JP2008045922A - Method and apparatus for measuring nanometer displacement by laser speckle - Google Patents

Method and apparatus for measuring nanometer displacement by laser speckle Download PDF

Info

Publication number
JP2008045922A
JP2008045922A JP2006219881A JP2006219881A JP2008045922A JP 2008045922 A JP2008045922 A JP 2008045922A JP 2006219881 A JP2006219881 A JP 2006219881A JP 2006219881 A JP2006219881 A JP 2006219881A JP 2008045922 A JP2008045922 A JP 2008045922A
Authority
JP
Japan
Prior art keywords
rough surface
laser light
displacement
laser
speckle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006219881A
Other languages
Japanese (ja)
Other versions
JP4843789B2 (en
Inventor
Hatsuzo Tashiro
発造 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2006219881A priority Critical patent/JP4843789B2/en
Publication of JP2008045922A publication Critical patent/JP2008045922A/en
Application granted granted Critical
Publication of JP4843789B2 publication Critical patent/JP4843789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for measuring nanometer displacements by laser speckle and having high measurement accuracy, and is capable of facilitating processing by using a simple optical system and a simple apparatus. <P>SOLUTION: The apparatus for measuring nanometer displacements by laser speckle comprises a semiconductor laser 12; a lens 14 for making light from the semiconductor laser 12 converge into a single spot; a beam splitter 16 for branching a leaser beam from the semiconductor laser 12; a reference rough surface 18 to be irradiated with one laser beam branched from the beam splitter 16; and a measuring rough surface 20, to be irradiated with the other laser beam branched from the semiconductor laser 12. The apparatus for measuring the nanometer displacements by laser speckle is provided with both an optical sensor 22 for receiving light produced by superposition via the beam splitter 16 of the laser beams, each being reflected at the reference rough surface 18 and the measuring rough surface 20 and their speckle interference and a computer 26 for determining the displacements of the measuring rough surface 20, on the basis of changes in an output voltage of the optical sensor 22 within a voltage range as a measuring range, in which the output values change substantially linearly between the maximum value and the minimum value of the output of the optical sensor 22 due to the incidence of speckle interference light. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、部材の表面状態が微小な凹凸を持つような粗面物体に対し、レーザ光を用いたスペックル干渉を利用して非接触で測定可能なレーザスペックルによるナノメートル変位測定方法と装置に関する。   The present invention relates to a nanometer displacement measuring method using laser speckle that can be measured in a non-contact manner using a speckle interference using laser light on a rough surface object having a minute unevenness on the surface state of a member, and Relates to the device.

従来から、ナノメートルオーダーの測定方法においては、例えばSTM(走査型トンネル顕微鏡)等のように、非接触であることが必須である。また、粗面物体の表面形状は数μmの凹凸があり、この変位を直接ナノメートル(nm)の単位で計ることは困難であった。   Conventionally, in a measuring method of nanometer order, it is essential to be non-contact like STM (scanning tunneling microscope) or the like. In addition, the surface shape of the rough object has irregularities of several μm, and it was difficult to measure this displacement directly in units of nanometers (nm).

物体が鏡面であればレーザ測長などの技術でナノメートルの測定は可能であり、粗面物体の変位を直接測定せずに、鏡などを貼り付けるなどの方法が用いられている。   If the object is a mirror surface, nanometer measurement is possible by techniques such as laser length measurement, and a method such as attaching a mirror or the like without directly measuring the displacement of the rough object is used.

一方、表面に微小な凹凸を持つ粗面物体の変位や形状の測定方法として、レーザ光の集光性を利用した非接触の計測方法が知られている。例えばレーザ光をプローブとして被測定対象物の表面に照射し、そのレーザ光の焦点位置を一定として、被測定物を載置したステージまたはレーザプローブ自体を相対的に変位させ、反射光の強度が最大になるステージ位置座標を記録して、被測定物の表面の凹凸を測定している。   On the other hand, as a method for measuring the displacement and shape of a rough object having minute irregularities on its surface, a non-contact measurement method using the condensing property of laser light is known. For example, the surface of an object to be measured is irradiated as a probe with a laser beam, the focus position of the laser beam is fixed, the stage on which the object is mounted or the laser probe itself is relatively displaced, and the intensity of reflected light is increased. The maximum stage position coordinates are recorded, and the surface roughness of the object to be measured is measured.

その他、粗面にレーザ光を照射した場合、スペックルという斑点状の模様が見られ、これを利用したスペックル干渉法による変位測定も従来から行われている。この測定法により物体の変位をミクロンメートル(μm)単位で測定することができる。   In addition, when a rough surface is irradiated with laser light, a speckled pattern called speckle is seen, and displacement measurement by speckle interferometry using this pattern has been conventionally performed. With this measurement method, the displacement of the object can be measured in units of micrometers (μm).

さらに、特許文献1に開示されているように、光源からの光束を複数の光束に分割し、一つの光束を測定粗面に、他方の光束を参照粗面に照射し、スペックル干渉パターンを得、このスペックル干渉パターンのうちの同位相の領域を抽出する窓を有する空間的なフィルタを光路中に配置し、このフィルタにより同位相のスペックル干渉パターンを選択して、必要とする位相情報を取り出すスペックル干渉装置が提案されている。   Further, as disclosed in Patent Document 1, the light beam from the light source is divided into a plurality of light beams, one light beam is irradiated on the measurement rough surface, and the other light beam is irradiated on the reference rough surface. A spatial filter having a window for extracting an in-phase region of the speckle interference pattern is disposed in the optical path, and the speckle interference pattern having the same phase is selected by the filter, and a required phase is obtained. Speckle interferometers that extract information have been proposed.

