ローチーターである特許請求の範囲第7項1ご記載の装
置。 (8) 前記の移相手段が回転する半波長板である’P
?許請求の範囲第7項に記載の装置。
Fig. 1 is a block diagram for explaining the present invention, and Figs. 1 and 3 are a contour map and a bird's eye diagram of displacement amounts obtained in an embodiment of the present invention. Code in the diagram: 1...Laser surface", 2161
7.10.11... Laser light, 4...
...Objective lens, 5...Semi-transparent mirror, 8...
・Object, 9...Reference plane, 12...
Light weight conversion device, 13... Phase shift device, 14...
...Multi-phase device drive bean production, 15...Memory,
16...Arithmetic/processing device, 17...Large capacity memory, 18...Display device. Figure 2 Figure 3 Showa year month/day 1, case description 1984 Patent Application No. 184932 3
, Relationship with the person making the amendment Applicant name (679) RIKEN 4, Agent 5, Date of amendment order Voluntary 6, Subject of amendment Claims column 7 of the specification, Contents of amendment Attachment 91N, Claims (1) Object laser beam from the surface of the object to be measured before deformation is caused to interfere with a reference laser beam having a different phase to form at least three first interference speckle images. The phase θ1 of the created speckle image before deformation is set, and the object laser beam from the object to be measured after deformation is made to interfere with a reference laser beam having a different phase to form at least three second interference speckle images. A method for measuring deformation of an object, characterized in that the phase θ2 of a speckle image after being created and deformed is determined, and the amount of deformation of the object to be measured is determined as 02−θ1. (2) Set the phase of the reference laser beam to 2π [rad]
(N≧3) N times, and N corresponding first interference speckle images 1. , L , ... IM and after deforming the phase θ1 of the speckle image before deformation,
The phase of the reference light is changed N times by 2π [rad], and N corresponding second interference speckle images 1' are created.
, I'2 , ... l'2, and the phase θ2 of the deformed speckle image is jE I '3 cos(2πj
2. The method for measuring deformation of an object according to claim 1, wherein J=1 and the amount of deformation of the object to be measured is determined as θ2 to θ1. (3) Create a first interference speckle image 11 by interfering the object laser beam from the surface of the object to be measured before object deformation and the reference laser beam, and create the object laser beam from the surface of the object to be measured after deformation by interfering with the reference laser beam. At least three second interference speckle images are created by interfering the light with a reference laser beam having a different phase, and the square of the difference between the second interference speckle image and the first interference speckle image is calculated. A method for measuring deformation of an object, characterized in that the amount of deformation of the object to be measured is determined from the square of these differences. [4] After object deformation, change the phase of the reference laser beam to 360
”/N (N≧1) N times, and N corresponding second interference speckle images 1'1°1'2...
・Create I'o and combine the second interference speckle image and the first
The square of the difference between the interference speckle image and the interference speckle image f1-(de, , +,
>2. f2=(do, -+,)"..., fN=(1'w +, f, and the amount of deformation of the object to be measured is determined by the method for measuring deformation of an object according to claim 4. (5) A first optical path from the laser light source to the surface of the object to be measured and from the surface of the object to the imaging tube, a second optical path from the laser light source to the imaging tube via the phase shift means, and An apparatus for creating an interference speckle image of an object, comprising a driving device for driving the phase shifting means. (6) The apparatus according to claim 7, wherein the phase shifting means is a vibration reflecting surface. ( 7) The device according to claim 7, wherein the phase shifting means is an electrically controlled Faraday rotor. (8) The device according to claim 7, wherein the phase shifting means is a rotating half-wave plate.
? Apparatus according to claim 7.

Claims (8)

