JP2007071663A - Automatic measuring processor of minute displacement of one point in diffusing surface - Google Patents

Automatic measuring processor of minute displacement of one point in diffusing surface Download PDF

Info

Publication number
JP2007071663A
JP2007071663A JP2005258340A JP2005258340A JP2007071663A JP 2007071663 A JP2007071663 A JP 2007071663A JP 2005258340 A JP2005258340 A JP 2005258340A JP 2005258340 A JP2005258340 A JP 2005258340A JP 2007071663 A JP2007071663 A JP 2007071663A
Authority
JP
Japan
Prior art keywords
circle
displacement
center
interference fringes
concentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005258340A
Other languages
Japanese (ja)
Other versions
JP4161059B2 (en
Inventor
Fumio Matsuda
文夫 松田
Akira Nishiwaki
彰 西脇
Yasuhiro Hamada
泰裕 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005258340A priority Critical patent/JP4161059B2/en
Publication of JP2007071663A publication Critical patent/JP2007071663A/en
Application granted granted Critical
Publication of JP4161059B2 publication Critical patent/JP4161059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To automatically measure the irregularity and vertical displacement of fabricating surface of a product during fabrication which is not a mirror surface but a diffusing surface of an object to be measured by non-contact, with high precision and in real time. <P>SOLUTION: The interference pattern on concentric circles caused by reflection light from the measuring surface, that is, the diffusing surface and a reference surface is read with an optical device. The moving quantity of sinking in circle center direction or floating from the circle center is calculated and the displacement is given to the reference surface in the direction vertical to the surface so as to cancel the moving quantity. As the displaced quantity is the same as the displacement of the measuring surface in the direction vertical to the surface, the displaced quantity is shown as the displacement of the measuring surface in the direction vertical to the surface. In this manner, automatic measurement becomes possible. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は面の垂直方向の変位を非接触に自動的に計測する技術に関する。 The present invention relates to a technique for automatically measuring a vertical displacement of a surface in a non-contact manner.

非特許文献1に拡散面であっても照射レーザーのスポット径を小さく絞ることにより、拡散面からの反射光をあたかも鏡面からの反射光のように得ることが可能となり、この測定面からの反射光と参照光からの反射光との干渉によって干渉縞を形成して、測定面の面垂直方向の変位が同心円上の干渉縞の円中心方向への沈み込みまたは湧き上がりの移動となって表示され、移動量から測定面の変位が算出される方法がすでに提案されている。
レーザー研究、Vol.32、pp538〜542,2004
According to Non-Patent Document 1, it is possible to obtain reflected light from the diffusing surface as if it was reflected from the mirror surface by reducing the spot diameter of the irradiated laser even if it is a diffusing surface. Interference fringes are formed by interference between the reflected light from the light and the reference light, and the displacement in the direction perpendicular to the surface of the measurement surface is displayed as subtraction or upwelling movement of the interference fringes on the concentric circle. A method for calculating the displacement of the measurement surface from the amount of movement has already been proposed.
Laser Research, Vol. 32, pp 538-542, 2004

加工中の製品の加工面の垂直方向の変位を非接触で高精度に自動計測する要求に対し、レーザーを用いた微小変位計測では、規則性のある反射光を得るために測定物は鏡面である必要があるが、実製品の測定において、被測定物が鏡面であるという条件は非常に少なく、拡散面であることが多い。   In response to the demand to automatically measure the vertical displacement of the processed surface of the product being processed in a non-contact manner with high accuracy, in the micro displacement measurement using a laser, the measured object is a mirror surface to obtain regular reflected light. Although it is necessary, in the measurement of the actual product, the condition that the object to be measured is a mirror surface is very few, and it is often a diffusion surface.

拡散面でも変位は非接触で測定可能になっているが、現段階では干渉縞の移動距離を目視で計測してあらかじめ用意した校正データに照らし合わせて測定面の変位を算出する作業が必要である。これは煩雑な作業であり、これを除くために自動計測を可能にする必要がある。   Displacement can be measured without contact on the diffusion surface, but at this stage, it is necessary to visually measure the movement distance of the interference fringes and calculate the displacement of the measurement surface against the calibration data prepared in advance. is there. This is a cumbersome operation, and it is necessary to enable automatic measurement in order to eliminate this.