また、特許文献2に開示されているように、コンピュータによる画像処理を行う電子的スペックル干渉法を利用した測定方法も提案されている。特許文献2には、スペックル干渉計によって形成される測定物から反射されたレーザ光と、測定物を経由しないレーザ光とを重ね合わせたスペックル画像を所定の時間間隔で複数形成して記憶装置に記憶させ、記録されたスペックル画像の中の二枚を取り出して、計算機によって画像の差分をとる測定方法が開示されている。これにより、その二枚の画像が記録された時間に測定物が起こした変形が干渉縞模様として見られる。その干渉縞模様は変形分布を等高線として表わしており、一本の干渉縞は用いたレーザ光の波長の半分の長さに相当する。これを次々とくり返して、それぞれの変形を加算することによって、通常のスペックル干渉法では測定できない大きな変形やスピードの速い変形の分布でも、非接触で、連続に、サブミクロン程度の変形まで測定することが可能となるものである。   Further, as disclosed in Patent Document 2, a measurement method using electronic speckle interferometry that performs image processing by a computer has also been proposed. In Patent Document 2, a plurality of speckle images obtained by superimposing a laser beam reflected from a measurement object formed by a speckle interferometer and a laser beam not passing through the measurement object are formed and stored at predetermined time intervals. A measuring method is disclosed in which two of speckle images stored and recorded in an apparatus are taken out and a difference between the images is obtained by a computer. Thereby, the deformation caused by the measurement object at the time when the two images are recorded is seen as an interference fringe pattern. The interference fringe pattern represents the deformation distribution as contour lines, and one interference fringe corresponds to half the wavelength of the laser beam used. By repeating this one after another and adding each deformation, even non-contact, continuous measurement of submicron deformation is possible, even for large deformations or high-speed deformation distributions that cannot be measured with normal speckle interferometry. It is possible to do.

特許文献3には、電子的スペックル干渉法を用いて得られた、動的被観察体の位相情報を担持したスペックルパターン画像に基づき、所定位相範囲に位相ラッピングされた被観察体の位相変化曲線を解析により求め、この後、該位相変化曲線を位相アンラッピングする変位測定方法が開示されている。この測定方法では、所定時間毎に得られた複数のスペックルパターン画像に基づき、画像各点毎の時間領域における強度信号を求め、該強度信号の余弦成分を抽出し、抽出された該余弦成分に、時間領域におけるヒルベルト変換処理を施して前記強度信号の正弦成分を求め、求められた該正弦成分と前記余弦成分の比に基づいて前記画像各点毎の位相変化を求め、被観察体の位相変化曲線を求めて、被観察体の動的な変形、振動、歪み等を高精度に計測している。
特開平5−196419号公報 特開平6−94434号公報 特開2004−109075号公報
Patent Document 3 discloses a phase of an object to be observed that is phase-wrapped in a predetermined phase range based on a speckle pattern image that carries phase information of a dynamic object to be obtained, which is obtained by using electronic speckle interferometry. A displacement measurement method is disclosed in which a change curve is obtained by analysis and then the phase change curve is phase unwrapped. In this measurement method, based on a plurality of speckle pattern images obtained every predetermined time, an intensity signal in the time domain for each point of the image is obtained, a cosine component of the intensity signal is extracted, and the extracted cosine component In addition, a Hilbert transform process is performed in the time domain to obtain a sine component of the intensity signal, and a phase change for each point of the image is obtained based on the ratio of the obtained sine component to the cosine component. A phase change curve is obtained, and dynamic deformation, vibration, distortion, etc. of the object to be observed are measured with high accuracy.
Japanese Patent Laid-Open No. 5-196419 JP-A-6-94434 JP 2004-109075 A

上記のように、従来の非接触での物体変位の光学的測定装置は、鏡面物体の測定においてはナノメートルオーダーの感度を得ることはできるものの、粗面物体の場合には鏡を貼り付けるなどの間接的な測定であった。   As described above, the conventional non-contact optical displacement measuring device for object displacement can obtain nanometer-order sensitivity in the measurement of specular objects, but in the case of rough objects, a mirror is attached, etc. It was an indirect measurement.

また、粗面物体を対象としたレーザスペックル干渉を利用した非接触の光学的測定装置の場合、干渉縞をカウントすることにより計測するものであり、測定精度は光の波長に制限され、この場合は測定精度がサブミクロンメートル程度のものであった。   Also, in the case of a non-contact optical measurement device using laser speckle interference for rough surfaces, the measurement is performed by counting interference fringes, and the measurement accuracy is limited to the wavelength of light. In some cases, the measurement accuracy was of the order of submicrometers.

その他、特許文献1に開示された装置は、構成が複雑であり、容易にナノメートルオーダーの測定が可能となるものではない。特許文献2に開示された電子的スペックル干渉法を用いたレーザ光による非接触測定方法においても、干渉縞を利用してものであるためサブミクロン程度の測定精度であり、ナノメートルオーダーでの測定はできないものである。さらに、特許文献3においては、被観察体の位相情報を求めて測定精度を向上させているが、処理における演算が複雑であり処理用のコンピュータも高性能のものが要求される。   In addition, the apparatus disclosed in Patent Document 1 has a complicated configuration, and measurement on the nanometer order cannot be easily performed. In the non-contact measurement method using laser light using the electronic speckle interferometry disclosed in Patent Document 2, the interference fringes are used, so the measurement accuracy is about submicron, It cannot be measured. Further, in Patent Document 3, the measurement accuracy is improved by obtaining the phase information of the object to be observed. However, the calculation in the processing is complicated, and the processing computer is required to have high performance.

この発明は、上記従来の技術の問題点に鑑みて成されたもので、簡単な光学系及び装置により、測定精度が高く処理も容易なレーザスペックルによる粗面物体のナノメートル変位測定方法と装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and a method for measuring a nanometer displacement of a rough surface object by a laser speckle that has high measurement accuracy and can be easily processed by a simple optical system and apparatus. An object is to provide an apparatus.