【特許請求の範囲】[Claims] (1)変形前の被測定物体の表面からの物体レーザー光
と、位相の異なる参照レーザー光とを干渉させて、少な
くとも3枚の第1の干渉スペックル像をつくって変形前
のスペックル像の位相θ1をめ、変形後の被測定物体か
らの物体レーザー光と、位相の異なる参照レーザー光と
を干渉させて少なくとも3枚の第2の干渉スペックル像
をつくって変形後のスペックル像の位相θ2をめ、そし
て、被測定物体の変形量を02−01として決定するこ
とを特徴とした物体の変形測定法。
(1) Speckle images before deformation by making at least three first interference speckle images by interfering with the object laser beam from the surface of the measured object before deformation and a reference laser beam with a different phase. At least three second interference speckle images are created by interfering the object laser beam from the deformed object to be measured with a reference laser beam having a different phase, with a phase θ1 of the deformed speckle image. A method for measuring deformation of an object, characterized in that the phase θ2 of the object is determined, and the amount of deformation of the object to be measured is determined as 02-01.
(2)参照レーザー光の位相を2い(’rad〕(N乏
3)ずつN回変化させ、それに対応したN枚の第1の干
渉スペックル(& 11 r 12 +・・・・・・・
・・INをつくって変形前のスペックル像の位相θ、を (2πI/N ) ) )かも決定し、物体変形後に、
参照光の位相を2yr/N〔r ad )ずつN回変化
させて、それに対応したN枚の第コの干渉スペックル像
■′1゜■′2・・・・・・・・・ILNをつくり、変
形後のスペックル像の位相θ2を (2πI/N月〕から決定し、そして、被測定物体の変
形量を02−〇、として決定する特許請求の範囲第1項
に記載の物体の変形測定法。
(2) The phase of the reference laser beam is changed N times by 2 ('rad) (N-3), and the corresponding N first interference speckles (& 11 r 12 +...・
・・Create IN, determine the phase θ of the speckle image before deformation, (2πI/N ) ), and after deforming the object,
The phase of the reference light is changed N times by 2 yr/N [rad), and the corresponding N-th interference speckle images ■'1゜■'2...ILN are obtained. The phase θ2 of the speckle image after creation and deformation is determined from (2πI/N months), and the amount of deformation of the object to be measured is determined as 02-0. Deformation measurement method.
(3)物体変形前の被測定物体の表面からの物体レーザ
ー光と、参照レーザー光とを干渉させて第1の干渉スペ
ックル像11 をつ(す、変形後の被測定物体の表面か
らの物体レーザー光と、位相の異なる参照レーザー光と
を干渉させて、少なくとも3枚の第ユの干渉スペックル
像をつくり、第コの干渉スペックル像と第1の干渉スペ
ックル像との差の自乗をめ、そしてこれらの差の自乗か
ら被測定物体の変形量を決定することを特徴とした物体
の変形測定法。
(3) The object laser beam from the surface of the object to be measured before object deformation and the reference laser beam are caused to interfere with each other to form a first interference speckle image 11. The object laser beam and the reference laser beam having different phases are made to interfere to create at least three U-th interference speckle images, and the difference between the U-th interference speckle image and the first interference speckle image is calculated. A method for measuring deformation of an object, characterized in that the amount of deformation of the object to be measured is determined from the square of the difference.
(4)物体変形後に、参照レーザー光の位相を3 A 
Oc/NCN≧グ)ずつN回変化させて、それに対応し
たN枚の第一の干渉スペックル像I′、。 1/ 、・・・・・・・・・1′、をつくり、第2の干
渉スペックル像と第1の干渉スペックル像との差の自乗
/、=(1’1− t、)2+ 72−(1’2−1.
)2.・・・・・・、 /N−(T’、−1をめ、そし
て被測定物体の変形量を として決定する特許請求の範囲第11項に記載の物体の
変形測定法。
(4) After object deformation, change the phase of the reference laser beam to 3 A
Oc/NCN≧g) N times, and N corresponding first interference speckle images I'. 1/ , ......1', is created, and the square of the difference between the second interference speckle image and the first interference speckle image /, = (1'1- t,)2+ 72-(1'2-1.
)2. The method for measuring deformation of an object according to claim 11, wherein the amount of deformation of the object to be measured is determined as /N-(T', -1).
(5) レーザー光源から被測定物体の表面に至り、そ
して被測定物体の表面から撮像管に至る第1の光路隻レ
ーザー光源から移相手段を介して撮像管に至る第一の光
路、及び前記の移相手段を一駆動する駆動装置を備えた
物体の干渉スペックル像をつくる装置。
(5) a first optical path from the laser light source to the surface of the object to be measured and from the surface of the object to the imaging tube; a first optical path from the laser light source to the imaging tube via the phase shifting means; An apparatus for creating an interference speckle image of an object, which is equipped with a driving device that drives a phase shifting means.
(6)前記の移相手段が据%反射面である特許請求の範
囲第7項に記載の@貿。
(6) The @trade according to claim 7, wherein the phase shifting means is a fixed reflection surface.
(7) 前記の移相手段がlh、覚制御されるファラデ
イーローチーターである特許請求の範囲第7項に記載の
製箔。
(7) The foil manufacturing according to claim 7, wherein the phase shifting means is a Faraday low-cheater controlled by lh.
(8)前記の移相手段が回転する半沢;艮板である特許
請求の範囲 1)
(8) Claim 1) in which the phase shifting means is a rotating plate;
JP18493283A 1983-10-03 1983-10-03 Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer Granted JPS6076604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18493283A JPS6076604A (en) 1983-10-03 1983-10-03 Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18493283A JPS6076604A (en) 1983-10-03 1983-10-03 Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer

Publications (2)

Publication Number Publication Date
JPS6076604A true JPS6076604A (en) 1985-05-01
JPH052924B2 JPH052924B2 (en) 1993-01-13

Family

ID=16161864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18493283A Granted JPS6076604A (en) 1983-10-03 1983-10-03 Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer

Country Status (1)

Country Link
JP (1) JPS6076604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502008A (en) * 1988-09-02 1991-05-09 ブリティッシュ・テクノロジー・グループ・リミテッド interferometry
EP0915317A1 (en) * 1997-11-04 1999-05-12 European Community Method of improving the contrast of images obtained using the pulsed image-addition ESPI technique
JP2008045922A (en) * 2006-08-11 2008-02-28 Toyama Univ Method and apparatus for measuring nanometer displacement by laser speckle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03502008A (en) * 1988-09-02 1991-05-09 ブリティッシュ・テクノロジー・グループ・リミテッド interferometry
EP0915317A1 (en) * 1997-11-04 1999-05-12 European Community Method of improving the contrast of images obtained using the pulsed image-addition ESPI technique
WO1999023446A1 (en) * 1997-11-04 1999-05-14 European Community Method of improving the contrast of images obtained using the pulsed image-addition espi technique
US6362873B1 (en) 1997-11-04 2002-03-26 European Community Method of improving the contrast of images obtained using the pulsed image-addition ESPI technique
JP2008045922A (en) * 2006-08-11 2008-02-28 Toyama Univ Method and apparatus for measuring nanometer displacement by laser speckle

Also Published As

Publication number Publication date
JPH052924B2 (en) 1993-01-13

Similar Documents

Publication Publication Date Title
Sirohi Optical methods of measurement: wholefield techniques
Hung et al. Unified approach for holography and shearography in surface deformation measurement and nondestructive testing
Sciammarella The moiré method—a review: The main developments in the area of moiré as a tool to measure displacements, contours, slopes and strains are reviewed and some typical applications are shown
CN103727895B (en) Single-frame color composite grating stripe reflection mirror surface three-dimensional surface shape measuring method
JPS6176906A (en) Method and device for determining shape of surface of body
Shellabear et al. Application of ESPI to three-dimensional vibration measurements
Shang et al. Surface profiling using shearography
Sciammarella Overview of optical techniques that measure displacements: Murray lecture
Takezaki et al. Direct measurement of flexural strains in plates by shearography
Parks The range of speckle metrology: Estimates of the largest and smallest displacements measurable with speckle methods are drawn from the literature and laboratory studies
Tay et al. Integrated method for 3-D rigid-body displacement measurement using fringe projection
Young et al. In-process and on-line measurement of surface finish
JPS6076604A (en) Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer
Dwivedi et al. On-machine tool wear estimation using a portable digital holographic camera
Maas et al. Two-dimensional deconvolution applied to phase-stepped shearography
Tay et al. New method for measuring dynamic response of small components by fringe projection
Mizutani et al. Optical measurement of sound fields information using Mach-Zehnder interferometer
JPH08122210A (en) Method and device for measuring refrative index distribution of optical element
Li et al. Deformation analysis with temporal speckle pattern interferometry
KR20060062997A (en) Phase-shifting method using waveplates in shearography and system for measuring deformation using the same
Sirat et al. Conoscopic probes are set to transform industrial metrology
Pryputniewicz Quantitative holographic analysis of small components
Schlobohm et al. Multiscale optical inspection systems for the regeneration of complex capital goods
CN1105121A (en) Super fine surface roughness non-contact type optical interference measuring method
Hurden Vibration mode analysis using electronic speckle pattern interferometry