上記問題を、測定面である拡散面と参照面からの反射光によって生じる同心円状の干渉縞を光学装置で読み取り、この画像データ上で円中心方向への沈み込みまたは円中心からの湧き上がりの移動量を算出して、これを相殺するように参照面を面垂直方向に変位させ、この変位させた量は測定面の面垂直方向の変位と同じであるので、この変位させた量を測定面の面垂直方向の変位として示す。これによって、自動計測が可能になる。   The above problem is solved by reading concentric interference fringes generated by reflected light from the diffusing surface, which is the measurement surface, and the reference surface with an optical device, and subtracting or rising from the center of the circle on this image data. The movement amount is calculated and the reference surface is displaced in the direction perpendicular to the plane so as to cancel this. The amount of displacement is the same as the displacement in the direction perpendicular to the surface of the measurement surface. It is shown as the displacement of the surface perpendicular to the surface. This allows automatic measurement.

同心円状の干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動を算出する部分において、画面上の同心円状の干渉縞から目視であらかじめおおよその円中心座標を与え、この円中心のX座標上の円弧内の任意の点からY方向の円弧との交点を求め,その半径が最大になる点をX方向に走査をして求める。この中間点が新たに円中心座標となる。   In the part that calculates the sinking of the concentric interference fringes toward the center of the circle or the movement of upwelling from the center of the circle, the approximate circle center coordinates are visually given in advance from the concentric interference fringes on the screen. An intersection with the arc in the Y direction is obtained from an arbitrary point in the arc on the center X coordinate, and a point having the maximum radius is obtained by scanning in the X direction. This midpoint becomes a new circle center coordinate.

このようにハフ変換でなく、円中心を求めた後、画像データ上で改めて円弧を認識して、その移動量を実時間で算出して、測定面の変位を相殺する参照面の変位を与えるための駆動信号を算出して駆動装置に与える。このときの参照面に与えた変位を表示すれば計測が自動化されたことになる。   After obtaining the center of the circle instead of the Hough transform in this way, the arc is recognized again on the image data, the amount of movement is calculated in real time, and the displacement of the reference surface that offsets the displacement of the measurement surface is given. Drive signal is calculated and applied to the drive device. If the displacement given to the reference plane at this time is displayed, the measurement is automated.

被測定物が鏡面でない拡散面である加工中の製品の加工面の凹凸や面垂直変位を非接触で高精度に実時間で自動計測することが可能になる。このことは加工や検査方法を大きく変えることになる。   It becomes possible to automatically measure the unevenness and surface vertical displacement of the processed surface of the product being processed, which is a diffusion surface that is not a mirror surface, in real time with high accuracy without contact. This greatly changes the processing and inspection methods.

本発明の実施の形態について、図面を参照しながら説明する。なお、各図は正確なスケールで描かれているものではなく、図面を見やすくするために誇張して描かれている部分がある。   Embodiments of the present invention will be described with reference to the drawings. Each figure is not drawn to an accurate scale, and there are parts exaggerated to make the drawing easier to see.

1.自動化アルゴリズム
図1は本実施例の自動計測を行うためのシステム構成例を表した図である。
図2は拡散面である測定面と参照面からの反射光で作られる同心円状の干渉縞の写真である。図3は自動計測を行うために必要となる動作を表したフローチャート図である。
1. Automation Algorithm FIG. 1 is a diagram showing an example of a system configuration for performing automatic measurement according to this embodiment.
FIG. 2 is a photograph of concentric interference fringes formed by reflected light from the measurement surface, which is a diffusing surface, and the reference surface. FIG. 3 is a flowchart showing operations necessary for performing automatic measurement.