この発明は、半導体レーザ等のレーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記参照粗面を所定量ずつ変位させ、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値の間で、ほぼ直線的に出力値が変化する電圧範囲を測定範囲としてこの測定範囲における検出変位の感度を算出し、前記電圧範囲のほぼ中央の出力値を得る位置に前記参照粗面を固定し、前記光センサの出力電圧の変化により前記測定粗面の変位を求めるレーザスペックルによるナノメートル変位測定方法である。   The present invention irradiates a laser light source such as a semiconductor laser, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, and one laser light branched by the beam splitter. The reference rough surface to be measured, the measurement rough surface irradiated with the other of the laser light, and the laser light reflected from the reference rough surface and the measurement rough surface overlapped via the beam splitter and speckle-interfered light And a displacement device for displacing the reference rough surface, the reference rough surface is displaced by a predetermined amount, and the maximum value and the minimum value of the output of the light sensor due to incidence of the speckle interference light are changed. The sensitivity of the detected displacement in this measurement range is calculated using the voltage range in which the output value changes almost linearly as the measurement range, See rough surface is fixed, a nanometer displacement measurement method by laser speckle to determine the displacement of the measuring rough surface by a change in the output voltage of the optical sensor.

またこの発明は、レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記参照粗面を所定量ずつ変位させ、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値のほぼ中央値を前記光センサの出力電圧の基準値として、前記光センサの出力電圧が前記基準値となるように前記参照粗面を変位させて、その変位量により前記測定粗面の変位を求めるレーザスペックルによるナノメートル変位測定方法である。   The present invention also provides a laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, and one laser light branched by the beam splitter is irradiated. The rough surface, the measurement rough surface irradiated with the other of the laser light, and the laser light reflected from the reference rough surface and the measurement rough surface overlap through the beam splitter and receive the speckle-interfered light. An optical sensor, and a displacement device for displacing the reference rough surface, displacing the reference rough surface by a predetermined amount, and approximately the median value of the maximum value and the minimum value of the optical sensor due to the incidence of the speckle interference light Is the reference value of the output voltage of the photosensor, the reference rough surface is displaced so that the output voltage of the photosensor becomes the reference value, and the displacement of the measurement rough surface is determined by the amount of displacement. A nanometer displacement measuring method according to the Mel laser speckle.

またこの発明は、レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値の間で、ほぼ直線的に出力値が変化する電圧範囲を測定範囲として、前記光センサの出力電圧の変化により前記測定粗面の変位を求めるコンピュータ等の処理装置を備えたレーザスペックルによるナノメートル変位測定装置である。   The present invention also provides a laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, and one laser light branched by the beam splitter is irradiated. The rough surface, the measurement rough surface irradiated with the other of the laser light, and the laser light reflected from the reference rough surface and the measurement rough surface overlap through the beam splitter and receive the speckle-interfered light. The voltage range in which the output value changes approximately linearly between the maximum value and the minimum value of the output of the optical sensor due to the incidence of the optical sensor and the speckle interference light is taken as a measurement range, and the output voltage of the optical sensor It is a nanometer displacement measuring device by laser speckle equipped with a processing device such as a computer for obtaining the displacement of the measurement rough surface by change.

またこの発明は、レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値のほぼ中央値を前記光センサの出力電圧の基準値として、前記光センサの出力電圧が前記基準値となるように前記参照粗面を変位させて、その変位量により前記測定粗面の変位を求める処理装置を備えたレーザスペックルによるナノメートル変位測定装置である。   The present invention also provides a laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, and one laser light branched by the beam splitter is irradiated. The rough surface, the measurement rough surface irradiated with the other of the laser light, and the laser light reflected from the reference rough surface and the measurement rough surface overlap through the beam splitter and receive the speckle-interfered light. An optical sensor and a displacement device for displacing the reference rough surface, wherein the median of the maximum and minimum values of the optical sensor due to the incidence of the speckle interference light is used as a reference value for the output voltage of the optical sensor. And a laser spectrograph provided with a processing device for displacing the reference rough surface so that the output voltage of the photosensor becomes the reference value, and determining the displacement of the measurement rough surface by the amount of displacement. A nanometer displacement measuring apparatus according to Le.

この発明のレーザスペックルによるナノメートル変位測定方法と装置は、レーザ光のスペックル干渉による干渉縞間の光強度の変化を利用して、光センサの出力変化により変位測定を行っているので、測定感度がレーザ光の波長以下となり、容易にナノメートルオーダーの測定を行うことができるものである。また、光センサの出力を変位に換算するだけであり、コンピュータ等による処理が容易であり、簡単な装置で高速にリアルタイムの計測が可能となる。   The nanometer displacement measurement method and apparatus using laser speckle according to the present invention uses the change in light intensity between interference fringes due to speckle interference of laser light, and performs displacement measurement by changing the output of the optical sensor. Measurement sensitivity is less than the wavelength of the laser beam, and nanometer-order measurement can be easily performed. Further, the output of the optical sensor is simply converted into displacement, and processing by a computer or the like is easy, and real-time measurement can be performed at high speed with a simple device.

また、測定粗面の変位にあわせて参照粗面を変位させる場合、測定感度は変位装置の分解能に依存し、測定範囲は変位装置の移動範囲となり、測定範囲が広くなる。   Further, when the reference rough surface is displaced in accordance with the displacement of the measurement rough surface, the measurement sensitivity depends on the resolution of the displacement device, the measurement range becomes the movement range of the displacement device, and the measurement range becomes wide.