図1に示すように円情報の抽出は、CCDカメラから取り込んだ干渉縞画像を2値化処理によって二値化した後、円の中心部から上下方向に画素を走査して円を検出する。測定面が変位する前の画像から抽出した円情報を基準と決めておき、変位した後の画像と円情報を比較することにより、円情報の変位が検出できる。   As shown in FIG. 1, in extracting circle information, an interference fringe image captured from a CCD camera is binarized by binarization processing, and then a circle is detected by scanning pixels vertically from the center of the circle. The circle information extracted from the image before the measurement surface is displaced is determined as a reference, and the displacement of the circle information can be detected by comparing the circle information with the image after the displacement.

検出された円情報の変位をもとに、PZT駆動電圧をPZTに印加する。PZTは参照面に取り付けられており、参照面を光軸方向に移動させる。基準画像と比較し、測定面の移動と差分がなくなるまで参照面のPZTの印加電圧を自動制御することにより、測定面の変位量が分かる。常に参照面は測定面の移動を補うように実時間で動くことになる。円情報の抽出処理からPZTに印加し、参照面距離の補正が1回完了するまでの時間内の変位距離が1/2波長(±1/4波長)より小さい変位を検出することができる。このループを繰り返せば理論的には計測範囲の制限はない。   Based on the detected displacement of the circle information, a PZT drive voltage is applied to the PZT. The PZT is attached to the reference surface and moves the reference surface in the optical axis direction. Compared with the reference image, the displacement of the measurement surface can be determined by automatically controlling the applied voltage of PZT on the reference surface until there is no difference between the movement of the measurement surface and the difference. The reference plane will always move in real time to compensate for the movement of the measurement plane. It is possible to detect a displacement that is applied to the PZT from the extraction process of the circle information and the displacement distance within the time until the correction of the reference surface distance is completed once is smaller than ½ wavelength (± ¼ wavelength). If this loop is repeated, the measurement range is theoretically unlimited.

2.同心円状の中心座標とその同心円の半径抽出アルゴリズム
図4は同心円状の干渉縞の円中心座標とその第1円と第2円の半径算出の求め方を表した図である。
2. Radial extraction algorithm diagram of concentric center coordinates and its concentric circle 4 is a diagram showing how to determine the radius calculation of first circle and the second circle that the circle center coordinates of concentric interference fringes.

円情報の抽出に用いる方法として、一般的にハフ変換を用いることが多いが、基本となるハフ変換では、縦×横がNドットの画面を扱った場合Nの4乗のオーダーで処理回数が増えることから、処理の高速化は困難である。別のハフ変換では、処理時間の低減を図ることができるが。それでも、画像サイズ256x256の円検出に0.8〜288秒かかることから、根本的な処理時間の低減にはならない。   In general, the Hough transform is often used as a method for extracting circle information. However, in the basic Hough transform, when a screen with N dots in the vertical and horizontal directions is handled, the number of processes is in the order of the fourth power of N. Since it increases, it is difficult to increase the processing speed. Another Hough transform can reduce the processing time. Nevertheless, since it takes 0.8 to 288 seconds to detect a circle with an image size of 256 × 256, it does not fundamentally reduce the processing time.

本発明では、干渉縞が一定の中心点から湧き沈みする性質を利用し、中心から縦方向に走査していき、谷部分の円情報を検出する手法を用いる。手法そのものは単純な走査であるので、最大でも画像の縦サイズ分だけ走査することにより、円情報を抽出することができる。   In the present invention, a technique is used in which interference fringes are swept up and down from a certain center point, are scanned in the vertical direction from the center, and circle information of the valley portion is detected. Since the method itself is simple scanning, circle information can be extracted by scanning only the vertical size of the image at the maximum.