以下、この発明の実施形態について図面に基づいて説明する。図1〜図4は、この発明のレーザスペックルによるナノメートル変位測定装置の第一実施形態を示すもので、この実施形態の変位測定装置10は、レーザ光源であるレーザダイオード等の半導体レーザ12と、この半導体レーザ12からの光を集光する1点に収束させる収束レンズ14を備えている。半導体レーザ12は、例えば波長635nmの汎用品を用いることができる。さらに、測定対象側にレーザ光を分岐するビームスプリッタ16を備え、ビームスプリッタ16と対面して配置された表面が粗面の参照粗面18が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a first embodiment of a nanometer displacement measuring apparatus by laser speckle according to the present invention. A displacement measuring apparatus 10 of this embodiment is a semiconductor laser 12 such as a laser diode which is a laser light source. And a converging lens 14 for converging the light from the semiconductor laser 12 to one point for condensing light. As the semiconductor laser 12, for example, a general-purpose product having a wavelength of 635 nm can be used. Furthermore, a beam splitter 16 for branching the laser beam is provided on the measurement target side, and a reference rough surface 18 having a rough surface disposed so as to face the beam splitter 16 is provided.

ビームスプリッタ16の一方の側面に対応する位置には、表面が粗面の被測定対象物である測定粗面20が位置し、ビームスプリッタ16の反対側の面に対向してフォトダイオード等の光センサ22が配置されている。   At a position corresponding to one side surface of the beam splitter 16, a measurement rough surface 20, which is an object to be measured whose surface is rough, is positioned, and light such as a photodiode is opposed to the opposite surface of the beam splitter 16. A sensor 22 is arranged.

この実施形態では参照粗面18には、例えばPZTを用いた圧電素子からなる変位装置24に取り付けられ、ナノメートルオーダーで微小変位が可能となっている。変位装置24は、制御及び処理用のコンピュータ26の制御出力にD/A変換回路28を介して接続されている。   In this embodiment, the reference rough surface 18 is attached to a displacement device 24 made of a piezoelectric element using, for example, PZT, and can be minutely displaced on the nanometer order. The displacement device 24 is connected to a control output of a computer 26 for control and processing via a D / A conversion circuit 28.

光センサ22は、受光処理回路30に接続され、受光処理回路30の出力はコンピユータ26に入力している。また、半導体レーザ12には、レーザ駆動回路32を介して発振器34が接続され、所望の周波数、例えば1kHzで発振駆動される。受光処理回路30は、図2に示すように、光センサ22の出力が交流反転増幅回路36を経て周波数フィルタ回路38に繋がれ、全波整流回路40、平滑化回路42に繋がれている。平滑化回路42の出力は、A/D変換回路44によりA/D変換されて、コンピュータ26にデジタルデータとして入力している。   The optical sensor 22 is connected to the light reception processing circuit 30, and the output of the light reception processing circuit 30 is input to the computer 26. Further, an oscillator 34 is connected to the semiconductor laser 12 via a laser drive circuit 32, and is oscillated and driven at a desired frequency, for example, 1 kHz. As shown in FIG. 2, in the light receiving processing circuit 30, the output of the optical sensor 22 is connected to a frequency filter circuit 38 via an AC inverting amplifier circuit 36, and is connected to a full-wave rectifier circuit 40 and a smoothing circuit 42. The output of the smoothing circuit 42 is A / D converted by the A / D conversion circuit 44 and input to the computer 26 as digital data.

この実施形態の変位測定装置10は、半導体レーザ12から出射したレーザ光が収束レンズ14により収束され、ビームスプリッタ16を透過して一部は参照粗面18に集光する。またビームスプリッタ16の反射面で直角方向に反射したレーザ光は、測定粗面20に集光する。そして、参照粗面18で反射したレーザ光はビームスプリッタ16の反射面で一部が直角に反射され光センサ22に入射する。また測定粗面20で反射したレーザ光は、一部がビームスプリッタ16を透過して、光センサ22に入射し、参照粗面18からの反射光と干渉して、スペックル干渉である斑点状の干渉縞を形成する。   In the displacement measuring apparatus 10 of this embodiment, the laser light emitted from the semiconductor laser 12 is converged by the converging lens 14, passes through the beam splitter 16, and partially converges on the reference rough surface 18. Further, the laser beam reflected in the direction perpendicular to the reflecting surface of the beam splitter 16 is condensed on the measurement rough surface 20. The laser beam reflected by the reference rough surface 18 is partially reflected by the reflecting surface of the beam splitter 16 at a right angle and enters the optical sensor 22. Further, a part of the laser light reflected by the measurement rough surface 20 passes through the beam splitter 16 and enters the optical sensor 22, interferes with the reflected light from the reference rough surface 18, and is speckled as speckle interference. Interference fringes are formed.

次に、この発明の第一実施形態の変位測定装置10の測定処理方法について、図3を基にして説明する。まず、半導体レーザ12のレーザ光を参照粗面18及び測定粗面20に照射する。その際、測定面の反射率により、光センサ22での光強度が異なるので、キャリブレーションが必要となる。そのために参照粗面18に対して、コンピュータ26により変位装置24の圧電素子を駆動し、50nm程度大きく変位させる(s1)。このとき変位装置24による参照粗面18の移動距離は、圧電素子の変位量が正確に分かることからnmオーダーで既知である。そして、この時の光センサ22から出力をA/D変換し(s2)、コンピュータ26に入力し、コンピュータ26において、最大出力電圧と最小出力電圧を記憶する(s3)。これを順次繰り返して、1000nm程度参照粗面18を移動させ(s4)、その中で、図4に示すように、光センサ22の出力電圧変化がほぼ直線的な測定範囲aの中央値を求める(s5)。そして、直線的な測定範囲aで、上記既知の変位量と出力電圧の比を求めて感度を計算する(s6)。   Next, a measurement processing method of the displacement measuring apparatus 10 according to the first embodiment of the present invention will be described with reference to FIG. First, the reference rough surface 18 and the measurement rough surface 20 are irradiated with laser light from the semiconductor laser 12. At that time, since the light intensity at the optical sensor 22 differs depending on the reflectance of the measurement surface, calibration is required. For this purpose, the piezoelectric element of the displacement device 24 is driven by the computer 26 with respect to the reference rough surface 18 and is largely displaced by about 50 nm (s1). At this time, the moving distance of the reference rough surface 18 by the displacement device 24 is known on the order of nm since the displacement amount of the piezoelectric element can be accurately known. Then, the output from the optical sensor 22 at this time is A / D converted (s2) and input to the computer 26, and the computer 26 stores the maximum output voltage and the minimum output voltage (s3). This is sequentially repeated to move the reference rough surface 18 by about 1000 nm (s4), and among them, as shown in FIG. 4, the median value of the measurement range a in which the output voltage change of the optical sensor 22 is almost linear is obtained. (S5). Then, in the linear measurement range a, the ratio between the known displacement amount and the output voltage is obtained and the sensitivity is calculated (s6).