この円検出方法は、干渉縞の性質である、ある一定の点を中心に縞の湧き沈みが起こる性質を利用する。同じ測定物の測定で、干渉縞の中心の位置がずれることは考えにくいので、目視により縞の中心位置をあらかじめ決めておく。そして、入力された中心点から縦方向に走査を開始する。二値画像の干渉縞の谷は黒画素となり、また谷は幅を持つため、黒画素が縦方向に連続して出現した点を円との接点と考える。この縦方向に連続して出現する点の数は円を検出するための最適な値が与えられる。ここで最小の円を第1円、2番目に小さい円を第2円とする。第2円の検出には、第1円で検出した円の接点からさらに外方向に走査を行うことによって求まる。   This circle detection method uses the property of interference fringes, that is, the nature of fringing up and down around a certain point. Since it is unlikely that the center position of the interference fringes will be shifted due to the measurement of the same measurement object, the center position of the fringes is determined in advance by visual observation. Then, scanning is started in the vertical direction from the input center point. Since the valleys of the interference fringes of the binary image are black pixels and the valleys have a width, the point where the black pixels appear continuously in the vertical direction is considered as a contact point with the circle. The number of points that appear continuously in the vertical direction is given an optimum value for detecting a circle. Here, the smallest circle is the first circle, and the second smallest circle is the second circle. The detection of the second circle is obtained by scanning further outward from the contact point of the circle detected in the first circle.

図4において,目視による中心点の決定では、本来の中心点とのずれが起こることが予想されるので、入力された中心点からX方向に走査範囲を広げておき、円との2つの交点を求め,交点間の距離が最大になる線の中間点を新たに円の中心座標とする。   In FIG. 4, since it is expected that the center point is visually deviated from the original center point, the scanning range is expanded in the X direction from the input center point, and two intersection points with the circle are obtained. And the middle point of the line that maximizes the distance between the intersections is the new center coordinate of the circle.

中心座標が決まった後、その捜査線上の第1円の交点から第1円の半径を求め,さらに交点からさらに走査を延ばし,第2円との交点を求め,これから第2円の半径を求める。   After the central coordinates are determined, the radius of the first circle is obtained from the intersection of the first circle on the investigation line, the scan is further extended from the intersection, the intersection with the second circle is obtained, and the radius of the second circle is obtained from this. .

本発明では、干渉縞画像に対し画像処理を施すことにより、微小変位の検出を図るが、干渉縞である図2の画像から分かるように、円中心部に近い縞の明暗のほうが間隔が大きく、鮮明に写っている。そのため画像処理では、円中心付近の円情報を用いる。干渉縞そのものを用いるのではなく、縞にある暗(谷)の部分を用いる。縞そのものを画像処理に用いない理由は、干渉縞の明度自体が安定していないためである。撮影状況によるところも大きいが、実験中では干渉縞の中心から最初の谷と2番目の谷から安定して円情報が得られる。   In the present invention, detection of minute displacement is performed by performing image processing on the interference fringe image, but as can be seen from the image of FIG. 2 which is the interference fringe, the interval between the bright and dark fringes near the center of the circle is larger. , Clearly reflected. Therefore, in image processing, circle information near the center of the circle is used. Instead of using the interference fringes themselves, the dark (valley) portions of the fringes are used. The reason why the fringes themselves are not used for image processing is that the brightness of the interference fringes is not stable. Although it depends largely on the shooting situation, in the experiment, the circle information can be obtained stably from the first valley and the second valley from the center of the interference fringes.

3.実施装置
図5は自動計測の実験装置を示す。図1において、干渉の生ずる場所にスクリーンを配置し、干渉縞の明暗のパターンを映し出し、CCDカメラによりパソコンに取り込む。スクリーンは必ずしも必要ではないが、スクリーンを用いない場合には、光電変換素子を用いての計測が必要となる。ディジタル画像処理系を用いることにより、時間的な応答は幾分劣化してしまうが、同心円状の干渉縞の2 次元的な変化を追随することができる。
3. Implementation Apparatus FIG. 5 shows an experimental apparatus for automatic measurement. In FIG. 1, a screen is arranged at a place where interference occurs, and a bright and dark pattern of interference fringes is projected and taken into a personal computer by a CCD camera. A screen is not always necessary, but when a screen is not used, measurement using a photoelectric conversion element is required. By using a digital image processing system, the temporal response is somewhat degraded, but two-dimensional changes in concentric interference fringes can be followed.