さらに、変位装置24の圧電素子を50nm程度大きく変位させ(s7)、光センサ22からの出力電圧をA/D変換して(s8)、コンピュータ26により演算し、先に求めた中央値か否かを判断し、参照粗面18を中央値へ持って行く(s9)。   Further, the piezoelectric element of the displacement device 24 is largely displaced by about 50 nm (s7), the output voltage from the optical sensor 22 is A / D converted (s8), is calculated by the computer 26, and is the median value obtained previously. And the reference rough surface 18 is brought to the median value (s9).

この後、測定粗面20の変位測定を開始する(s10)。変位測定は、上記と同様に、光センサ22の出力電圧をA/D変換し(s11)、コンピュータ26により、先に求めた感度からセンサ22の出力電圧に対応する変位を算出する(s12)。以上の動作をくり返して、所定の範囲で測定粗面20の変位測定を行い、必要なデータが得られた後、測定を終了する。   Then, the displacement measurement of the measurement rough surface 20 is started (s10). In the displacement measurement, similarly to the above, the output voltage of the optical sensor 22 is A / D converted (s11), and the displacement corresponding to the output voltage of the sensor 22 is calculated by the computer 26 from the previously obtained sensitivity (s12). . The above operation is repeated to measure the displacement of the measurement rough surface 20 within a predetermined range, and after necessary data is obtained, the measurement is terminated.

この第一実施形態の変位測定装置10によれば、測定粗面20の変位測定は、図4に示すように、センサ22に感知された光強度の最大値bと最小値cとの間の、光強度変化が測定粗面20の移動に対してリニアな部分である測定範囲aであり、出力電圧値から容易に演算することができる。この光強度の最大値bと最小値cとの間の変位は、光の明暗が光の干渉によるものであることから、最大で半導体レーザ12の光の波長の1/4である。従って、例えば波長630.5nmのレーザ光の場合、上記最大値bから最小値cまでの変位における測定粗面20の最大測定可能変位は約157.6nmとなり、測定に最も好ましい直線範囲はおよそ50nm程度と考えられる。これにより、光センサ22の感度と出力電圧の分解能からナノメートルオーダーの測定が容易に行うことができ、応答性も良いものである。   According to the displacement measuring apparatus 10 of the first embodiment, the displacement measurement of the measurement rough surface 20 is performed between the maximum value b and the minimum value c of the light intensity sensed by the sensor 22, as shown in FIG. The light intensity change is a measurement range a which is a linear portion with respect to the movement of the measurement rough surface 20, and can be easily calculated from the output voltage value. The displacement between the maximum value b and the minimum value c of the light intensity is ¼ of the wavelength of the light of the semiconductor laser 12 at the maximum because the brightness of light is caused by light interference. Therefore, for example, in the case of a laser beam having a wavelength of 630.5 nm, the maximum measurable displacement of the measurement rough surface 20 in the displacement from the maximum value b to the minimum value c is about 157.6 nm, and the most preferable linear range for measurement is about 50 nm. It is thought to be about. Thereby, the measurement of nanometer order can be easily performed from the sensitivity of the optical sensor 22 and the resolution of the output voltage, and the responsiveness is also good.

次にこの発明の第二実施形態について、図1、図5を基にして説明する。ここで、上記実施形態と同様の部材は同一の符号を付して説明を省略する。この実施形態の変位測定装置10も、上記第一実施形態と同様に圧電素子による変位装置24を参照粗面18に設け、測定粗面20の変位に参照粗面18を追従させるようにして測定する。   Next, a second embodiment of the present invention will be described with reference to FIGS. Here, the same members as those in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted. Similarly to the first embodiment, the displacement measuring device 10 of this embodiment is also provided with a displacement device 24 using a piezoelectric element on the reference rough surface 18 so that the reference rough surface 18 follows the displacement of the measurement rough surface 20. To do.

この第二実施形態の変位測定装置10の測定処理方法について、図5を基にして説明する。まず、上記第一実施形態と同様にレーザ光を参照粗面18及び測定粗面20に照射する。そして、適切な基準位置を得るために参照粗面18に対して、コンピュータ26から変位装置24の圧電素子を駆動し、50nm程度大きく変位させる(s21)。この時の光センサ22からの出力電圧をA/D変換し(s22)、コンピュータ26に入力し、コンピュータ26において、最大出力電圧と最小出力電圧を記憶する(s23)。これを順次繰り返して、1000nm程度測定粗面20を移動させ(s24)、最大出力電圧と最小出力電圧の中央値を求める(s25)。さらに、参照粗面18を移動させ、出力電圧が中央値となるようにする。   A measurement processing method of the displacement measuring apparatus 10 of the second embodiment will be described with reference to FIG. First, similarly to the first embodiment, the reference rough surface 18 and the measurement rough surface 20 are irradiated with laser light. Then, in order to obtain an appropriate reference position, the piezoelectric element of the displacement device 24 is driven from the computer 26 with respect to the reference rough surface 18 and displaced largely by about 50 nm (s21). The output voltage from the optical sensor 22 at this time is A / D converted (s22) and input to the computer 26, where the maximum output voltage and the minimum output voltage are stored (s23). This is repeated sequentially to move the measurement rough surface 20 by about 1000 nm (s24), and the median value of the maximum output voltage and the minimum output voltage is obtained (s25). Further, the reference rough surface 18 is moved so that the output voltage becomes a median value.

この後、測定粗面20の変位測定を開始する(s26)。変位測定は、上記と同様に、光センサ22の出力電圧をA/D変換し(s27)、コンピュータ26により、先に求めた中央値との電圧差を算出する(s28)。そして、変位装置24の圧電素子をコンピュータ26により駆動し、求めた電圧差分だけ参照粗面18を中央値側に移動させる(s29)。この動作をくり返して、常に出力電圧が中央値に一致するように参照粗面18の位置を制御する(s30)。   Then, the displacement measurement of the measurement rough surface 20 is started (s26). In the displacement measurement, similarly to the above, the output voltage of the optical sensor 22 is A / D converted (s27), and the computer 26 calculates the voltage difference from the previously obtained median value (s28). Then, the piezoelectric element of the displacement device 24 is driven by the computer 26, and the reference rough surface 18 is moved to the median side by the obtained voltage difference (s29). This operation is repeated to control the position of the reference rough surface 18 so that the output voltage always matches the median value (s30).

測定粗面20の位置が中央値であると判断されると、参照粗面18の移動距離が、測定粗面20の移動距離となる(s31)。以上の動作をくり返して、所定の範囲で測定粗面20の変位測定を行い、必要なデータが得られた後、測定を終了する。   If it is determined that the position of the measurement rough surface 20 is the median value, the movement distance of the reference rough surface 18 becomes the movement distance of the measurement rough surface 20 (s31). The above operation is repeated to measure the displacement of the measurement rough surface 20 within a predetermined range. After necessary data is obtained, the measurement is terminated.

この第二実施形態によれば、測定感度は変位装置24の分解能に依存し、測定範囲は変位装置24の移動範囲となり、測定範囲が広くなるとともに、測定粗面20の変位を安定的に測定することができる。   According to the second embodiment, the measurement sensitivity depends on the resolution of the displacement device 24, the measurement range is the movement range of the displacement device 24, the measurement range is widened, and the displacement of the measurement rough surface 20 is stably measured. can do.

なお、この発明のレーザスペックルによるナノメートル変位測定装置は、上記実施形態に限定されるものではなく、この変位測定装置の光学系において、その他適宜レンズや偏光素子等の光学系を配置しても良く、ビームスプリッタを偏光ビームスプリッタにして、直線偏光した半導体レーザの光を1/4波長板を組み合わせて分岐偏向しても良い。その他、レーザ光の波長や光学素子は適宜選択可能なものであり、光学系の配置も適宜設定可能なもので、装置と被測定物体の距離を任意に変えることができる。   The nanometer displacement measuring apparatus using laser speckle according to the present invention is not limited to the above embodiment. In the optical system of the displacement measuring apparatus, an optical system such as a lens or a polarizing element is appropriately disposed. Alternatively, the beam splitter may be a polarization beam splitter, and the light of the linearly polarized semiconductor laser may be branched and deflected by combining a quarter wavelength plate. In addition, the wavelength of the laser beam and the optical element can be appropriately selected, and the arrangement of the optical system can also be appropriately set, so that the distance between the apparatus and the object to be measured can be arbitrarily changed.

この発明による変位測定装置の一実施例について以下に説明する。ここでは、図4に示すように、光センサ22の出力電圧の変化がリニアな測定範囲aについて、出力の測定電圧と測定粗面20の変位量について、変位の往路と復路について実験したものである。   An embodiment of the displacement measuring apparatus according to the present invention will be described below. Here, as shown in FIG. 4, for the measurement range a in which the change in the output voltage of the optical sensor 22 is linear, the output measurement voltage and the displacement amount of the measurement rough surface 20 are tested on the forward and return paths of displacement. is there.

この実験では、図6に示すように、PZT等の圧電素子による駆動装置35により駆動される変位が既知の測定粗面20を、約2nmずつ変位させ、光センサ22による出力電圧を測定した。測定粗面20の変位は、コンピュータ26からの制御出力をD/A変換回路29により変換し、駆動装置35に対して、測定粗面20が約2nmずつ変位するように出力電圧を与えた。なお、図6において上記実施形態と同様の部材は同一の符号を付してある。   In this experiment, as shown in FIG. 6, the measurement rough surface 20, which is known to be driven by a driving device 35 using a piezoelectric element such as PZT, was displaced by about 2 nm, and the output voltage from the optical sensor 22 was measured. The displacement of the measurement rough surface 20 was obtained by converting the control output from the computer 26 by the D / A conversion circuit 29 and giving an output voltage to the driving device 35 so that the measurement rough surface 20 was displaced by about 2 nm. In FIG. 6, the same members as those in the above embodiment are denoted by the same reference numerals.

この結果によれば、往路と復路で若干のずれがあるが、図7に示すような結果が得られ、測定感度としてはほぼ1mV/nmであった。これにより、粗面を有する被測定物体の表面の変位を1nm程度の分解能で測定可能であることが確かめられた。   According to this result, although there is a slight deviation between the forward path and the return path, the result shown in FIG. 7 was obtained, and the measurement sensitivity was approximately 1 mV / nm. As a result, it was confirmed that the displacement of the surface of the measured object having a rough surface can be measured with a resolution of about 1 nm.