CCDカメラからパソコンに取り込まれた画像は、画像処理により同心円情報を抽出後、基準となる画像との比較を行い、差分を補正するように参照面駆動のPZTに印加電圧を加える。印加電圧は、ヒステリシス特性によるグラフを基に制御する。なお今回の実験では、変位の分かっている測定面として、PZTによって面垂直方向に駆動される拡散面を用いて実験を行った。   An image taken into the personal computer from the CCD camera is extracted with concentric circle information by image processing, then compared with a reference image, and an applied voltage is applied to the reference plane drive PZT so as to correct the difference. The applied voltage is controlled based on a graph based on hysteresis characteristics. In this experiment, the experiment was performed using a diffusion surface driven in the direction perpendicular to the surface by PZT as a measurement surface whose displacement is known.

実験で用いた光学系は、光源にHe−Neガスレーザ(波長633nm)を用い、ビームエキスパンダにより、直径20mmの平行ビームに拡大する。その後、焦点距離f=150mmの突レンズでビームを収束させる。焦点でのスポット径は、6.04マイクロmとなる。CCDカメラの解像度は、640x640である。   The optical system used in the experiment uses a He—Ne gas laser (wavelength: 633 nm) as a light source and expands it into a parallel beam having a diameter of 20 mm by a beam expander. Thereafter, the beam is converged by a projecting lens having a focal length f = 150 mm. The spot diameter at the focal point is 6.04 μm. The resolution of the CCD camera is 640 × 640.

4.動作結果
図6は自動計測を動作させたときの画面の一例を示す。図7は図2のグレイスケールの同心円状の干渉縞にしきい値処理を用いて2値化を行った結果である。図8は参照面駆動用PZT印加電圧と参照面垂直変位を表したグラフである。図9は測定面駆動用PZT印加電圧と参照面垂直変位を表したグラフである。表1は同心円状の干渉縞の円中心座標とその第1円と第2円の半径算出例である。表2は負帰還をかけて自動計測を行った結果例である。
4). Operation Result FIG. 6 shows an example of a screen when automatic measurement is activated. FIG. 7 shows the result of binarization using threshold processing for the grayscale concentric interference fringes of FIG. FIG. 8 is a graph showing the reference plane driving PZT applied voltage and the reference plane vertical displacement. FIG. 9 is a graph showing the PZT applied voltage for driving the measurement surface and the reference surface vertical displacement. Table 1 shows an example of calculating the center coordinates of the concentric interference fringes and the radii of the first and second circles. Table 2 shows an example of the result of automatic measurement with negative feedback.

図6に示すように、自動計測を動作させたときの画面は同心円状の干渉縞を見てあらかじめ入力されたおおよその中心座標表示と、測定面が変位する前の最初の干渉縞に対して求められた第1円と第2円の半径(図6の基準値)と、測定面を変位させた後の干渉縞に対して求められた第1円と第2円の半径(図6の現在値)と、その時に参照面を垂直方向に移動させるためにPZTにかけた電圧と、電圧から図9を用いて算出された変位が、示される。第1円と第2円の半径は測定面が変位する前と後では、負帰還がかかっているため理論的には同じである。従って測定面の変位と参照面の変位は等しい。   As shown in FIG. 6, when the automatic measurement is operated, the screen displays the approximate center coordinate display inputted in advance by looking at the concentric interference fringes and the first interference fringes before the measurement surface is displaced. The calculated first and second circle radii (reference values in FIG. 6), and the first and second circle radii calculated for the interference fringes after the measurement surface is displaced (in FIG. 6). (Current value), the voltage applied to PZT to move the reference plane in the vertical direction at that time, and the displacement calculated from the voltage using FIG. 9 are shown. The radii of the first circle and the second circle are theoretically the same because negative feedback is applied before and after the measurement surface is displaced. Therefore, the displacement of the measurement surface is equal to the displacement of the reference surface.