この発明の第一および第二実施形態のレーザスペックルによるナノメートル変位測定装置の概略を示す配置図である。It is an arrangement drawing showing the outline of the nanometer displacement measuring device by the laser speckle of the first and second embodiments of the present invention. 第一および第二実施形態の変位測定装置の受光処理回路のブロック図である。It is a block diagram of the light reception processing circuit of the displacement measuring apparatus of 1st and 2nd embodiment. 第一実施形態の変位測定装置の処理を示すフローチャートである。It is a flowchart which shows the process of the displacement measuring apparatus of 1st embodiment. 第一実施形態の変位測定装置の光センサによる光強度と測定粗面の変位量の関係を示すグラフである。It is a graph which shows the relationship between the light intensity by the optical sensor of the displacement measuring apparatus of 1st embodiment, and the amount of displacement of a measurement rough surface. この発明の第二実施形態の変位測定装置の処理を示すフローチャートである。It is a flowchart which shows the process of the displacement measuring apparatus of 2nd embodiment of this invention. この発明の第一実施形態における変位測定装置の一実施例における実験装置の概略を示す配置図である。1 is a layout diagram illustrating an outline of an experimental apparatus in one example of a displacement measuring apparatus according to a first embodiment of the present invention. この発明の第一実施形態における変位測定装置の一実施例による光センサの出力電圧と測定粗面の変位量を示すグラフである。It is a graph which shows the output voltage of the optical sensor by one Example of the displacement measuring apparatus in 1st Embodiment of this invention, and the displacement amount of a measurement rough surface.

符号の説明Explanation of symbols

10 変位測定装置
12 半導体レーザ
14 収束レンズ
16 ビームスプリッタ
18 参照粗面
20 測定粗面
22 光センサ
24 変位装置
26 コンピュータ
30 受光処理回路
32 レーザ駆動回路
34 発信器
35 駆動装置
DESCRIPTION OF SYMBOLS 10 Displacement measuring device 12 Semiconductor laser 14 Converging lens 16 Beam splitter 18 Reference rough surface 20 Measuring rough surface 22 Optical sensor 24 Displacement device 26 Computer 30 Light reception processing circuit 32 Laser drive circuit 34 Transmitter 35 Drive device

Claims (4)

レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記参照粗面を所定量ずつ変位させ、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値の間で、ほぼ直線的に出力値が変化する電圧範囲を測定範囲としてこの測定範囲における検出変位の感度を算出し、前記電圧範囲のほぼ中央の出力値を得る位置に前記参照粗面を固定し、前記光センサの出力電圧の変化により前記測定粗面の変位を求めることを特徴とするレーザスペックルによるナノメートル変位測定方法。   A laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, a reference rough surface to which one of the laser light branched by the beam splitter is irradiated, A measuring rough surface to which the other of the laser light is irradiated, a light sensor that receives speckle-interfered light that is reflected by the laser light reflected from the reference rough surface and the measuring rough surface through the beam splitter, and A displacement device for displacing the reference rough surface is provided, the reference rough surface is displaced by a predetermined amount, and the light is output almost linearly between the maximum value and the minimum value of the output of the photosensor due to the incidence of the speckle interference light. The voltage range where the value changes is taken as the measurement range, the sensitivity of the detected displacement in this measurement range is calculated, the reference rough surface is fixed at the position where the output value at the center of the voltage range is obtained, and the optical sensor is Nanometer displacement measurement method by laser speckle and obtains the displacement of the measuring rough surface by a change in the difference between the output voltage. レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記参照粗面を所定量ずつ変位させ、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値のほぼ中央値を前記光センサの出力電圧の基準値として、前記光センサの出力電圧が前記基準値となるように前記参照粗面を変位させて、その変位量により前記測定粗面の変位を求めることを特徴とするレーザスペックルによるナノメートル変位測定方法。   A laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, a reference rough surface to which one of the laser light branched by the beam splitter is irradiated, A measuring rough surface to which the other of the laser light is irradiated, a light sensor that receives speckle-interfered light that is reflected by the laser light reflected from the reference rough surface and the measuring rough surface through the beam splitter, and A displacement device for displacing the reference rough surface, displacing the reference rough surface by a predetermined amount, and determining the approximate center value of the maximum value and the minimum value of the photosensor due to the incidence of the speckle interference light. The reference rough surface is displaced so that the output voltage of the photosensor becomes the reference value as the reference value of the output voltage, and the displacement of the measured rough surface is obtained from the amount of displacement. Nanometer displacement measurement method by laser speckle. レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値の間で、ほぼ直線的に出力値が変化する電圧範囲を測定範囲として、前記光センサの出力電圧の変化により前記測定粗面の変位を求める処理装置を備えたことを特徴とするレーザスペックルによるナノメートル変位測定装置。   A laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, a reference rough surface to which one of the laser light branched by the beam splitter is irradiated, A measuring rough surface to which the other of the laser light is irradiated, a light sensor that receives speckle-interfered light that is reflected by the laser light reflected from the reference rough surface and the measuring rough surface through the beam splitter, and A voltage range in which the output value changes approximately linearly between the maximum value and the minimum value of the output of the photosensor due to the incidence of speckle interference light is taken as a measurement range, and the measurement coarseness is determined by a change in the output voltage of the photosensor. A nanometer displacement measuring apparatus using laser speckle, characterized by comprising a processing device for determining the displacement of a surface. レーザ光源と、このレーザ光を1点に収束させるレンズと、前記レーザ光源からのレーザ光を分岐するビームスプリッタと、このビームスプリッタで分岐した一方のレーザ光が照射される参照粗面と、前記レーザ光の他方が照射される測定粗面と、前記参照粗面と測定粗面とから反射した各前記レーザ光が前記ビームスプリッタを介して重なりスペックル干渉した光を受光する光センサと、前記参照粗面を変位させる変位装置を備え、前記スペックル干渉光の入射による前記光センサの出力の最大値と最小値のほぼ中央値を前記光センサの出力電圧の基準値として、前記光センサの出力電圧が前記基準値となるように前記参照粗面を変位させて、その変位量により前記測定粗面の変位を求める処理装置を備えたことを特徴とするレーザスペックルによるナノメートル変位測定装置。
A laser light source, a lens for converging the laser light at one point, a beam splitter for branching the laser light from the laser light source, a reference rough surface to which one of the laser light branched by the beam splitter is irradiated, A measuring rough surface to which the other of the laser light is irradiated, a light sensor that receives speckle-interfered light that is reflected by the laser light reflected from the reference rough surface and the measuring rough surface through the beam splitter, and A displacement device for displacing the reference rough surface, wherein the approximate value of the maximum value and the minimum value of the output of the photosensor due to the incidence of the speckle interference light is set as a reference value of the output voltage of the photosensor. A laser spectroscope comprising a processing device for displacing the reference rough surface so that an output voltage becomes the reference value and obtaining a displacement of the measurement rough surface based on a displacement amount. Nanometer displacement measuring apparatus according to Le.
JP2006219881A 2006-08-11 2006-08-11 Nanometer displacement measuring method and apparatus by laser speckle Active JP4843789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006219881A JP4843789B2 (en) 2006-08-11 2006-08-11 Nanometer displacement measuring method and apparatus by laser speckle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006219881A JP4843789B2 (en) 2006-08-11 2006-08-11 Nanometer displacement measuring method and apparatus by laser speckle