表1は図4で示すように2値化された同心円状の円から、目視で与えられた第1円と第2円のおおよその中心座標と、算出された中心座標と、算出された第1円と第2円の半径を示した結果である   Table 1 shows, from the concentric circles binarized as shown in FIG. 4, the approximate center coordinates of the first and second circles given visually, the calculated center coordinates, and the calculated first coordinates. It is a result showing the radius of 1 circle and 2 circle

負帰還時に参照面のPZTにかける電圧はプログラム内で計算されるため、この駆動電圧から参照面の変位距離は算出される。駆動電圧と参照面の変位距離との関係は円弧が一つ分沈み込んだり、湧き上がったりする距離が1/2波長分に相当することから図8に示されるように前もって求めておく。同様に擬似的に物体の変位を与える測定用PZTの場合も図9のように求めておく。PZTは一般的に図8のようにヒステリシスを持つが測定面用には必要無いと考え、ここには記載しなかった。   Since the voltage applied to PZT on the reference surface during negative feedback is calculated in the program, the displacement distance of the reference surface is calculated from this drive voltage. The relationship between the driving voltage and the displacement distance of the reference surface is obtained in advance as shown in FIG. 8 because the distance by which one circular arc sinks or rises corresponds to 1/2 wavelength. Similarly, the measurement PZT that gives a pseudo displacement of an object is also obtained as shown in FIG. Although PZT generally has hysteresis as shown in FIG. 8, it is not necessary for the measurement surface and is not described here.

表2に示すように実際に負帰還をかけて測定した検出結果は10.9671[nm]となっている。負帰還がかかって同心円の第1円または第2円が動いて重なることが確認された上に、表示された値である。従って自動計測はされていると考えられる。   As shown in Table 2, the detection result actually measured with negative feedback is 10.9671 [nm]. This is the value displayed after it has been confirmed that negative feedback is applied and the first or second concentric circle moves and overlaps. Therefore, it is considered that automatic measurement has been performed.

これに対して測定面駆動用PZTに印加した電圧から図9を用いて算出した変位は61.7nmであった。自動計測時に大きな誤差が出るのは、一つには参照面にかかる電圧が時系列的に増加、すなわち移動が単一方向でないため、参照面駆動用PZTの電圧から変位を算出するときに、図8で示されるヒステリシスの範囲で適当な値を出してしまうためと考える。これを解決するためにはヒステリシスのない参照面駆動素子を用いなければならない。   On the other hand, the displacement calculated from the voltage applied to the measurement surface driving PZT using FIG. 9 was 61.7 nm. A large error occurs at the time of automatic measurement. For example, since the voltage applied to the reference surface increases in time series, that is, the movement is not in a single direction, when calculating the displacement from the voltage of the reference surface driving PZT, It is considered that an appropriate value is obtained within the hysteresis range shown in FIG. In order to solve this, it is necessary to use a reference surface driving element having no hysteresis.

また、測定面のPZTを駆動させないまま微小変位の計測を行ったときに、本来ならば基準画像と変位後の干渉縞の大きさは変わらないはずであるが、変位検出時に干渉縞の大きさが変化してしまうため、参照面駆動用PZTが動作し、変位量がプラスマイナス5[nm] 程度検出されてしまう。これは部屋の温度や振動を受けるためと考える。   In addition, when a minute displacement is measured without driving the PZT on the measurement surface, the size of the interference fringe after the displacement should be the same as the reference image. Therefore, the reference surface driving PZT operates, and the displacement amount is detected to be about plus or minus 5 [nm]. This is thought to be due to room temperature and vibration.

本発明では、レーザー干渉計を用いた拡散面における一点に対して微小変位計測の自動化を実現した。この自動計測装置は同心円状のレーザー干渉縞の円抽出にハフ変換を用いていないので、高速化されたシステムを構成することができた。   In the present invention, the automation of minute displacement measurement is realized for one point on the diffusion surface using a laser interferometer. Since this automatic measuring device does not use Hough transform for extracting concentric laser interference fringes, we were able to construct a high-speed system.

図7は図2のグレイスケールの同心円状の干渉縞に2値化処理を行った結果である。2値化処理により、良好な2値画像が得られていることや、2値画像からの円情報検出も良好な結果を得ている。また、2値化処理の開始から円情報検出が完了するまでの処理時間を、GetTickCount()関数で計測したが、20ms前後で検出され、ハフ変換の手法と比較し、処理対象画像サイズは大きくなっているのに、処理速度は短縮されており、高速化が実現できている。   FIG. 7 shows the result of binarizing the gray scale concentric interference fringes shown in FIG. A good binary image has been obtained by the binarization process, and circular information detection from the binary image has also obtained good results. The processing time from the start of binarization processing to the completion of circle information detection is measured with the GetTickCount () function, but is detected around 20 ms, and the processing target image size is larger than the Hough transform method. However, the processing speed has been shortened, and high speed has been realized.

製品や加工中の面垂直方向の変位を自動的に計測できることによって、生産工程の中に、製品の測定や加工検査を組み込むことが可能になり、結果として省人化に寄与する。   The ability to automatically measure the vertical displacement of the product and during processing makes it possible to incorporate product measurement and processing inspection into the production process, resulting in labor savings.

自動計測を行うためのシステム構成例を表した図である。It is a figure showing the example of a system configuration for performing automatic measurement. 同心円状の干渉縞の写真である。It is a photograph of concentric interference fringes. 自動計測を行うためのフローチャート図である。It is a flowchart figure for performing automatic measurement. 同心円状の干渉縞の円中心座標とその第1円と第2円の半径算出の求め方を表した図である。It is a figure showing how to obtain the circle center coordinates of concentric interference fringes and the radius calculation of the first circle and the second circle. 自動計測の実施をしたときの写真である。It is a photograph when carrying out automatic measurement. 自動計測動作時の同心円状の干渉縞の第1円と第2円の半径算出と測定面変位算出を行った時の表示例である。It is a display example when the radius calculation and measurement surface displacement calculation of the first circle and the second circle of the concentric interference fringes during the automatic measurement operation are performed. 同心円状の干渉縞の2値化例した図である。It is the figure which made the binarization example of the concentric interference fringe. 参照面駆動用PZT印加電圧と参照面変位を表したグラフである。It is the graph showing PZT application voltage for reference surface drive, and a reference surface displacement. 測定面駆動用PZT印加電圧と参照面変位を表したグラフである。It is a graph showing PZT applied voltage for measurement surface drive and a reference surface displacement.

符号の説明Explanation of symbols

1 測定面
2 参照面
3 PZT
4 ビームスプリッタ
5 レンズ
6 スクリーン
7 CCDカメラ
8 レーザビーム
9 コンピュータ
10 レーザエキスパンダ
11 レーザ発信器
1 Measurement surface 2 Reference surface 3 PZT
4 Beam splitter 5 Lens 6 Screen 7 CCD camera 8 Laser beam 9 Computer 10 Laser expander 11 Laser transmitter

Claims (2)

拡散面の面垂直方向の変位を計測する装置において、
拡散面と参照面からの反射光によって生じる干渉縞と、
これを読みとる光学装置と、
この画像を処理して拡散面の変位によって生じる同心円上の干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動を算出する部分と
干渉縞の移動を参照面の面垂直方向の変位によって相殺させる部分と
相殺するために参照面に面垂直方向に与えた変位から拡散面の面垂直方向の変位を算出する部分と、
を備えた、
ことを特徴とする計測処理装置
In a device that measures the displacement of the diffusion surface in the direction perpendicular to the surface
Interference fringes caused by reflected light from the diffusing surface and the reference surface;
An optical device that reads this,
This image is processed to calculate the subtraction of concentric fringes on the concentric circle caused by displacement of the diffusion surface or the movement of upwelling from the center of the circle and the movement of the interference fringes in the direction perpendicular to the reference plane. A portion for calculating the vertical displacement of the diffusion surface from the displacement applied to the reference surface in the direction perpendicular to the surface to be canceled by the displacement of
With
Measurement processing apparatus characterized by
請求項1に記載の同心円状の干渉縞の円中心方向への沈み込みまたは円中心からの湧き上がりの移動を算出する部分において、
画面上の同心円状の干渉縞から目視であらかじめおおよその円中心座標を与え、この円中心のX座標上の円弧内の任意の点からY方向の円弧との交点を求め,その半径が最大になる点をX方向に走査をして求める。この中間点が新たに円中心座標となる。このようにハフ変換でなく円の中心を求める、
ことを特徴とする計測処理装置。