Publications (2)

Publication Number Publication Date
JP2008045922A true JP2008045922A (en) 2008-02-28
JP4843789B2 JP4843789B2 (en) 2011-12-21

Family

ID=39179818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006219881A Active JP4843789B2 (en) 2006-08-11 2006-08-11 Nanometer displacement measuring method and apparatus by laser speckle

Country Status (1)

Country Link
JP (1) JP4843789B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679902A (en) * 2012-05-24 2012-09-19 天津大学 Thin flat plate structure resonance modal analysis system and using method thereof
CN102679906A (en) * 2012-05-28 2012-09-19 西安交通大学 Integrated system for online measurement of nanometer surface morphology
CN105806243A (en) * 2016-04-19 2016-07-27 辽宁工程技术大学 Optical measurement method for strain rate field inside object with parallel front and back surfaces
CN109540003A (en) * 2019-01-15 2019-03-29 厦门大学嘉庚学院 A kind of high-supported formwork support frame upright bar horizontal displacement real-time monitoring system based on laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076604A (en) * 1983-10-03 1985-05-01 Rikagaku Kenkyusho Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer
JP2005221267A (en) * 2004-02-03 2005-08-18 Kenwood Corp Displacement detection device, microphone device and displacement detection method
JP2007071663A (en) * 2005-09-06 2007-03-22 Institute Of National Colleges Of Technology Japan Automatic measuring processor of minute displacement of one point in diffusing surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076604A (en) * 1983-10-03 1985-05-01 Rikagaku Kenkyusho Method and apparatus for measuring deformation of body having coarse surface by phase modulated speckle interferometer
JP2005221267A (en) * 2004-02-03 2005-08-18 Kenwood Corp Displacement detection device, microphone device and displacement detection method
JP2007071663A (en) * 2005-09-06 2007-03-22 Institute Of National Colleges Of Technology Japan Automatic measuring processor of minute displacement of one point in diffusing surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679902A (en) * 2012-05-24 2012-09-19 天津大学 Thin flat plate structure resonance modal analysis system and using method thereof
CN102679906A (en) * 2012-05-28 2012-09-19 西安交通大学 Integrated system for online measurement of nanometer surface morphology
CN105806243A (en) * 2016-04-19 2016-07-27 辽宁工程技术大学 Optical measurement method for strain rate field inside object with parallel front and back surfaces
CN109540003A (en) * 2019-01-15 2019-03-29 厦门大学嘉庚学院 A kind of high-supported formwork support frame upright bar horizontal displacement real-time monitoring system based on laser
CN109540003B (en) * 2019-01-15 2024-04-16 厦门大学嘉庚学院 High formwork support frame pole setting horizontal displacement real-time supervision system based on laser

Also Published As

Publication number Publication date
JP4843789B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP3741472B2 (en) Object surface shape measuring method and system using large equivalent wavelength
US7277183B2 (en) Vibration resistant interferometry
TWI401414B (en) Phase-shifting interferometry method and system
Bowe et al. White light interferometric surface profiler
WO2001025749A2 (en) Optical method and system for measuring three-dimensional surface topography
US20110261347A1 (en) Method for interferometric detection of surfaces
JP4843789B2 (en) Nanometer displacement measuring method and apparatus by laser speckle
JP5428538B2 (en) Interfering device
JP3410051B2 (en) Shape measuring method and device
Lehmann Systematic effects in coherence peak and phase evaluation of signals obtained with a vertical scanning white-light Mirau interferometer
JP4532556B2 (en) Interferometer with mirror device for measuring objects
US20040257582A1 (en) Dual-beam interferometer for ultra-smooth surface topographical measurements
JP2000221013A (en) Method and device for measuring interference
CN101881607A (en) Planar error detection system
Manske et al. Multisensor technology based on a laser focus probe for nanomeasuring applications over large areas
Li et al. Measurement of diameter of metal cylinders using a sinusoidally vibrating interference pattern
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
JP6501307B2 (en) Heterodyne interference device
JPH10221032A (en) Method and apparatus for measuring interference
JP4536873B2 (en) Three-dimensional shape measuring method and apparatus
JP2003287403A (en) Shape measuring apparatus using heterodyne interferometer, method of adjusting optical path length of the shape measuring apparatus using the heterodyne interferometer, and method of measuring shape using the heterodyne interferometer
JP2008513797A (en) Interference system with a reference surface having a specular area
JPWO2011135698A1 (en) Deformation measurement method
JPH07190737A (en) Shearing interference measuring method and shearing interferometer
JP5239049B2 (en) Roughness measuring method and roughness measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A977 Report on retrieval

Effective date: 20110727

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110907

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150