In the part for calculating the sinking of the concentric interference fringes according to claim 1 toward the center of the circle or the movement of upwelling from the center of the circle,
The approximate circle center coordinates are given in advance from the concentric interference fringes on the screen, and the intersection with the arc in the Y direction is obtained from an arbitrary point in the arc on the X coordinate of the circle center. The radius is maximized. Is obtained by scanning in the X direction. This midpoint becomes a new circle center coordinate. In this way, instead of the Hough transform, find the center of the circle,
A measurement processing apparatus characterized by that.

JP2005258340A 2005-09-06 2005-09-06 Diffusion surface single point micro displacement automatic measurement processing device Active JP4161059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258340A JP4161059B2 (en) 2005-09-06 2005-09-06 Diffusion surface single point micro displacement automatic measurement processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258340A JP4161059B2 (en) 2005-09-06 2005-09-06 Diffusion surface single point micro displacement automatic measurement processing device

Publications (2)

Publication Number Publication Date
JP2007071663A true JP2007071663A (en) 2007-03-22
JP4161059B2 JP4161059B2 (en) 2008-10-08

Family

ID=37933228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258340A Active JP4161059B2 (en) 2005-09-06 2005-09-06 Diffusion surface single point micro displacement automatic measurement processing device

Country Status (1)

Country Link
JP (1) JP4161059B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045922A (en) * 2006-08-11 2008-02-28 Toyama Univ Method and apparatus for measuring nanometer displacement by laser speckle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045922A (en) * 2006-08-11 2008-02-28 Toyama Univ Method and apparatus for measuring nanometer displacement by laser speckle

Also Published As

Publication number Publication date
JP4161059B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
TWI426296B (en) Method and system for three-dimensional polarization-based confocal microscopy
JP5025442B2 (en) Tire shape inspection method and apparatus
JP5969906B2 (en) Measuring method and measuring device
JP5632650B2 (en) Inspection system and method using multi-image phase shift analysis
JP2012045610A (en) Apparatus and method for determining shape of end of bead
JP5561178B2 (en) Surface defect inspection apparatus, surface defect inspection method, and program
JP5385703B2 (en) Inspection device, inspection method, and inspection program
KR20160102244A (en) Non-imaging coherent line scanner systems and methods for optical inspection
JP5923054B2 (en) Shape inspection device
JP2012251893A (en) Shape measuring device, control method of shape measuring device, and program
JP2007086534A (en) Image correction device, pattern inspection device, image correction method, and pattern inspection method
JP2005283440A (en) Vibration measuring device and measuring method thereof
JP5686012B2 (en) Surface defect inspection apparatus and method
WO2015083442A1 (en) Data processing method and data processing device
JP4161059B2 (en) Diffusion surface single point micro displacement automatic measurement processing device
JP2023176026A (en) Method for determining scan range
JP2017053671A (en) Shape measurement method
JP2019011987A (en) Defect detection device and defect detection method
JP2009300287A (en) Surface defect inspection device
JP6880396B2 (en) Shape measuring device and shape measuring method
JP4797568B2 (en) Slab vertical crack detection method and apparatus
JP4945750B2 (en) Apparatus and method for measuring unevenness and displacement of diffusion surface
CN111183351A (en) Image sensor surface defect detection method and detection system
JP2016080517A (en) Surface inspection device
JP2006003168A (en) Measurement method for surface shape and device therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071231

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150